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Absiract

We study a generalized model of sell-avoiding trails, containing two dilTerent
Lypes of interaction {nearcst-neighbour contacts and nmultiply visiled siles),
using computer simulations. This model contains various previously studied
models as special cases. We find thal the strong collapse transition induced by
multiply-visited sites s a singular point in the phase diagram and corresponds
to a higher order multi-critical point separating @ line of weak sccond-order
fransitions [vom a line of first-order ransitions.
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1. Introduction

1.1. The polymer collapse transition

There are varions slalistical mechanical models of the polymer collapse phase transition
[ 1. 21, However, there are Lwo basic clements in cach of the models: on the one hand, the
configarations of the polymer have some type of so-called excluded volume, thal implies
molecules are separate in space, and on the othey hand the configarations have an attractive
foree between different parts of the polymer, that drives the transition. On lattices, both sell-
avoiding walks (SAW), where different sites of walk avoid being on the same site of the
tattice, and seil-avoiding trails (SATY which are walks that can share sites though not bonds
of the lattice, have boen used as the comfiguration space for collapse models, The attractive
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force has been modelled both by adding energies [or shared sites and also via so-called
nearest-neighbour contacts, where siles adjacent on the lattice not joined by & sicp of 1he
walk are given an cnergy. When SAW are coupled with nearesi-neighbour interactions the
caponical 1ISAW model is reproduced {see [2] for a review), while when trails are coupled
with site interactions the ISAT model {3} is reproduced. Despite what one might expect from
the principle of universality the coltapse of these modets appears o behave dilferently |4-61.

A recent study 17] considered self-avoiding vails interacling via nearest-neighbour
conlacts (INNSATY as a hybrid of the two models. Bvidence from compuier simulations
showed that the coilapse transition in INNSAT is different from the collapse ransition m
[SAT, which is a strong second-order tansition, butl similar w0 1SAW which is predicted
1o be a weak second-order (ransition where the speeific beat converges at the ransition, In
ISAW collapse one neads (o consider the thivd devivative of the {ree energy Lo see a divergent
goantily and then only weakly divergent. JUwas also found (hat the low-lemperature phase of
the two trail-coliapse models differ substantially: the phase associated with multiply visited siie
interactions is fully dense in the thermodynansic limit (as shown in 18]} The low-temperature
;)hime associaled with nearest-neighbour contacts wasa't Tully dense as is believed 1o be the
case for interacting SAW 124

1.2. Magnefic systems

The propertics of latiice polymers are also relaled o those of magnetic sysiems near their
eritical point 2] More precisely, SAW configurations appear as the diagrams ol the high-
temperalure expansion ol an () magnelic system when taking the formal limit ol zero
components (1 -+ 03, and their scaling exponents can be obtained from the O(n) eritical
point. In this mapping the collapse ransition corresponrds (o & vi-critical point of the magnetic
sysiem and one would hope (o obtain the eritical exponents lor the polymer collupse transition
from the ones of this tri-critical point.

Various authors [9--13] have studied eritical and ti-critical O(n) spin systems, For a
special choice of the mode! on the honeycomb fattice, exact results were obtained in {97 Tor
two cases: a critical point and 2 special point governing the low-temperature phase. When
-+ 0 these two cases become the difute and dense polymer phase. The dilute and dense
phases were also found along two branches of a square-latiice O(n) moded [10, 1 {ogether
with two dilTerent branches describing the critical behaviour that occurs when G(n) and Ising
degrees of freedom on the sguare Tattice display a joint critical point.

On the other hand, Duplantier and Saleur in 1987 | 14] realized that, on the honeycomb
lattice, an sell-interaction for SAW could be oblained by intreducing vacancies, hexagonal
faces that the SAW is not allowed to touch. Using this observation they could obtain u sel
of critical exponents for the polymer collapse uansition which have been subsequently found
to correetly describe the collapse in the 1ISAW model (see the extensive list of references in
[15]) lor example). We wili veler w the universality class of ihis eritical pointas the “i-point’.
An exacl descripton has now been proposed 112, 137 for the wi-crilical O(n) model in two
dimensions as a function of

When it comes (0 ISAT the scenario is mueh less clear, in paticular it not obvious how
the change of topology caused by the presence of crossings affects the above picture. The
description in terms of height model and Coulomb Gas aflows oag to consider the presence
of crossings only as a pertugbation (sce [16] for a review of these methods). The exponent
associated (o Joop crossings is the same as that of cubic symmetry breaking, whick is known
16 be rrelevant in the critical O(n) phase, but it has been observed [17] that this is nol tue in
the fow-temperature phase, where the ntroduction of crossings is a relevant operator which
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leads o a different universality class. This is genevically relerred (0 as the Geldstone phliase
and it s believed [13, 17] to be described by the intersecting loop madel proposed in {18, 19]
and since called the Brauer model [20],

The relevance of crossings at the collapse poind is not clear. While the cubic perturbation
is still believed (o be relevant at the ti-critical Q(xn) point {131, a recent swmerical study |71
seems 1o indicate that the Duplantior and Saleur universalily class is stable in the presence of
crossings, al least with respect to the eross-over and length-scale exponents,

Very recently Nahum ef af [21] published a study of loop models with crossings. Their
analysis is based on a replica limit of the ¢ model on real projective spuce Pl They give
a field theoretic deseription of the ISAT which explains the phase diagram found numerically
in [22] and snggests that the ISAT coltapse transition is an infinie-order multi-critical point,

1.3. A model with competing interaciions

nn this paper we consider a polymer model of SAT with both multiply visited site and nearest-
neighbour interactions. This model generalises ISAT and INNSAT. I also contains ina limiting
case the ISAW madel, when the Boltzmann weight associaled with multiply visited siles is
sent 10 2¢10.

We study the model via computer simulations using the fTatPERM algorithm, and so
exlend the study of INNSAT in {7]. We point out that this model has been studied some time
ago by Wu and Bradley |23] via real-space renormalization, which predicted a tetra-critical
point separating the 1ISAT and 1ISAW collapse points. In contrast, we find that there is Hkely o
be the ISAT collapsed point itself, that separates a line of first-order ransitions [rom ISAW-like
wegker @-poinl {ype transitions,

In section 2 we define the mode! introduced by Wu and Bradley. In section 3, we present
the results of our simulational studics and deduce a conjectured phase diagram. We end by
summarising our conclusions in section 5.

2. The Wu-Bradley model

A model of inleracting SAT witl both nearest-neighbour inferaction and site inleractions can
be defined as follows. Consider the set of bond-avoiding paths 7, of length . Given a SAT
Y, € T, W ussociale an energy — & every e the path visits the same site more than onee, as
in [SAT, Additionally, we defing a contact whenever there 1s & pair of sites that are neighbours
on the laltice but not consceutive on the walk, as in ISAW. We associate an cncrgy —&, with
cach conlact.

For each configuration ¥, ¢ 7, we count the number #i, () of doubly visited sites and
() of contacis: sec figure 1. Hence we associate with cach configuration a Boltzmann
weight oWl ) where v = exp(fg,), @ = exp(Be), and B is the inverse temperature
1 /kg T The partigon funciion of the model is given by

lt,w) == }_: i) gyt W, 2.1

L

The probability of a configuration v, is then

T i, )wm, (4,1
POl T, @) == e e | (2.2
Zalt, @}
The average ol any quanlily (2 over the ensemble set of paths 7, is given generically by
-
(O @)= Y QU i T @), (2.3)
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Figure 1. An cxampic of a configuration for the two interaction model, with m,. = 3
{as there are three nearcst-neighbowr contacts ilustrated via zigzag (red) fines) and
pny o= 2 {as there are two doubly visited sites), The trail can visit a site of the atlice
wice by ‘louching’ and by “crossing’ itsell. Note that there is no contact between the
second and the seventh visited site of the walk, even though these are non-conseculive
nearest-neighbour sites, as both sies are visiled consecutively by a different segment of
the trail.

In particular, we can define the average number of doubly visited siles per site and their
respective flactuations as
3 3
(a1} () — ()" .
e e el gnd (M T T 2.4
n it
One can also consider the average number of contacts of the wail and their fluctuations

(2.9)

mode] reduces o the ISAT model, 1t should be noted thal an important observation {8, 257 {or
ISAT is (hat the low lemperature phase is maximally dense. On the square Jattice this implies
thal il one considers the proportion ol the sites on the trail that are at lattice sites which are
nol doubly occapicd via

n— ’

po = L £2.6)
then it is expected that

Jae 0 Ay on— oo, (2.7

Very recently the ISAT model has been studicd in the context of a Joop model with crossings
[21], where it has been suggested that the ISAT collapse point is an infinite-order multi-critical
point deseribed by the G{n — 1) sigma model stedied in {17].

[f otherwise we set v == O doubly visited sites are excluded and the maodel reduces to

would think that the presence of crossings would affect the uriversality class of the collapse
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transition (e.g. as porirayed iy [21]) butin [7] it was shown that the INNSAT model has a
collapse ransition b the same universality class as ISAW, that is the #-point.

3. Mumerical resulls

We began by simulating the Tull two parameter space by wsing the TatPERM algorithm [26]
which is a flat histogram version of the Pruned and Enviched Rosenbluth Method (PERM)
developed in 271, For the PERM algorithm, at cach ileration a polymer confisurations is
generaled kinetically (which is o say that cach growth siep is selecled al random from
all possibie growth steps) along with a weight factor (o correct the sample bias. Al cach
growih siep, configuration with very high weight relative to other configurations of the same
size are enriched (duplicated) while configuration with fow weight or that canmot be grown
any Tarther are pruncd (discarded). Despite introducing a corvelation between cach Heration,
this simple mechanism greatly improves the algorithm elficiency. A single teration is then
concluded when all configarations have been pruned and the total number of samples generated
during cach ileration depends on the specificity of the problem at hand and on the delails
of the crriching/pruning strategy. FlatPERM extends this method by cleverly choosing the
erichment and pruning steps (0 generale lor cach polymer size i a quasi-flat histogram in
some chosen micro-canonical quantities k == (K ks, o0 &) and producing an estimate W,
ol the tofal weight of the walks of length # at fixed values of K. From the lotal weight one
can geeess physical quantities over a broad range of temperatures through a simple weighied
average, ¢.g.

&

paen (]L T{f") Wk
3 (T ) W

The quantiies &; may be any subset of the physical parameters of the model. To study the Tull
Lwo parameter phase space we sel (b k) = (o mey and (1, 1) = (5, ).

We have first simulated the model using the full two-parameter TaPERM algorithm up o
tengthn = 256, vanning 4.4 3 10% iterations, and collecting 2.3 3 16! samples al the maximum
length. To obtain a landscape of possible phase transitions, we plot the fargest eigenvaluc of
the matrix of second derivatives of the free energy with respeet 1o v and o (measuring the
strength of the fluctations and covariance in i, and p7.) at length o= 256 on the lefi-hand
side of figure 2.

We expeel the ISAT trassition 1o be somewhal shifled away from (w. v) = (1, 3) duc to
considering a finite-size cnsemble. If one considers the vertical Hine w == 1, one notices ihat
the maximal eigenvalue peaks af a value of 7 somewha( greater than 3. We remind that the
phase tansifion for @ == s a strong second-order phase transition where the specific heat
diverges with an exponent 0.68(5). For e < 1, there exists a line of even stronger peaks thal
join with the peak at e = 1, [rom which one can infer that there exists a strong phase fransition
onvarying ¢ forcach o < 1. This is borne out by finite-size scaling analysis. Specifically, we
have studied the mode! when w == 0.5: Tor this value of @ we have simulated the model using
a one-parameter fuiPERM algorithm up to lenglh # == 1024, running 7.9 » 10Y iterations, and
coliecting 2.7 5 10* samples at the maximum lengll, We find that (he specific heat divergence
is commensurate with a first-order transition with a linear divergence. To test this assumption
of a fisst-order transition, we consider the distribution of the number of contacts for various
values o v near the peak of the specific heat, Figure 3 shows a clear bimodal distribulion,
confirming the fivst-order character of the transition.

(CJ)H(T N
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Figure 2. Left density plot of the logarithm of the largest eigenvidue Ape of the mairix
ol second derivatives of the free energy with respeet to v and @ al length 256, Right:
density plot of e ralio A/ A OF the gigenvaiues of the matrix of second derivatives
of the Nree energy with respeet to v and w at jength 256,
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Figure 3. Distribuiion of the number of contacts for vartous © at fixed @ = 0.5,

It is henee likely thal there exists a line of first-order phase tansitions al values of © near
3 for each value of w = 1. We will return 1o the question of whether the line of first-order

o

(see [15] and references thercin for recent estimates ol w,.), which is reflected in the density
plol by a broad peak near @ == 2 on varying w when v = 0. A line of such weak peaks extends
1o larger values of r. When v = 1, the model becomes the previously studicd INNSAT
171, which also demonstrated a weak 6-like transition wilh exponent cs{imales encompassing
ISAW values. We thus conjecture that the entire tine lies in the #-universality class.

G



J. Phys. A Miath, Theor 47 (2014) 145002 A Badini ef af

1..0 T T i T

0.8}

Dy

O'&O{} 0.05 0.10 0.15 0.20 0.25

Figure 4. Plots of p,, the proportion of steps that visit singly occupied sites at fixed
w005 and v o= 2.0, 2.5, 3.0, and 4.0 (from top o bottom), versus &Y, The seaie
A7 s the natral scale for the border of o dense configuration.

Now if the suggestion that the ISAT collupse corresponds Lo an infinite-order malti-critical
point 217 is correet, it is then natural and simplest 0 conjecture thal the line of first-order
transitions meels with the Hne of 2-like transitions at that point.

We oblain an indication ol where the two lines might join by considering the ratio
between the two cigenvadues of the covarianee malrix fy = 235 ton Z, where /, j € {o. v}
This is based on the hewristic argument that the component Tt (respectively ow) 15 the specific
heatl associaled to multiply visiled sites (nearest-neighbour contacts)y and will dominate the
spectrum when the transition is driven by this interaction. When the two cigenvalues coincide
is then argued o indicate the presence of & higher order critical point. The density plot of
the eigenvalue ratio is shown on the right-hand side of figwe 2. One clearly observes a unique
point close o the 1ISAT collapse poiat, where the two cigenvalues have the same magnitade.

Considering again the density plot of the Targest cigenvalue, the line of peaky that is
associated with first-order transitions for e = | and that meets the ISAT critical point for e == 1
exlends 1o higher values of w. This implics some type of phase transilion at low lemperatures.
To understand what this ransition might be, we now consider the ow {emperalure phases for

the fow lemperature phase is maximafly dense with ihe proportion g, of sites on the trail that
are not doubly occupied going 10 zevoe in the thermodynamic 1imit of infinite length |8, 23],
Here we plot the same quantity [or various temperatures when o == 0.5 in figure 4. At low
values of v the quantity p, converges Lo a non-zero value while For larger values p, scems 1o
converge 1o zero wiihin error, with a transition visibie around © = 2.5.

To lustrate the nature of the polymer around the wansition, we presenl some typical
configurations with specified numbers of contacts that have been generated in a simulation at
0.5, These cant be seen in figure 5. Nol only do these configurations ifhustrate the natare
of the low-teoperature phase where the number ol contacts is large (see the configuration
with my = 452), but they also clearly demonstrate the first-order natre of the collapse,

[£2 0
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Figure 5, Typical configurations of 1024-step watks with specilied numbers iy, of
contacs, that have been generated i a simulation at @ = 0.5, The values of wy
have been chosen such as 1 cover the whele range of the histogram in figure 3, The
conligurations ilustrate the co-existence of fully dense and swollen parts of the polymer,
demonstrating the first-order nature of the tansition.

as we observe co-existence of fully dense and swollen parts of the polymer for smaller values
of .

Now let us consider Tow temperatures for fixed values of r. In our previous work on
ININSAT {71, when © = | the quantity p, wus seen 10 converge 1o a non-zeroe value regardless
of (emperature: see figure 7 in | 7). This phase is unambiguously of a different nature ss that for
Jarge T at fixed o, We can therefore conclude that the line ol peaks for large values of @ and ©
in the largest cigenvalue plot is associated with a transition between Lhese two low lemperature
phases: one being maximally dense and the other not. We have not invesligated this transition
here but an analysis of a transition between similar phases [28] leads us (o conjeciure thatitis
second order.

The entire phase diagram in the @, r-quadrant is therefore sphit into three phases we
alrcady know: the swollen high-temperature phase in the lower-left corner, & low-temperature
globular phase of the ISAW model on the right (as determined in {7]), and the low-femperature
maximaily dense phase of the [SAT model in the top lefl. We then have two critical lines and
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Figure 6. Proposed phase disgram. The double-line indicaies a line of first-order
transitions. The horizontal and vertical dashed lines are respectively the ISAT and
ENNSAT model, the 1SAW model corresponds to the axis 1 == 0. The red square and the
areen circle correspond respectively to the {ISAT coltapse point and the ISAW ¢-point.

one fivst order Hine joining fogether al the mulit-critical point located at (w, ©) = (1, 3) tha
separates these phases. Pulimg all this information together gives as the conjectured phase
dingram in figure 6.

4. Conclusions

We invesligated o lwo-parameter model of polymer collapse that has competing interactions,
first studied by Wu and Bradley (231 and contains three previousty investigaied models of
polymer cotlapse, namely 1ISAT, ISAW and INNSAT, as specializations.

We find that the phase dingram for the Wie-Bradley model contains three phases: a swollen
phase and two collapsed phases, ore of which is maximally dense. The covresponding three
phase boundaries, two of which are second orderand one of which is first order, meet scemingly
al the collapse point of the ISAT model, and is in agreement with the suggestion in |21} that
the 1SAT transition is an higher order multi-critical point. The sceond-order plase {ransition
ling between (he swollen and not maximally dense collapsed phase contains ihe transitions in
the [SAW and INNSAT models, which we conjecture 1o be a fine of #-like transitions.

We can conjecture that the two collapsed phases belong W the O — ) Goldstone phase
[17, 21, due to the presence of crossings. It is an open guestion whether the divergence of
these (wo phases can be refated o the appearance of a type of [sing order, as portrayed in
211 More work needs (o be done Lo elueidate the nature ol (hese phases, and (o resolve the
transition between them. AL present, tis seems 0 be out of reach of available aigorithis.
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