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Abwiract

Several recent works have considered the pressure exeried on & wall by &
medel polymer. We extend this consideration to vesicles attached 1o wall, and
hence include osmotic pressure. We do this by considenng » two-dimensional
directed model, namely that of arca-weighted Byck paths. Not surprisingly, the
pressure exerted by the vesicle on the wall depends on the osmotic pressue
inside, especially its sign. Here, we discuss the scaling of this pressure in
the different regimes, payimg particular attention o the crossover between
posiive and negative osinotie pressure. In our directed model, there exists an
wnderlying Airy function scaling form, from which we extract the dependence
of the bulk pressure on small csmotic pressures.
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1. Itroduction

A potymer attached to a wall produces a force because of the loss of entropy on the wall,
This hos been messured experimentadly [1-31 and recently deseribed theoretically in two
dimensions using lattice walk models [4, 51, There has also been work concerning the entropie
pressare of a polymer in the bulk [6]. Lattice walks and polygons on two dimensional lattices
have ii the past been utilized 1o moded simple vesicles [7-111, where there can be an ternad
pressure. Here we explore the competifion between the belk internal pressure and the point
pressare cansed by entropy loss when a vesicle is Aixed to a wall in rwo dimensions. Our study
ivolves ar exacily solved model of vesicles [10, 121, namely, area-weighted Divek paths
11315}
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Figure 1. Pressure profile for long Dyck paths a5 a function of the relative distance x
from the point of tether.

Let Zy be the partition function of some lattice model of rooted configurations of size
N, for example directed or undirected self-avoiding walks or self-avoiding polygons, and let
Z}VQ’ be the partition function conditioned on configurations avoiding a chosen point Q in
the lattice. Then the pressure on the point Q is given by the difference of the finite-size free
energies — log Zy and — log Z,,(VQ), that is

P2 = —1ogZ{? + log Zy. (1.1)

Here we take k57 = 1 for convenience. When the configurations are Dyck paths, which are
directed paths above the diagonal of a square lattice starting at the origin and ending on the
diagonal, this model was analysed in [S]. The pressure at the point Q = (m, m) for walks of
length 2V is given exactly as

P]E‘.M) S lUg (} . CmCN—m) '

1:2
Cy (1.2)

where C;, = F'] 1") is the kth Catalan number counting 2&-step Dyck paths. For N and m
large, this leads to

P = e — + OV, (1.3)

where x = m/N measures the relative distance of the point Q from the origin with respect to
the length of the walk. That is, the pressure of the Dyck path decays to zero as N7 in the
centre of the Dyck path, with an x-dependent profile, as shown in figure 1. In contrast, near
the boundary the pressure tends Lo an N-independent limiting value

CM?
P = —log (1 - -—)_ (1.4)
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Figure & A vesiel of lengih © given by 2 Dyek path with 18 steps, enclosing the §1
shacdeed plagoeties and having weight ¢ | Whon considering the modified configmations
shat avedd the Hghter colowred plagnetie, which iz ot distimee m = 6, the vesiele is
consiedrred W enclose on plagueties and bave weight o',

2. The moded

In on entension of the work deseribed o the inroduction, the conBowrations of the model
stodied here are arew-woigined Diyvek paths, where we have rotated the Jattice by 45 for
copvenience a8 shoven i Bgure 2. To be move precise, we weight each Tobf square plaguetie
between the Dyeh path and the surface with o weight g = exp{I}), where T & the esmotic
pressure,

We wvse these paths to model vesicles adsovbed at the surface, that is to say that we
consider them as vesicles with the bonowm part of the merbrane Srmly sttiched 1o the swface,
K5 described above, to calowlme the pressure we need to consider o shightly modified set of
confipurations that avoid wome point. For owr vesicle mode! this means that the bottom of the
vesicle does pot mwlode a particwlar plaguette, see figure 2.

Densting the set of all 2N-step Dryck paths by Dy, the partition fenciion for vovestricted
vesicles of length NV bs given by

ity =y 4", (21

wa Ty

where Al y 1 the nurmber of plaguettes enclosed by the configwation ¢

Shmilarly, denoting the set of all 2W¥-step Dyek paths enclosing the sueface plaguetie a2
distance | < m < N - 1 by DY C Dy, the partition fanction for the reswicted vesicles is
givesn by

CHUE DDA 2

weTn”

Note that the distance » 18 measured as the number of half-plaqueties afong the sarlace to the
pont of interesy.

T

e . . iy . . " . .
The conbpumtions in Dy \ ﬁ‘f\’ are precisely the ones that touch the swwrfoce ot distance

wy, Whence
Fober Q;F('-“i‘) - 1 M) Ry £y 5
b bepy — gy gy = G g e b, (2.3
g&(i'f:’,\g\'.’!’}f\fm
For g = ¥ s veduces to equation (1.7} Compating the pressire nsing equation {1.1), we fngd

that the pressire Pﬁ"” gy of & Dryek vesicle of Tength N on the serface of distance wr bs given by

PU ey o o fog (I e ) + kg g 2.4
v . Zylg) ey wa
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Figure 3. Convergence of the scaled generating function G(z, ¢) to the scaling function
f(s) for g = 0.99, 0.9999, and 0.999999. Numerical evaluation of Gz, g) has been
done nsing the continued fraction representation (3.7).

_ dlogz(g;x)
0 log K k=l :
where z.(g; k) is the location of the closest singularity of G(z, g; k) in 7 to the origin. The

surface pressure in the thermodynamic limit, for any fixed value of 0 < x = m/N < 1, is then
given as the constant

Pig) = —log(1 — plg)) + logg. (3.10)

‘We shall refer to this as the bulk pressure.

Much work has been done on the computation of the asymptotics for g-series such as those
involved here [17). In the vicinity of g = 1 and z = z.(1) = 1/4, one can show convergence
of suitably scaled generating function. More precisely, one finds that the limit

Al = (3.9

F)= lim —((1 - @G/ -0 — P, -2) (3.11)
iy
exists and is equal to the scaling function
o Ai'(4s5)
J®= Z—Aims) (3.12)

The convergence to the scaling function is shown in figure 3.

We note that the continuum version of area-weighted Dyck paths corresponds to area-
weighted Brownian excursion, which was rigorously treated in [19]. A derivation of Airy-
function scaling for area-weighted Brownian excursion based on path integrals is given in
[20], and an appealing derivation based on Langevin equations is given in [21].

3.2. Pressure profiles

We now consider the profile of the pressure for finite V. In figure 4 we show pressure profiles
as a function of x = m/N for three different values of g with positive, zero, and negative
osmotic pressures, and for lengths ¥ = 50, 100, and 200.
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Figure 4. Pressure prohles for g = 0.98 (Jef), 1.00 {cenwe), and 1,02 (right) and lengths
N = 5%, 100, and 200, froen lop 1o botlom.
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Figure 5. The zaies of apwoach to the bulk pressure, calcnlated vin the pressure al the
centre of e vesicle for g = 0.9 (elt) and g = 1.1 (right), Clearly the convergence is
exponential in ¥ for g < ) ol exponential in V? for ¢ > 1. The suraight line (right) is
gt theoreiical prediciion.

We see that the pressire converges 10 a non-zero bulk pressure when the s6In0lic pressure
is non-zere. For g = 1, one can compare 1he finie-size dala shown in this figure 1o the exacily
known scaled profile shown in figure 1. Moreover, closer inspestion shows thal the rate of
convergence is sigmficantly different for positive and negative osmotic pressure. As we know,
for g = ) the bulk pressure is zevo, and comvergence obeys the power Jaw N732 Forg s+ 1,
the rate of convergence 1o the bulk pressure is exponential in N and Nforg<landg> 1,
respectively, as can be seen in figure 5.

Cme can derive these results in the following way. Convergence o the thermodynamic
Timit is encoded in the singularity sieture of the generating function. For g < 1, the Jeading
singmlarity of the generating Tuncion is an isolated simple pole, and the fnite-size COmETHONs
10 sealing are therefore exponential, with the rale of convergence given by the ratio berween
the magnitndes of the leading singulkrity and the sub-Jeading one. A closer analysis reveals
that the rate depends on the ¥alue x = m/N as

P (@) ~ —Tog(3 — plg)) + Jog g + D(e P17, (3.13)
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Figure 6. A plot of the pressure at the centre of the vesicle againsi g for vesicle lengihs
10, 20, 40 and 30, from top to bottom (Jefty and of the thermodynamic limit bulk pressuze
of the vesicle against g (right).

where D does not depend on the value of x. The singularity structure can also be seen in
figure 3 for negative values of the scaling parameter s.

For g > 1, it is easier 1o argue directly via the partition functions. For positive osmotic
pressure, configurations with large area dominate, and using arguments in [ 18] one can deduce
that

k)~ e ) (3.14)
e e e '
where (1 oo = [l — tg") is again a g-product. The appearance of the factor
1/(g7"; g ")oo is due to fluctuations around configurations of maximal area.
Substituting this into equation (2.4) shows that
1 2
P (g ~ +————g """ = logg+ ———— gV, (3:15)
A @~ eet oo e 9 T T e

Note that the decay rate depends on the value of x = m/N.

3.3. Bulk pressure

We now turn to the consideration of the pressure in the centre of the vesicle, so as to consider
the bulk pressure. Using our results above, we already know that for g > 1 the bulk pressure is
given by log ¢. In figure 6 on the left we have used the recursion (3.1) to calculate the pressure
at the cenire of the vesicle as a function of g for N = 10, 20, 40, and 80. One can see that the
convergence to a limit is slowest around g = 1, which of course aligns with our predictions
above for the rates of convergence in the different regimes.

We have now used the continued fraction expansion (3.7) 1o numerically estimate the
thermodynamic limit bulk pressure as a function of g, shown on the right in figure 6. It should
be clear that the finite-size curves approach the curve shown here in the limit of large N. It is
interesting 1o see the competition of the osmolic pressure and the entropic pressure for g < 1.

Clearly the limiting behaviour of the pressure forg > 1 s P{g) ~ g — 1 as g — 1.
Exiracting the imiting behaviour of the pressure for ¢ < 1 is considerably more difficoll. A
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Figure 7. A esiirnate of the finle-size sealing Mnchion for the pressure, using ¥ = 40,

80, and 160, fromn bedlom: 1o 109,

calculation starls by considering that from equations {3.6) and {3.8) we find that the crineal
Tugacity z. = z.{(g; 5 ) saiisfies
%

Giz..qy = (3.16)

k=1
Differentialing this expression with respect 1o x allows us lo write the density p{g) in terms
of the generating funciion as
Glze, GGz, ) — 1)
gl ol PP,
Unilizing the scading form (3.11) now shows ihat gfgy ~ 2{) — gy a5 g — 17 and hence
Pigy ~ 1 — g. Put 1pgether, this implies thal
Plgh~ |t —g] s g— 1. {3.18)
The existence of the scaling function £(s) m the variable s = (1/4—2)/{1 — g)*/* implies
by stamdard Laplace iransform that there should be 2 findie-size scaling form for the pressure
in the variable : = N/2(} — g). Hence we define the scaling funclion

gt = Jm NVPEID( N, (319

337

In fgure 7, we numerically estimate the scaling funciion g(1) for o range of 1. Asympiolic
matching with (3.18) requires that g(t) — |#] fer 3 — oo, We noie the convergence 1o the
scaling function is poor for g > 1, which arises becavse of the unusvally differing rates of
convergence 1o the thermedynarmic limi in the o regimes.
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