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Abstract

We revisit an integrable lattice mode! of polymer collapse using numerical
simulations, This model was first studied by Blste and Nienhuis (1989
JooPhys. Ar Math, Gen. 22 1415) and it describes polymers with some
attraction, providing thus a model for the polymer collapse transition. At a
pariicular sel of BoHzmann weights the model is integrable and the exponents
vomn 12723 & 0522 and po= 53746 = 1532 have heen compuied via
identification of the sealing dimensions.y, == /12 and 1, == —5/48, We direcily
investigale the polymer scaling exponents via Monte Carlo simulations using
the pruned-enriched Rosenbluth method algorithm, By simutating this polymer
model for walks up to fengih 4096 we Fnd v == 0.576(0) and y = 1.045(5),
which are clearly different from the predicted values. Gur estimate [or the

exponent ©is compatible with the known é-poimt vislue of 4/7 and in agreement
with very recent numericad evaluation by Foster and Pineties (2012 4 Phyy, A
Muath. Theor 45 5050033

PACS numbers: 05.40.—a, 05.50.4¢, 05.10.1.n

{(Some figures may appear in colour only i the online journal)

1. Introduction

The study of the critical properves of lattice polymers, and thus of (1) models when we
let > 0, in two dimensions has been ongoing over decades theoreticalty and numericalty.
Nienhais, in 1982 [2], considered a model of non-intersecting loops on the hexagonal lattice
which allewed him to compute the critical exponents for free sell-avoiding walks (SAWSs)
{u s 3/dy = 437323, which model dilute polymers, and for dense polymers (v = 1/2,
yo= 197103 In 1987 Duplanter and Suleur [3] were able (o model bond interactions
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introducing vacancies on the same lattice, obtaining a full set of eritical exponents for the
polymer collapse transition in the interacting self-avoiding walk (ISAW) model. This collapse
transition, & Wi-critical point, goes under the name of “G-point’ and bas critical exponents
v 4f7 and == 8/7. There was debate al ihe ime over the surface exponents which was
resolved by Vanderzande e of [4] and Stella ef af 3] on the hexagonal lattice and on the square
lattice by Foster er af 6],

Iy the quest for a solvable G{n) model on the square laitice, B316te and Nienhuis in 1989
7] considered a lattice model (related o the Izergin-Korepin vertex model) which includes
weights for site-coliisions and straight segments (stiffness). For this model five oritical branches
are exactly known [7—-10]. In one of these branches (named ‘branch 07 in [7]) straight segments
are completely suppressed and it can be shown thal in this case the model maps to the ISAW
model on the Manhattan fattice for which the conjectured exponenis are v = 4/7, y = 6/7
i 11=131 Two other branches correspond to dense and dilute polymers as obtained by Nienhuis
in [ 2], and the two remaining branches are, respectively, associated with g combination of Ising-
fike and Q(n) ceritical behavicur and with a sew (ri-eritical point. This other tri-critical point.
which we shall refer as (he Blde-Nienhuis (BN)-point. is another candidate Tor describing a
collapsing polyimer and has exponents v = 12/23 and p = 33746 [10], The conligurations
associated with this particular O(n) model, which we shall call vertex-interacting self-avoiding
watks (VISAWs), are forbidden o cross and therefore are a subset of sell-avoiding trails (SAT).

The Bolizmann weights corresponding to BN-point are known exactly and can be expressed
as algebraic numbers.

Foster and Pinettes | (4 have studied the semi-tlexible VISAW at this special BN-point,
and have also studied the VISAW model without stiffaess, using the corner transfer matrix
renormalization group method. Some agreement and some discrepancy with the seafing
dimensions proposed [7-10] was found in [14] and & first order nature (o the transition was
con‘iecltn"cd. Very recently Foster and Pinettes [ 1] have used transfer matrices and the density
matrix renormalization group methad (DMRG) (o consider the bulk and surface exporenis of
these maodels. They have found values of the exponent v mauceh closer to 4/7 than 12723, In
thiz paper we study by means of Monte Carlo simulation the semi-flexible VISAW polymer
model precisely at the BN-point. We find estimates for the exponents, and hence the scaling
dimensions, that are i harmony with those found by Foster and Pineties { 1] and at variance
with those predicted by Warnaar er af {107},

2. Semi-flexible VISAW

The semi-flexible VISAW model can be defined as follows, SATs, or simply trails, are lattice
paths that can be formed such that they rever visit the same hond more than once. Such paths
can generally visit the same site of the lattice either by a collision, where the trail touches itself,
or viaa crossing, where two straight segments of the path cross over one another. Censider (he
subser of bond-aveiding fatlice paths (trails) on the square lattice, ¥,, where o crossings are
allowed. Given such a resiricted trail 4, € V,, we associate an energy -, every time the path
visits the same site more than once, which itcan only do by colliding with iiself; see figure 1,
Additionally, we define a straight segment of the trail by two consecutive parallel edges, and
we associate an energy £, (o each straight segment of the traif, modelling the stiffpess of the
polymer chain.

For each configuration ¥, € V, we count the number m(y,) of doubly-visised sites
and x(1f,) of straight segments; see figure [ Fence we associaie with cach configuration a

b
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Figure I, An example of a scwi-flexibie VISAW conliguration with thiee (m = 3) collisions
associated with o Bolizmanny weight r and five (s = 5) siraight segments, each associated with a

Boltzmann weight p.

Boltzmann weight %0 pW i where v = exp(Be,), p = exp{fe,), and # is the inverse

temperature 1 /kg¥". The partition function of the model is given by
. Y i, 0 E
2o, py == L T’”“/””J/;’u it (21)
eV,

The fime-length reduced free energy s

1 ;
wg{) = (m Lo (?3)
i
and the thermodynamic il is oblained by taking the fimit ol Targe i, i
W (7Y = i s, (1), {2.3)
B

10is expected that there 1s a collapse phase transition at a temperature 7. characterized by a
non-analyticity in « (7}, Hquivalenly, one can think of varying = at ixed p so that there is a
colfapse at some valve of © = .{p).

The probability of a conliguration ¥, is then

m ter,} ]‘) v( ¥}
W, T, 7)) = . 24
PO T, p) = e (2.4)
and the average of any quantity @ over the ensemble sel of path 1, is given gencrically by
{Dalr, p) = L Q) pldys T, p). {2.5)
YoV

In this paper we are interested m the 1<>]§owmsz guantities. We caleulate three measures of
the size of the polymer, {R7) (&), and (R} . defined as follows. We specily any n-step patl
W, on alattice by a sequence ro, .. ..., of vector positions of the vertices of that path.
Firstly, we are interested in the average-square end-to-end distance

{Rl }n i (l'“ ' l'”> v (7():'

secondly, the ensembie average ol the mean-sguare distance of & menomer from the endpoints

<Rm> - Z(r:‘ rik (2.7)

and defining the average centre-of-mass as

\ I " n
) = DIPB @8
jus) fe)
we, thirdly, are interested in the average radivs-of-gyration
(l Q)n (R.‘if} (Rt‘)n : (2 ))

In the above formulae we use 1y = 0.
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2.1, Scaling
The partition function at, and above, the collapse 1emperature is believed 1o scale as

o Dt (2.1
where 1 known as the connective “constant” and is relaied 1o the thermadynamic Iree
energy via

T (211

The constant D is also temperature dependent but y is expected 1o be universal, depending
only on the temperature in as much as its value is above, or at, the collapse temperature. In
(wo dimensions it is well established [2] that for T = 7. {equivalently 7 = r.(p)) we have

The collapse transition can also be characterized via achange in the scaling of the size of
the polymer with temperature. The three measures of the size of the polymer defined above
are expected to scale as

7 . 2u
R;: ~ CRH ! s (2 }2)

where the amplitude Cy is non-universal and emperature dependent, while v is expected o
be universal. depending only on the temperature in as much as s value is above, al or below,
the collapse point. In two dimensions it is also established (2] thag v == 34 o T s 70
Duplantier and Saleur [ 3] identified a wi-eritical point. known as the #-point. which is
expected 1o deseribe the collapse of a pelymer in two dimensions. This point has thermal and

and p = 8/7. On the other hand, Warnaar ez af {10] predicted v = 12723 and y == 53/46 for

the semi-flexible VISAW madel at its cobapse point.

2.2, Amplitudes

One can also usefully define the finite-length amplitade ratics

Ay = (I“z)” and B, = {2.13)
A, = S = 13
{R2)
"
since these approach universal values [15]
Cr, . Ck,
Ay = Age = =2 and B, o B = i (2.14)
R, Ry

iy the it e - oo, For collapsing polymers. the limiting values should depend only on
dimension and whether the lemperature is above or at the collapse transition point.
For free SAWs {which sheuld include the VISAW model at high temperatares) it was

predicled {10, F7] tha

Ao = 2Bo + 4 = 0. (215

In the derivation [ 16} of this invariant the factor multiplying A, was ziven by

. M .
a2 2 (2.16)
¥
where v, = 4/3 and 3, = 91/48 are the thermal and magnelic renormalization group

eigenvalues, respectively, of the ditule O model. These cigenvadues are reiated 1o the
conformal scaling dimensions via y = 2 - x. Hence

2—x
2, ) = 2k S (247
2— Apy
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The identity (2. E3) implics that one can estimate this function of the scaling dimensions as

4B — |
Mg ) = = “1 -,
2 s

(218

from estimates of A and B, This was done [or various collapse models in [18] Heace, i
we Tave a conjectured value of one oi the scabing dimensions we can estimate the other from
an estimate of 4.

3. Integrable Blote—Nienhuis Point
The special multi-critical point of the O¢r) model ihat maps 1o the semi-fexible VISAW and

allows for the calculation of the scaling dimensions via the Bethe Ansatz is given by special
values of the parameters in the grand canonical partition function

Lo
GUKi v, p) = Y K"Za(x, p). 3.
sz}

The location of this point is reported exactly in {7]

woas KE = (2= [1 = 2sin(@ /)Y 1 + 2sin@ /)1
Ky z2 4w sin(@ /2y cos(m fd - 0/4)

P Ky = w1+ 250 /2)}

f) e -t f4 {branch 3 in [7]).

Alternatively. this can be expressed in explicit algebraic numbers or evaluated numerically as
Ky == 0446933 1 oy, == 0275899 and 1y, == 2.630986 ..

From the value of Ky, we can give the conjectured value of the connective constant
(2,11 in the caponical model (2.1) at fixed Bolizmann weights (70023 = (T, P a5

} 5 5 . /MM[ :
S B ST £, WYL SR L B _ —
JA T P ) Ko 5 f 5 /b \/2 i \/.. \/2 \ 2 \/2 \/52
= 223746994, (3.2)
The set of scaling dimensions evaluated in [10] af this (multi-Yeritical point are
S ,
ip = — - for £ e N (3.3)
16 6
The thermal v, and magnetic x, scaling dimensions were identified [10] as
gy e w0104 16, and o=y = 5 = 0.08333 ... (3.4

It can be seen that these scating dimensions are not these of unweighted SAWs: 1his is
compatible with the hypothesis that they are those of a collapse multi-critieat point,
The exponents v and p were then calendated 10} in the standard way as

)

f} S __:: - Y /]
Vo = 5n = 052174 ... (3.5}
a3 .
y oo 2]1(] e _\'h) i =l , i’iz 7. (%6}
40

wn
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Figure 2. A double-logarithmic plot of three different measures I\?, of the polymer size, the ean-
square end-lo-end distance (!\3),, {top), the square of the radius of gyration (R_’S),, (bottam), and
the mean-square distance of amoenemer 10 its end poinis (R,:f,),, (middle) versus the length i of the
path, The data from different simulations up to lengths 1024 (bloe circles), 2048 (green triangles),
and 4096 (red line) clearly overlap. The exponent estimates for v shown are desived from fitting
siraight Enes through lengths 1024 10 2048 and 2048 10 4086, respectively.

4. Stmulation resuits

We simulated the model (21) al e fxed values of p oo, and 1o 7, using the
pruned-enriched Rosenbiuty methoed (PERM) [19], This method is based on the traditional
Rosenbluth and Rosenbluth sampling method where biased samples of polymer configurations
are generaled along with a weight factor such that the weighted average over all polymer
configarations will converge towards the correct Bolizmann average. PERM improves the
efficiency of this algorithm by making multiple copies of partiatly grown chains that have a
large stabisticat weight (ennching) and discarding configurations with smatl statistical weight
(pruning). We ran three simuiations with maximal length Ny = 1024, 2048 and 4096,
arowing § o2 107 independent walks each and collecting from 8.7 » 107 to 1.5 % 108 samples
al each maximal length. The number of samples adjusted by the mumber of then independent
arowth steps is between 2,1 x 107 and 4.8 = 10° *effective samples’.

In figure 2 we plot on a denble-logarithmic scale the hree different measures R of the
polymer size. From various fits we consistently find estimates of v near 4/7 rather than 12/23.
Our besl estimaie is

)= 0.576(6). (4.1)

This leads (o an estimate of the thermal scaling dimension as

Xy o= (0.2002), 4.2)

To obtain an estimale ol ¥ we looked at 1the scaling ol the canomcal partinon lunction
(2.10), We first measured g by a simple Haear (it obtaining 2.2375013, and observing that our
value maiches the value obltained from the BN-model, we then assumed 4 = 5, We hence
plotted, in figure 3, on a double-logarithmic scale the normalized partition function 7, /¢,
versus the length o of the path.

6



1. Phys. Ac Math. Theor. 46 (2013) 265003 A Bedind el

1424 —— , 1 .

1.04 ¢

1.02
juz]
= 1.00}

0glZ) -n log(u)

0.96 1

0.96+

5.0 55 8.0 6.5 7.0

log{n)

Figure 3. A double-togarithmic plot of the nonmatized partition [unction Z, /" versus the length
i of the path. The dilference between dat lrom different shuulations up to lengths 1024, 2048, and
409G indicaie the accuracy achieved, The exponent estimate for p shown is derived Trom fitting
straight Hnes through lengths 256 10 1024 1o data from the best-converged simulation.

This atlows vs 1o estimate 3 from straight {ine fits which we give as

¥ o= 1045(5). (4.3)
Interestingly, this value is different from both the @-poit vidue of 8/7 = 114228 and
the BN-point 53740 = 11521 ... Using 3 = 2u(] — ) ad our estimaies ol y and v in

egualions (4.3) and (4 1) gives us the estinuae
Xy == 0.093(13). (4.4

We point out thal this estimate is positive while the conjectured vaiue above inequation (3.4)
is nol.

To obtain an independent estmate of vy we attempted (© estimate the universal
guantity A described above. In figure 4 we plol the fimte-size amplitude ratie combination
by == {88, ~ 13/ (2A,) versus n7Y7 which is the natural seale given the results above lor the
size measures. We find an estimate of this universal value as

A= 2.93(3). (4.5}

Unfortunately, the ervor estimale here is velatively larger than that estimated frony the pastition
function analysis and we estimated x, = 0.12(4), which encompasses our more precise
eslimate m (4.4),

For the sake of completeness we have alse found estimates of the universal amplitude
ratios A and & by figting against a correction of ™7 which provide consistent straight fit
extrapolations

Aw OUIS34(10)  and B = 0.475(5). (4.6)

These values of A and B are different rom the values or any of the three collapse models
considered in (18]
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Figure 4, A plot of the finite-size ampliude ratio combination 2, versus o177, logether with 2
strafght-line i, The difference between data from different simulaions up o kengths 1024, 2048,
and 4096 indicate the accuracy achieved. The extrapolated value Tor & shows is derived from fitting
straight lines (hrough lengths 256 10 1024 to data from the best-converged simulation.

5. Conclusions

We have simulated the special point, known ag the BN (Bitte-Nienhuis) point, of the seni-
flexible VISAW mode! of polymer collapse, which is associated with an integrable branch of
the O{m) loop model [7]. The exponent estimates we find. v = 0.576(6) and y = 1.045(5),
are not i accord with those previously found from the Q) Toop model. Our eshimale ol v s
compatible with the value accepled for the #-paint which is 477 = 0.57 14 . . and in good
agreement wilh the results of Foster and Pinettes {11 who have vsed transler matrices and
DMRG. However, our estimate of 'y is not comparable (o any known value. We have found
estimates of 3 via two different methods: one metiod we used involved the direct estimation
ol the exponent from the partdiion function, and the other used results from conformal Reld
theory and universal amplitude ratios of different size measures of the polymer; our estinales
[rom these two methods broadly agree.

Our results seem to suggest that the BN point is @ like, at least with respect 1o its size
scaling exponent with v = 4/7. This may scem at odds with our recent claim [207 that the
VISAWSs, which do not weight straight segments and have p = 1 in the notation of this
paper, have a collapse transition in the same universality class as the interacting self-avoiding
trails (ISAT) [21]. This was based, however, upon analysis of the specific heat. Of course, the
two claims are not in divect contradiction hut they lie uncomiortably ogether. In particular,
it feaves open the question whether the conclusion that the ISAT universality class extends
down o, and importanily includes, the VISAW line, where the weight for crossings segments
{vy m [20]) vanishes. On the other hand, if both claims are rue, there must be a change
ol universality class on varying p. It should be emphasized however that an estimaie of the
exponent v for coliapsing VISAWSs is notavailable al the moment, since the fack of knowledge
ol the exact location of the transition for p == | makes oblaining good estimales a significantly

harder 1ask,
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Clearty, something subtle is occurring in this systen if our numerical analysis is accurate.

OFf course, large corrections to scaling may be at work here. In any case, further theoretical
work is needed 10 tease ont (his 1ssve.
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