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Abstract

We consider walks on a triangular domain that is a subset of the triangular
lattice. We then specialise this by dividing the lattice into two directed sublattices
with different weights. Our central result is an explicit formula for the generating
function of walks starting at a fixed point in this domain and ending anywhere
within the domain. Intriguingly, the specialisation of this formula to walks starting
in a fixed corner of the triangle shows that these are equinumerous to two-coloured
Motzkin paths, and two-coloured three-candidate Ballot paths, in a strip of finite
height.

1 Introduction

Recently there has been significant development of the kernel method [2, 3, 14], a technique
in enumerative combinatorics. This method can be used to solve linear combinatorial
functional equations in so-called catalytic variables.

While the kernel method has been reasonably well understood when only one catalytic
variable is involved, once there are two or more catalytic variables the situation is far
from clear. There are indications that the structure of the solution, such as whether
the generating function is algebraic or even differentiably finite, depends on the group of
symmetries of the kernel of the functional equation [5, 12]. Only recently has there been
some progress using a multivariate kernel method in a special case [4].

Based on the kernel method, it is possible to derive generating functions for counting
problems in previously inaccessible situations. As an example, the exact solution of a
lattice model of partially directed walks in a wedge has only been possible using an
iterative version of the kernel method [11], leading to a generating function that is not
differentiably finite, as its singularities accumulate at limit points. This example also
shows that as a by-product of enumerative combinatorics, deep combinatorial insight into
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connections between seemingly unrelated systems can be uncovered, leading to spin-off
research in bijective combinatorics [13, 15].

The problems studied in this paper have strong links to directed walks; in particular
the primary model of interest can also be formulated as two directed walks in a strip (see
Figs. 1 and 2). We present a solution to an enumerative lattice path problem that is
expressed in terms of a functional equation with three catalytic variables. We are able to
solve this functional equation by virtue of the high symmetry of the kernel.

(0,0,
L)

(L,0,
0)

(0,L,
0)

nx

nz

ny

Figure 1: A 10-step walk on the bounded triangular domain intersecting the axes
at (L, 0, 0), (0, L, 0) and (0, 0, L). Points on the domain are given by (nx, ny, nz) with
nx, ny, nz > 0 and nx + ny + nz = L.

The resulting generating function solution allows us to prove a result linking walks on
a triangular domain to Motzkin paths. It remains an intriguing open problem to find a
bijective proof of this result.

2 Statement of Results

Consider walks (ω0, ω1, . . . , ωn) on Z3 with steps ωi−ωi−1 in a step-set Ω2 such that with
each step exactly one coordinate increases by one and exactly one coordinate decreases by
one. More precisely, Ω2 = {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)}.

The step-set Ω2 ensures that walks lie in planes {(nx, ny, nz) ∈ Z3| nx +ny +nz = L}
determined by the starting point ω0 = (u1, u2, u3) of the walk, where L = u1 + u2 + u3.
In this paper, walks on domains given by finite subsets of these planes are studied by
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Figure 2: The image of the 10-step walk in Fig. 1. The k-th point (nx, ny, nz) of the
walk in Fig. 1 maps to two points with coordinates (k, nx) and (k, nx + ny), respectively.
This mapping generates two non-crossing directed walks that are confined to the strip
0 6 y 6 L. In this example, the two walks touch after 2 steps and the top walk hits the
top of the strip after 7 steps, corresponding to the points where the walk in Fig. 1 touches
the sides of the domain.

restricting the walks to the non-negative orthant (N0)
3 (see Fig. 1). In particular, the

walks lie on a bounded triangular domain; henceforth this model will be referred to as
the triangle model and is of primary interest of this paper.

As a prelude, consider walks on the 1-dimensional analogue of the triangle model, i.e.
walks (ω0, ω1, . . . , ωn) on Z2 with steps ωi−ωi−1 in a step-set Ω1 = {(1,−1), (−1, 1)}. Ω1

ensures that walks lie on lines {(nx, ny) ∈ Z2| nx + ny = L} determined by the starting
point ω0 = (u1, u2) of the walk, where L = u1 + u2. Accordingly, this will be referred to
as the line model. In this paper, walks on domains given by finite subsets of these lines
are studied, by restricting the walks to the non-negative quadrant (N0)

2 (see Fig. 3).

(L,0)

(0,L)

nx

ny

Figure 3: The line model, intersecting the axes at (L, 0) and (0, L).
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Given a fixed starting point ω0, denote the number of n-step walks starting at ω0 and
ending at ωn = (i1, i2) by Cn(i1, i2) and consider the generating function

G(x, y; t) =
∞∑
n=0

tn
∑

ωn∈(N0)2

Cn(ωn)xi1yi2 , (1)

where t is the generating variable conjugate to the length of the walk. Due to the choice
of the step-set Ω, G(x, y; t) is homogeneous of degree L = u1 + u2 in x, y, i.e.

G(γx, γy; t) = γLG(x, y; t) . (2)

This model has been studied before [6, pages 7-8], and has obvious connections to the
generating function of Chebyshev polynomials. It is easy to solve, and gives the following
result.

Proposition 1. The generating function G(x, y; t), which counts n-step walks starting at
fixed ω0 = (u, v), is given by

G(x, y; t) =
1

1−
x
y

+ y
x

p+ 1
p

(
xuyv − xu+v+1pv+1(1− p2u+2)

y(1− p2u+2v+4)
− yu+v+1pu+1(1− p2v+2)

x(1− p2u+2v+4)

)
, (3)

where

p =
1−
√

1− 4t2

2t
(4)

is the generating function of Dyck paths.

This simplifies considerably when specifying x = y = 1.

Corollary 2. The generating function G(1, 1; t), which counts n-step walks starting at
fixed ω0 = (u, v) with no restrictions on the endpoint, is given by

G(1, 1; t) =
(1 + p2)(1− pu+1)(1− pv+1)

(1− p)2(1 + pu+v+2)
, (5)

where

p =
1−
√

1− 4t2

2t
. (6)

In this paper, the main results concern the triangle model, or more precisely, a weighted
generalisation of this model. Partition Ω2 into

Ω′2 = {(1, 0,−1), (−1, 1, 0), (0,−1, 1)} and
Ω′′2 = {(1,−1, 0), (−1, 0, 1), (0, 1,−1)} , (7)

with steps in Ω′2 and Ω′′2 given the weights α and β, respectively (see Fig. 4).
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Figure 4: The step-set for the triangle partitioned into two smaller step-sets Ω′2 and
Ω′′2, with associated weights α and β respectively. Using only steps from Ω′2 restricts to
allowing steps in only one orientation (clockwise or anti-clockwise) around each triangle
in the domain, with neighbouring triangles (those sharing an edge) permitting opposite
orientations. Using only steps from Ω′′2 reverses these orientations.

Given a fixed starting point ω0, denote the number of n-step walks starting at ω0 and
ending at ωn = (i1, i2, i3) by Cn(i1, i2, i3) and consider the generating function

G(x, y, z; t) =
∞∑
n=0

tn
∑

ωn∈(N0)d+1

Cn(ωn)xi1yi2zi3 , (8)

where t is the generating variable conjugate to the length of the walk. Due to the choice
of the step-set Ω2, G(x, y, z; t) is homogeneous of degree L = u1 + u2 + u3 in x, y, z, i.e.

G(γx, γy, γz; t) = γLG(x, y, z; t) . (9)

The main result of this paper is as follows.

Theorem 3. The generating function G(t) ≡ G(1, 1, 1; t), which counts n-step walks
starting at fixed ω0 = (u, v, w) with no restrictions on the endpoint, is given by

G(t) =
(1− p3)(1− pu+1)(1− pv+1)(1− pw+1)

(1− p)3(1− pu+v+w+3)
, (10)

with
p = (α + β)tM((α + β)t) (11)

where

M(t) =
1− t−

√
(1 + t)(1− 3t)

2t2
(12)

is the generating function of Motzkin paths.

For walks starting in a corner of a triangle of side-length L one finds the following
intriguing equinumeracy result.
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Corollary 4.

(a) Walks starting in a corner of a triangle of side-length L = 2H + 1 with arbitrary
endpoint and taking p steps on Ω′2 and q steps on Ω′′2 are in bijection with two-
coloured Motzkin paths in a strip of height H which have p steps coloured with
colour A and q steps coloured with colour B.

(b) Walks starting at a corner of a triangle of side-length L = 2H with arbitrary end-
point and taking p steps on Ω′2 and q steps on Ω′′2 are in bijection with two-coloured
Motzkin paths in a strip of height H, such that horizontal steps at height H are for-
bidden, which have p steps coloured with colour A and q steps coloured with colour
B.

In particular, this immediately implies that walks starting in a corner of a triangle of
side-length L = 2H + 1 (resp. L = 2H) with arbitrary endpoint are in bijection with
two-coloured Motzkin paths in a strip of height H (resp. a strip of height H, such that
horizontal steps at height H are forbidden). Additionally, setting q = 0 implies that walks
starting in a corner of a triangle of side-length L = 2H+ 1 (resp. L = 2H) with arbitrary
endpoint, which only take steps on Ω′2, are in bijection with Motzkin paths in a strip of
height H (resp. a strip of height H such that horizontal steps at height H are forbidden).

For walks starting in the centre of a triangle of side-length L = 3u, there is a further
result.

Proposition 5. The generating function g(t) ≡ G(1, 1, 0; t), which counts walks starting
at ω0 = (u, u, u) and ending at a fixed side of the triangle, is given by

g(t) = pu
(1− p3)(1− pu+1)

(1− p)(1− p3u+3)
, (13)

with p as in Theorem 3.

Define an n-step three-candidate Ballot path to be a walk (ω0, ω1, . . . , ωn) on N2
0 start-

ing at the origin with steps ωi − ωi−1 taken from the step-set

∆ = {(1, 1), (1,−1), (1, 0)} , (14)

such that after r steps the number of (1, 1) steps is greater than or equal to the number
of (1,−1) steps, which is greater than or equal to the number of (1, 0) steps, for all
0 6 r 6 n. These can also be thought of as a coding for Yamanouchi words with three
letters [1, page 6]. Define further an n-step three-candidate Ballot path with excess L
to be an n-step Ballot path such that after r steps the difference between the number of
(1, 1) steps and (1, 0) steps is at most L, for all 0 6 r 6 n.

Proposition 6. Walks starting in a corner of a triangle of side-length L with arbitrary
endpoint, restricted to the sublattice Ω′2, are in bijection with three-candidate Ballot paths
with excess L.
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3 Proofs

3.1 Line Model

The line model will be examined first, with the same techniques then being applied to the
triangle model.

3.1.1 Functional Equation

An n-step walk is uniquely constructed by appending a step from the step-set Ω to an
(n− 1)-step walk, provided n > 0. This leads to the following functional equation for the
generating function G(x, y; t).

G(x, y; t) =xu1yu2 +G(x, y; t)t

(
x

y
+
y

x

)
−G(x, 0; t)t

(
x

y

)
−G(0, y; t)t

(
y

x

)
(15)

Here, the monomial xu1yu2 corresponds to a zero-step walk starting (and ending) at
ω0 = (u1, u2). The term G(x, y; t)t

(
x
y

+ y
x

)
corresponds to appending any of the steps in

Ω1 irrespective of whether the resulting walk steps violates the boundary condition and
leaves the domain. This overcounting is adjusted by the remaining terms. For example,
G(x, 0; t) corresponds to walks which end at (i1, 0; t), and therefore G(x, 0; t)x

y
corresponds

to precisely those walks stepping across the boundary.
As this is a functional equation for the generating function G(x, y; t) in the variables

x, y only, the t-dependence is dropped by writing. The functional equation (15) is rewrit-
ten as

G(x, y)

[
1− t

(
x

y
+
y

x

)]
= xu1yu2 −G(0, y) t

(y
x

)
−G(x, 0) t

(
x

y

)
. (16)

3.1.2 The Kernel

Furthermore, the “Kernel” K(x, y; t) ≡ K(x, y) of the functional equation,

K(x, y) = 1− t
(
x

y
+
y

x

)
, (17)

is introduced. Symmetry properties of this Kernel are central to the arguments. Note
that the Kernel is homogeneous of degree zero, i.e. it is invariant under rescaling of all the
variables. This trivial symmetry will be implicitly assumed in the considerations below.

Now introduce G(S), the group of transformations which leaves the Kernel of the
functional equation invariant for the step set S. This is in line with the notation introduced
by Fayolle et al. [8]. For the line model, the step-set is

S1 =

{
x

y
,
y

x

}
,
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where here and henceforth, steps are identified with their associated combinatorial weights.

Lemma 7. The Kernel K(x, y) is invariant under action of the group of transformations

G(S1) = 〈(y, x)〉 ∼= C2 .

where (y, x) is shorthand notation for the map that sends (x, y) to (y, x). In particular,
one arrives at the following result.

Lemma 8. The Kernel K(x, y) is invariant under the following 1-parameter substitutions.

K(p, 1) = K(1, p) = 1− t
(
p+

1

p

)
The dependence between p and t is henceforth fixed such that

1− t(p+ 1/p) = 0, (18)

which when solved for p gives p = tD(t), where D(t) is the generating function for Dyck
paths

D(t) =
1−
√

1− 4t2

2t2
. (19)

In particular, p is a well-defined power series with zero constant.
Using this dependency and substituting the two choices from Lemma 8 into the func-

tional equation (16) implies

tpG(p, 0) +
t

p
G(0, 1) = pu (20a)

t

p
G(1, 0) + tpG(0, p) = pv. (20b)

Using homogeneity of the generating function, replace

G(p, 0) = pu+vG(1, 0) , G(0, p) = pu+vG(0, 1) , (21)

and solve the two equations 20a and 20b in the two variables G(1, 0) and G(0, 1) to find
that

G(1, 0) =
pv+1(p2u+2 − 1)

t(p2u+2v+4 − 1)
, G(0, 1) =

pu+1(p2v+2 − 1)

t(p2u+2v+4 − 1)
. (22)

Applying the homogeneity argument of (21) to (22), one determines G(x, 0) and G(0, y),
and substituting these into (16) and eliminating t via (18) gives the result stated in
Proposition 1

G(x, y; t) =
1

1−
x
y

+ y
x

p+ 1
p

(
xuyv − xu+v+1pv+1(1− p2u+2)

y(1− p2u+2v+4)
− yu+v+1pu+1(1− p2v+2)

x(1− p2u+2v+4)

)
.

(23)
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Substituting x = y = 1 into (23) then gives Corollary 2

G(1, 1; t) =
(1 + p2)(1− pu+1)(1− pv+1)

(1− p)2(1 + pu+v+2)
. (24)

3.2 Triangle Model

The same method is now applied to the triangle model, including the weights α and β
corresponding to the directed sublattices (equation (7)).

3.2.1 Functional Equation

Again, an n-step walk is uniquely constructed by appending a step from the step-set Ω
to an (n− 1)-step walk, provided n > 0. This leads to the following functional equation
for the generating function G(x, y, z; t).

G(x, y, z; t) =xu1yu2zu3 +G(x, y, z; t)t

(
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

)
−G(0, y, z) t

(
αy

x
+
βz

x

)
−G(x, 0, z) t

(
βx

y
+
αz

y

)
−G(x, y, 0) t

(
αx

z
+
βy

z

)
(25)

Similarly to equation (15), the monomial xu1yu2zu3 corresponds to a zero-step walk
starting (and ending) at ω0 = (u1, u2, u3), the second term corresponds to appending any
of the steps in Ω (irrespective of whether the resulting walk steps violates the boundary
condition and leaves the domain), and any overcounting is adjusted by the remaining
three terms, each of which accounts for stepping over one of the three boundary edges of
the triangle.

Again, as this is a functional equation for the generating function G(x, y, z; t) in the
variables x, y, z only, the t-dependence is dropped by writing G(x, y, z; t) ≡ G(x, y, z).
The functional equation (25) is rewritten as

G(x, y, z)

[
1− t

(
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

)]
= xu1y

u
2z

u
3

−G(0, y, z) t

(
αy

x
+
βz

x

)
−G(x, 0, z) t

(
βx

y
+
αz

y

)
−G(x, y, 0) t

(
αx

z
+
βy

z

)
. (26)

3.2.2 The Kernel

Again, the Kernel K(x, y, z; t) ≡ K(x, y, z) of the functional equation,

K(x, y, z) = 1− t
(
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

)
, (27)
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is needed, and symmetry properties of this Kernel are central to the arguments. As before,
note that the Kernel is homogeneous of degree zero, i.e. it is invariant under rescaling of
all the variables, and this trivial symmetry will be implicitly assumed in the considerations
below.

Looking again at G(S), the group of transformations which leaves the Kernel of the
functional equation invariant for the step set S, the step-set for the triangle model is

S2 =

{
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

}
,

and G(S2) is generated by a rotation and an inversion.

Lemma 9. The Kernel K(x, y, z) is invariant under action of the group of transforma-
tions

G(S2) =

〈
(y, z, x),

(
1

x
,

1

y
,
1

z

)〉
∼= C3 × C2 .

Moreover, there is a one-variable sub-set which has useful consequences.

Lemma 10. The Kernel K(x, y, z) is invariant under the following 1-parameter substi-
tutions.

K(1, 1, p) = K(1, p, 1) = K(p, 1, 1) = K(1, p, p) = K(p, 1, p) = K(p, p, 1)

= 1− t(α + β)

(
p+ 1 +

1

p

)
. (28)

Fixing the dependence between p and t such that

1− t(α + β)(p+ 1 + 1/p) = 0 , (29)

gives p = (α + β)tM((α + β)t), where

M(t) =
1− t−

√
(1 + t)(1− 3t)

2t2
(30)

is the generating function of Motzkin paths. In particular, p is a well-defined power series
in t with zero constant.

Using this dependency and substituting the six choices from Lemma 10 into the func-
tional equation (26) then implies

(α + β)t

p
G(0, 1, 1) + t(α + βp)G(p, 0, 1) + t(αp+ β)G(p, 1, 0) = pu (31a)

(α + β)t

p
G(1, 0, 1) + t(αp+ β)G(0, p, 1) + t(α + βp)G(1, p, 0) = pv (31b)

(α + β)t

p
G(1, 1, 0) + t(α + βp)G(0, 1, p) + t(αp+ β)G(1, 0, p) = pw (31c)
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(α + β)tpG(0, p, p) + t

(
α +

β

p

)
G(1, 0, p) + t

(
α

p
+ β

)
G(1, p, 0) = pvpw (31d)

(α + β)tpG(p, 0, p) + t

(
α

p
+ β

)
G(0, 1, p) + t

(
α +

β

p

)
G(p, 1, 0) = pupw (31e)

(α + β)tpG(p, p, 0) + t

(
α +

β

p

)
G(0, p, 1) + t

(
α

p
+ β

)
G(p, 0, 1) = pupv (31f)

Using homogeneity of the generating function, replace

G(p, p, 0) = pLG(1, 1, 0) , G(p, 0, p) = pLG(1, 0, 1) , G(0, p, p) = pLG(0, 1, 1) , (32)

and from the linear combination [(31a) + (31b) + (31c)] − p[(31d) + (31e) + (31f)] it is
easily found that

(α+β)t[G(0, 1, 1)+G(1, 0, 1)+G(1, 1, 0)] =
pu+1 + pv+1 + pw+1 − p2+L(p−u + p−v + p−w)

1− p3+L
.

(33)
Substituting (x, y, z) = (1, 1, 1) into (26) shows that G(1, 1, 1) can be computed explicitly,
as

(1− 3(α + β)t)G(1, 1, 1) = 1− (α + β)t[G(0, 1, 1) +G(1, 0, 1) +G(1, 1, 0)] . (34)

Substituting (33) into (34) and eliminating t via (29) gives the desired final result

G(1, 1, 1) =
(1− p3)(1− pu+1)(1− pv+1)(1− pw+1)

(1− p)3(1− p3+L)
. (35)

Finally, note that substituting p(t) = (α + β)tM((α + β)t) followed by (α + β)t = s into
(29) implies

M(s) = 1 + sM(s) + s2M(s)2 , (36)

whence M(s) is the Motzkin path generating function. This completes the proof of The-
orem 3.

Letting (u, v, w) = (L, 0, 0) in (10) implies that the generating function for walks
starting in a corner is given by

G(1, 1, 1) =
(1− p3)(1− p1+L)

(1− p)(1− p3+L)
. (37)

3.2.3 Continued Fractions

Equation (37) is intimately related to the convergents of the continued fraction expansion
of the Motzkin path generating function. One can show by mathematical induction that
in this case G(1, 1, 1) can be written as a continued fraction. More precisely, for L = 2H
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even, there is a continued fraction of length H,

1

1− (α + β)t−
(α + β)2t2

1− (α + β)t−
(α + β)2t2

. . . −
(α + β)2t2

1− (α + β)t− (α + β)2t2︸ ︷︷ ︸
length H

=
(1− p3)(1− p1+2H)

(1− p)(1− p3+2H)
,

(38)

and for L = 2H + 1 odd, there is a continued fraction of length H + 1,

1

1− (α + β)t−
(α + β)2t2

1− (α + β)t−
(α + β)2t2

. . . −
(α + β)2t2

1− (α + β)t︸ ︷︷ ︸
length H + 1

=
(1− p3)(1− p2+2H)

(1− p)(1− p4+2H)
. (39)

It is easy to show that equations (38) and (39) hold for the base case H = 0,

1 =
(1− p3)(1− p1+0)

(1− p1+0)(1− p3+0)
(40a)

1

1− (α + β)t
=

(1− p3)(1− p2+0)

(1− p)(1− p4+0)
, (40b)

and the inductive step follows from showing that

(1− p3)(1− p1+(L+2))

(1− p)(1− p3+(L+2))
=

1

1− (α + β)t− (α + β)2t2
(1− p3)(1− p1+L)

(1− p)(1− p3+L)

. (41)

From the combinatorial theory of continued fractions the combinatorial interpretation
in terms of Motzkin paths follows easily, as given in a paper by Flajolet [9, pages 6-11].
This immediately implies Corollary 4. Substituting α = 1, β = 1 into (38) and (39)
gives coefficients 2 and 4, of t and t2 respectively, following from the fact that the relevant
Motzkin paths are two-coloured, and substituting in α = 1, β = 0 gives the interpretation
in terms of normal Motzkin paths.

3.2.4 Further Results

Attempting to solve the triangle model in full generality proved beyond the reach of
the techniques used in this paper, as the system of equations (31) is underdetermined,
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linking nine quantities with six equations. The only case in which one can extract further
information from it is one of high symmetry, namely when the starting point is chosen to
be in the centre of the triangle, i.e. ω0 = (u, u, u), in which the triangle has size L = 3u.
The equations (31) then reduce to two equations in two unknowns,

(α + β)t

p
G(1, 1, 0) + (α + β)t(1 + p)G(p, 1, 0) = pu (42a)

(α + β)tp1+3uG(1, 1, 0) + (α + β)t

(
1 +

1

p

)
G(p, 1, 0) = p2u . (42b)

This can readily be solved, and

(α + β)tG(1, 1, 0) =
p1+u(1− p1+u)

1− p3+3u
. (43)

Eliminating t by using (29) proves Proposition 5.
It now remains to prove our final result. Without loss of generality, starting in the

corner marked by coordinates (L, 0, 0), the steps (−1, 0, 1), (0, 1,−1), and (1,−1, 0) can
be mapped to (1, 1), (1,−1), and (1, 0), respectively. This maps steps in ω′ to steps
in three-candidate Ballot paths and the restrictions imposed by the boundaries of the
triangle clearly transfer to the restrictions on a Ballot path with excess L. This proves
Proposition 6.

4 Conclusion and Open Problems

4.1 The Problem in General Dimension

We now frame the triangle model as the 2-dimensional case of a larger class of models.
Consider walks (ω0, ω1, . . . , ωn) on Zd+1 with steps ωi−ωi−1 in a step-set Ωd such that with
each step exactly one coordinate increases by one and exactly one coordinate decreases
by one. More precisely, Ωd is the set of steps with coordinates (e1, e2, . . . , ed+1) such that
for all ordered pairs (i, j) with 1 6 i, j 6 d + 1 and i 6= j, ei = 1, ej = −1 and ek =
0 for all 1 6 k 6 d+ 1 and k /∈ {i, j}.

The step-set Ωd ensures that walks lie in a d-dimensional hyperplane {(nx1 , . . . , nxd+1
) ∈

Zd+1| nx1 + . . . + nxd+1
= L} determined by the starting point ω0 = (u1, . . . , ud+1) of

the walk, where L =
∑d+1

j=1 uj. In this paper, walks on domains given by finite subsets of

these hyperplanes are studied by restricting the walks to the non-negative orthant (N0)
d+1.

Fixing the dimension d, this class of walks is referred to as the d-dimensional case. The
1-dimensional case is the line model, and the 2-dimensional case is the triangle model. In
the 3-dimensional case, the domains would be tetrahedra of side-length L.

Given a fixed starting point ω0, denote the number of n-step walks starting at ω0 and
ending at ωn = (i1, . . . , id+1) by Cn(i1, . . . , id+1) and consider the generating function

G(x1, . . . , xd+1; t) =
∞∑
n=0

tn
∑

ωn∈(N0)d+1

Cn(ωn)

j=d+1∏
j=1

x
ij
j , (44)
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where t is the generating variable conjugate to the length of the walk. Due to the choice of
the step-set Ωd, G(x1, . . . , xd+1; t) is homogeneous of degree L =

∑d+1
j=1 uj in x1, . . . , xd+1,

i.e.
G(γx1, . . . , γxd+1; t) = γLG(x1, . . . , xd+1; t) . (45)

In this paper we have set up a general problem which we have completely solved in
dimension 1. We have also solved it in dimension 2 in the case where endpoints are
not weighted, along with a high-symmetry case. Unfortunately, our argument does not
provide enough information to solve the general case for dimension 2 case or that for
higher dimensions and we must leave these open. We note that there are connections
between the problem described here and walks on the fundamental domain of the affine
Ad Weyl group as discussed in [10], where the counting problem is treated using constant
term identities.

4.2 Generating Function Properties

Generating functions for walks in finite domains are rational. This is a direct result of
the fact that the adjacency matrix for such systems has finite dimension. In particular,
in the triangle model, a triangle of side-length L contains

(
L+2
2

)
vertices, or states, and

therefore we would expect the degree of the numerator and denominator of the generating
function to grow quadratically in L. However, for the cases where we are able to prove
results, there is some cancellation such that the growth is linear in L.

The process of finding our results began with some initial series generation which
allowed us to predict the form of the generating functions. Using this for the general
case in dimension 2, of walks with arbitrary fixed start and end points, we have numerical
evidence that in general the degrees of the numerator and denominator grow quadratically
in L, and it may be this extra complexity that has prevented us from solving this case
with our method.

4.3 Bijections

We have also proven an intriguing equinumeracy result in Corollary 4. Of particular
interest are the two special cases noted beneath it; the equinumeracy between walks on
the undirected triangular domain and two-coloured Motzkin paths, and that between
walks on one of the directed sublattices and normal Motzkin paths. Taking only steps
on the directed sublattice Ω′ halves the out-degree of every vertex in the domain, and so
it is clear that the result for two-coloured Motzkin paths implies the result for normal
Motzkin paths.

If a bijective proof of Corollary 4 were to be found, this might elucidate the connections
between this model and continued fractions, and thus open avenues towards solving other
models. Eu [7] gives a bijective proof of the directed case for triangular domains of infinite
side-length via standard Young tableaux (which are a coding of Yamanouchi words),
Yeats [16] gives a bijective proof of the undirected case for domains of infinite side-length
using intermediate markings, and the authors of this paper have bijective proofs of the
undirected case for side-lengths L = 1, 2 and 3. We note that Proposition 6 provides a
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possible alternative route to a bijective proof, via three-candidate Ballot paths. However,
we have not been able to find a proof for general finite side-length, and therefore leave
this as an open problem.
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