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Weighting of topologically different interactions in a model of two-dimensional polymer collapse
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We study by computer simulation a recently introduced generalized model of self-interacting self-avoiding
trails on the square lattice that distinguishes two topologically different types of self-interaction: namely, crossings
where the trail passes across itself and collisions where the lattice path visits the same site without crossing. This
model generalizes the canonical interacting self-avoiding trail model of polymer collapse, which has a strongly
divergent specific heat at its transition point. We confirm the recent prediction that the asymmetry does not affect
the universality class for a range of asymmetry. Certainly, where the weighting of collisions outweighs that of
crossings this is well supported numerically. When crossings are weighted heavily relative to collisions, the
collapse transition reverts to the canonical -point-like behavior found in interacting self-avoiding walks.
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I. INTRODUCTION

The collapse transition of a polymer in a dilute solution
has been a continuing focus of study in lattice statistical
mechanics for decades [1,2]. This transition describes the
change in the scaling of the polymer with length that occurs as
the temperature is lowered. At high temperatures, the radius
of gyration of a polymer scales in a way that is swollen
compared to a random walk, which is known as the excluded
volume effect. At low temperatures, a polymer condenses into
a dense, usually disordered, globule, with a much smaller
radius of gyration. The interest in this phase transition has
occurred both because of the motivation of physical systems
and also because the studies of integrable cases [3,4] of lattice
models have proved especially fruitful in two dimensions.
While the canonical lattice model of the configurations of
a polymer in solution has been the self-avoiding walk (SAW),
where a random walk on a lattice is not allowed to visit a
lattice site more than once, an alternative has been to use
bond-avoiding walks, or a self-avoiding trail. A self-avoiding
trail (SAT) is a lattice walk configuration where the excluded
volume is obtained by preventing the walk from visiting
the same bond, rather than the same site, more than once.
The model of SAT was used initially to model intersecting
polymers [5] but has subsequently occurred in integrable
loop models in two dimensions [4]. A model of collapsing
polymers can be constructed starting from self-avoiding trails,
known as interacting self-avoiding trails (ISAT). Here energies
are associated with multiply visited sites, and by favoring
configurations with many such sites a collapse transition can
be initiated.

Owczarek and Prellberg studied numerically the ISAT
collapse on the square lattice by two different approaches
[6,7] and in either case found a strong continuous transition
with specific heat exponent o = 0.81(3). Recently, on the
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triangular lattice, Doukas et al. [8] found that by changing
the weighting of doubly and triply visited sites, a first-order
transition can ensue or, alternatively, depending on the ratio of
these weightings, a weaker second-order transition that mimics
the collapse found in the canonical interacting self-avoiding
walk (ISAW) model (also known as the 6-point). They also
found that the low-temperature phase becomes fully dense
rather than globular, depending on the choice of parameters.

Recently, Foster [9] generalized the ISAT model on the
square lattice by differentiating the type of doubly visited sites
on the square lattice: a doubly visited site can be visited twice
with the trail passing through itself,, that is crossing, at the site,
or alternatively, as a result of two bends in the trail so that the
trail “touches” or “collides”; see Fig. 1.

We shall refer to this model as the asymmetric ISAT
model (AISAT). The study [9] using transfer matrices and
the phenomenological renormalization group of the AISAT
predicted that the universality class of the symmetric case
extended to the asymmetric case. However, when crossings
sufficiently dominate over collisions, the results suggested the
appearance of a first-order transition.

In this work we use Monte Carlo simulation to explore this
AISAT model and the predictions of Foster [9]. We also explore
the low-temperature phase of the model and find that it is fully
dense for a range of asymmetry, including the symmetric case.

II. ISAT

The model of interacting trails on the square lattice is
defined as follows. Consider the ensemble 7, of SATs of length
n, that is, of all lattice paths of n steps that can be formed on
the square lattice such that they never visit the same bond more
than once. Given a SAT ,, € 7,,, we associate an energy —&;
with each doubly visited site and denote by m ;(1/,,) the number
of sites visited j times by ¥,. We have n = m + 2m,. The
probability of i, is given by

eBema)

Z,IISAT(T)’ (2'1)
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FIG. 1. An example of AISAT configuration with one crossing
(m, = 1) and two collisions (m. = 2), associated with the Boltzmann
weights 7, and 7., respectively. The total number of doubly visited
sites is m, = 3.

where we define the Boltzmann weight w, = exp(B¢;) and S
is the inverse temperature 1/kpT. The partition function of
the ISAT model is given by

Z;SAT(T) — Z w;’"2(‘//n). (2'2)
V€T,
The finite-length reduced free energy is
1
kn(T) = —log Z,(T), (2.3)
n

and the thermodynamic limit is obtained by taking the limit of
large n, i.e.,

k(T) = lim «,(T). 2.4)
n—00
The existence of this limit is not proven and it should be
considered an open problem on its own, although beyond the
scope of this work.
It is expected that there is a collapse phase transition at
a temperature 7, characterized by a nonanalyticity in «(7).
The collapse transition can be characterized via a change in
the scaling of the size of the polymer with temperature. It is
expected that some measure of the size, such as the radius of
gyration or the mean-squared distance of a monomer from the
end points, R,%(T), scales at fixed temperature as
RX(T) ~ An®, (2.5)
with some exponent v. At high temperatures the polymer is
swollen, and in two dimensions it is accepted that v = 3/4 [3].
At low temperatures the polymer becomes dense in space,
though not space filling, and the exponent is v = 1/2. The
collapse phase transition is expected to take place at some
temperature 7. If the transition is second-order, the scaling
at T, of the size is intermediate between the high- and
low-temperature forms. In the thermodynamic limit, there is
expected to be a singularity in the free energy, which can be
seen in its second derivative (the specific heat). Denoting the
(intensive) finite-length specific heat per monomer by c,(T),
the thermodynamic limit is given by the long-length limit as

C(T) = lim ¢, (T), (2.6)
n— 00
where again the existence of the thermodynamic limit (2.4) is
assumed but not yet proven.
One expects that the singular part of the specific heat
behaves as

C(T)~ B|T. — T|™®, 2.7)
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where o < 1 for a second-order phase transition. The singular
part of the thermodynamic limit internal energy behaves as

U(T) ~ B|T, — T|'™® 2.8)

if the transition is second-order, and there is a jump in the
internal energy if the transition is first-order (an effective value
ofax =1).

Moreover, one expects crossover scaling forms [10] to apply
around this temperature, so that

en(T) ~ n C(T — T)n?], (2.9)
with 0 < ¢ < 1 if the transition is second-order, and
co(T) ~n C(T — T Hn] (2.10)

if the transition is first-order. From Ref. [10] we point out that
the exponents « and ¢ are related via
1
2—a=—.
¢
Important for numerical estimation is the use of Eq. (2.9) at the
peak value of the specific heat given by yP** = (T — T.)n?,
so that

@2.11)

Cgeak(T) ~ Cpeak naq&’

where CP*% = C(yP%) is a constant.

A previous study [7] of ISAT model on the square lattice
has shown that there is a collapse transition with a strongly
divergent specific heat, with

ap = 0.68(5),

and so the individual exponents have been estimated as

2.12)

(2.13)

¢ =0.843) and o« =0.81(3). (2.14)
At T = T, it was predicted [6] that
RX(T) ~ An (logn)*. (2.15)

III. ASYMMETRIC ISAT MODEL

The Asymmetric ISAT (AISAT) model can be defined
as follows. Consider the set of bond-avoiding paths 7, as
defined in the previous section. Given a SAT v, € 7,, we
associate an energy with each doubly visited site, as in ISAT,
but we make a distinction between whether the trail crosses
itself or not. We will call the former crossings and the latter
collisions with associated energies —¢, and —e&,, respectively.
For each configuration v,, € 7,,, we count the number m, (V)
of crossings and m.(i,,) of collisions; see Fig. 1. Note that
the total number of doubly visited sites is m, = m, + m,.
We associate with each configuration a Boltzmann weight
oW where 1, = exp(Bey), 7o = exp(Be.), and B is
the inverse temperature 1/kp7 . The partition function of the
AISAT model is given by

Zo(T0,7,) = Z .[;ﬂx(wn).rcnu(%). (3.1)
V€T,
The probability of a configuration v, is then
my(Yn) _me(Yn)
T T
P(Ws T ) = — d (3.2)

Zn(TXaTc)
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In line with Foster [9], let us define the variables

=2 (3.3)
T
and
r=— = (3.4)
14+ x T, + T

When we set 7, = 1. (x = 1,r = 1/2), the model reduces
to the ISAT model, in which crossings and collisions are
given the same weight. On the other end, if we set 7, =0
(x = r = 0), configurations with crossings are excluded and
our model reduces to the O(n) model on the square lattice
introduced by Blote and Nienhuis [11,12] also known as the
vertex-interacting self-avoiding-walk model (VISAW).

The average of any quantity Q over the ensemble set of
path 7, is given generically by

()T t) = Y QW) p(n; To, Te)-

V€T,

(3.5)

In particular, we can define the average number of crossings
and collisions per site and their respective fluctuations as

2\ _ 2
u = ) N L el LR S
n n
2\ _ 2
Up = {me) , C = M 3.7)
n n

An important quantity for what follows is the proportion of
the sites on the trail that are at lattice sites that are not doubly
occupied:

2
pn=1- - ({me) + (my)). (3-8)

Foster [9] predicted that the universality class of symmetric
ISAT at r = 1/2 extends to other values of r and further that
there may be a change to a first-order transition for large values
of r.

IV. NUMERICAL RESULTS

We began by simulating the full two-parameter space by
using the flatPERM algorithm [13]. FlatPERM outputs an
estimate W, x of the total weight of the walks of length n at
fixed values of some vector of quantities k = (ky,ka, ... ,k¢).
From the total weight one can access physical quantities over
a broad range of temperatures through a simple weighted
average, e.g.,

_ Zk On,k (HJ Tj]'cj) Wn,k
Sk (T177) W

The quantities k; may be any subset of the physical parameters
of the model. In our case we begin by using k; = m, and
k2 = Mmec.

We have simulated AISAT using the full two-parameter
flatPERM algorithm up to length n = 500, with 10 iterations,
collecting 1.2 - 10'° samples at the maximum length. Follow-
ing [13], we also measured the number of samples adjusted
by the number of their independent growth steps (“effective
samples”) S° ~ 3.9 . 10® at the maximum length. To obtain a

(Oh(D)

4.1
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FIG. 2. (Color online) Density plot of the logarithm of the largest
eigenvalue A, of the matrix of second derivatives of the free energy
with respect to 7, and 7. at length 500.

landscape of possible phase transitions we plot the largest
eigenvalue of the matrix of second derivatives of the free
energy with respect to 7, and t. at length n» = 500 in Fig. 2.

We notice that there is a strong peak in the fluctuations
running in a line from t. ~ 5 when 7, =0 (r = 0) to 7, ~ 8
when 7, = 0 (r = 1). It is interesting to observe that the peak
in the fluctuations becomes weaker as r increases from 0 to 1.

Next, we have simulated four different one-parameter slices
of the AISAT model all up to length n = 1024. Their location,
as indicated in Fig. 3, is as follows.

(1) 7, =0 (the VISAW model). With § ~ 1.8 - 107 itera-
tions, collecting 4.5 - 10'° samples at the maximum length
(corresponding to ST ~ 5.2 - 10%).

(2) 1, =1 (the colliding model). With 7.8 - 10° iterations,
collecting 2.6 - 10'° samples at the maximum length (corre-
sponding to S ~ 4.1 . 10%).

(3) 7, = 7. (the symmetric ISAT model). With § ~ 4. 10°
iterations, collecting 7.6 - 10° samples at the maximum length
(corresponding to ST ~ 5.8 - 10%).
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FIG. 3. Schematic diagram of the AISAT parameter space. The
black dot on the diagonal line indicates the ISAT critical point. We
have simulated along the dashed lines, as well as the VISAW line.
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(4) 1. =1 (the crossing model). With § ~ 7.7 -10° iter-
ations, collecting 2.7 - 10! samples at the maximum length
(corresponding to ST ~ 2.7 - 10%).

A. Specfic heat

We have begun by analyzing the scaling of the specific heat
by calculating the location of its peak 7, = argmax, c,()
and thereby evaluating ¢} = ¢,(t)). In Fig. 4, we plot the
peak values of the specific heat for the four models we
have simulated. The exponent associated with the peak of
the specific heat, see Eq. (2.12), is a¢ if the transition is
second order. For the symmetric ISAT model, we estimated
a¢ ~ 0.64, which is a little less that our previous estimate
[Eq. (2.13)] based upon much longer length trails. We find for
the VISAW (a¢ ~ 0.69) and the colliding model (¢¢ =~ 0.63)
exponent estimates compatible with that of symmetric ISAT
collapse at this length. This is a crucial result as it confirms
the prediction of Foster [9] that the universality class of ISAT
extends from r = 1/2 to other values of r.

—-0.4 T
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P
In ¢
|
—
o

II | — slope 0.08
—1.6 | | ] ] ]
40 45 50 55 60 65 7.0
In n
0.5 T

0.0

—1.5
— slope 0.63
-2.0 1 1 1 1 1
40 45 50 55 60 65 7.0

In n
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We see that an attempted estimate of a¢ for the crossing
model over the full range of lengths is compromised by
poor simulation results. Nevertheless, there is clear curvature
in the data and the estimate decreases with length. Using
data from around length 400 onwards gives an estimate of
0.08. Given that this estimate would most likely decrease
even further with increasing length, it is likely that the data
is compatible with the behavior of the 6-point interacting
SAW collapse transition; this has a negative value of the
exponent or.

Therefore, our data indicates that the ISAT universality
class extends to a range of values of the parameter r measuring
the asymmetry, as conjectured by Foster [9]. Intriguingly,
rather than becoming first order for » near one, as also
conjectured in Ref. [9], the transition becomes weaker and
potentially 6-like as r increases toward one.

B. Study of the low-temperature region

To further investigate the proposition that changing the
asymmetry over a range around r does not affect the nature
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FIG. 4. (Color online) Double-logarithmic plots of the peak value of the specific heat against length for the four models defined at the
beginning of Sec. IV: (a) the crossing model, 7. = 1; (b) the symmetric ISAT model, t. = 7, (c); the colliding model, t, = 1; (d) the VISAW
model, 7, = 0. For three of the models, the specific heat diverges strongly, while for the crossing model the behavior of the specific heat is
markedly different: the data is consistent with a converging specific heat.
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of the collapse, except potentially near r near 1, we examine
the low-temperature phase. This approach proved fruitful in
the case of triangular lattice extended ISAT [8], where the
low-temperature phase could be either globular or fully dense.
The fully dense low-temperature phase seems associated with
either the ISAT universality class or a first-order transition,
while the globular phase is associated with the much weaker
(nondivergent specific heat) ISAW (8-point) collapse tran-
sition universality class. Here we present evidence that for
the square lattice symmetric ISAT, colliding, and VISAW
models, the low-temperature phase is maximally dense and
that the density jumps discontinuously at the critical point. On
the other hand, for the crossing model, the low-temperature
phase seems not to be fully dense. This would be compatible
with the conjecture that the collapse transition for the crossing
model is 6-point-like from a swollen phase at high tempera-
tures to a globular phase at low temperatures.

We have considered two different approaches to measuring
the density. The first is indirect by measuring the proportion of
sites of the lattice visited only once by the trail, and the second
is using the radius of gyration to estimate the internal density
of the polymer. Both lead to the same conclusions.

1. Proportion of singly visited sites p,

Following the analysis in Ref. [8], we first measured
the proportion p, of sites of the lattice visited only once
by the trail. This provides a useful method for considering how
dense our configurations are on average since an asymptotic
value of zero would imply that effectively all the sites occupied
by the trail are doubly occupied. Double occupation of lattice
sites implies that the surrounding edges of the lattice are all
occupied with bonds of the trail: hence the lattice is filled by
the trail as the trail increases in length. At high temperatures
it is easy to see that p, approaches a finite strictly positive
value in the thermodynamic limit: this is connected with the
swollen nature of the polymer as seen in the radius of gyration
scaling. One would expect on physical grounds that p.(T)

1.0 T T T T
4 4 crossings (a)
% % ISAT

081 Y ¥ touchings #.
¥ & VIisAW &

0.6 Y -

Aangp™
04}
0.2 .

0.0 I I I I I I
0.0 01 02 03 04 05 0.6
n*()Al()'
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would be a monotonically increasing function of temperature
T. The question that arises is whether at low temperatures this
value is zero and what kind of singularity occurs in p(T) at
the collapse transition.

It is worth considering first what happens at the collapse
point itself in the symmetric ISAT model. Thanks to the
mapping between critical ISAT and kinetic growth trails,
we know that critical limiting value for p, is exactly 1/5 [7].
The argument goes as follows: consider the case when a trail
has formed a large n-step loop, which occupies m; +m, = M
lattice sites (this is always the case as trails do not trap). Any
site of this loop could have been the starting point. In order
for this site to be visited only once, the loop must have closed
at the first return visit, which occurs with a probability of
1/3. Therefore, we find for large loops m/M — 1/3, from
whence it follows p, = m;/n — 1/5.In Fig. 5(a), we plotted
p, against n=*1% at the estimated critical temperatures of
our four submodels. We have used (1 — a)¢ >~ 0.16 as the
appropriate correction to scaling exponent from the estimated
exponents for the symmetric ISAT model with «¢ =~ 0.68. For
the symmetric ISAT, colliding, and VISAW model, this choice
seems appropriate; in each case the estimated value of p., is
close to 0.2. While the correction to scaling exponent may
not be appropriate for the crossing model, it is clear that any
estimate of p is greater than 0.2.

For low temperatures, as discussed above, if the trail fills
the lattice asymptotically in a fully dense phase, the portion of
monomers of the trail not involved with doubly visited sites
of the lattice should tend to zero as n — oo. In Fig. 5(b), we
plotted p, against n=!/? for our four submodels. The plots
suggest that for the symmetric ISAT, colliding, and VISAW
model, p, — 0 as n — 0o in the low-temperature region,
which implies a maximally dense phase: our extrapolation
estimates for p,, have error bars encompassing zero. The
crossing model seems to show a different behavior: our data
suggest that p, tends to a nonzero value (around 0.25)

These results form a clear picture in which the quantity
Poo jumps discontinuously to zero at the critical temperature

A 1 crossings (b)
0.5 H® % symmetric ,
Y Y touchings
04l ¥ € Visaw
S03} d
0.2 .
0.1F .
00 L | 1 1
0.00 0.02 0.04 0.06 0.08 0.10
n71/2

FIG. 5. (Color online) Plots of p,, the proportion of steps visiting the same site once, at (a) the critical temperature and at (b) a low

temperature. The scale n~!/2

chosen is the natural low-temperature scale. The chosen temperatures for the plot on the left are v = 20

(crossings), T = 5 (ISAT), T = 7 (colliding), T = 8 (VISAW). At the critical temperature, the quantity p, is plotted against the crossover

exponent obtained in Ref. [7], (1 — «)¢ =~ 0.16.
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for the symmetric ISAT, colliding, and VISAW models. In
contrast, for the crossing model p., remains nonzero for all
temperatures. In Fig. 6, we have plotted the quantity p, at
different length scales as a function of the temperature. The
plots again suggest a common discontinuous behavior for the
last three models, while the crossing model seems to show a
continuous transition in line with the extrapolations described
in the previous paragraph.

These findings support the result of the specific heat analy-
sis, namely that the universality classes of the symmetric ISAT,
colliding, and VISAW models are likely to be the same, while
the crossing model is clearly in a distinct universality class.

2. Density

A more direct way of measuring the density is to consider
the quantity p = n/R?, where R is the radius of gyration of
the polymer.

For any AISAT in the high-temperature phase we expect
R,zl ~ n? withv = 3 /4, as for SAWs and SAT, and, therefore,

1.0

0 2 4 6 8 10

Te
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pn = n/R? — 0. From Ref. [6] we know that at the critical
point of the symmetric model R, ~ n'/?log n, so the density
p is zero also at the critical point. For all our models in
the collapsed phase, we expect that p..(7") is nonzero at
low temperatures. The natural question that arises is whether
Poo(T) increases from zero at 7T = T, as the temperature
is lowered in a continuous fashion, or whether it jumps
discontinuously to a fixed maximum value as soon as the
temperature is smaller than T, being then constant for all
T <T.,.

If we take our results for p, as a guide, we would expect
that for the ISAT, the colliding, and VISAW models poo(T)
the density would jump discontinuously on decreasing T
below T, while for the crossing model p(T) would increases
continuously from zero as 7T is lowered through 7.

In Fig. 7 we plotted p, =n/R> as a function of the
temperature. In the symmetric ISAT, colliding, and VISAW
models the density plotted for different lengths cross at a
Boltzmann weight close to the expected collapse transition
point, increasing to the right and decreasing to the left.

1.0 T T
‘ — n =200
s | — =400
’ | — n =600
‘ — n =800
0.6 — n =1000 [H
£
= |
0.4 | R
|
|
02F - - - - I = = - - = =
|
(b) !
0.0 I | I I I
0 2 4 6 8 10
Te = Tx
1.0 T
— n =200
— n =400
081 — n=20600 [
— n=2800
0.6 F — n =1000 [H
IS
Y
0.4 R
0.2 F B
(d)
O‘O | | | |
0 2 4 6 8 10
Te

FIG. 6. (Color online) Density measured as the fraction p, of sites visited only once as a function of the length scale n and of the
temperature, for the four models defined at the beginning of Sec. IV: (a) the crossing model, 7. = 1; (b) the symmetric ISAT model, 7. = t,;
(c) the colliding model, T, = 1; (d) the VISAW model, 7, = 0. In (b) the dashed lines indicate the critical temperature and the corresponding
value of p,. For three of the models p, tends to zero above a critical value of t, while for the crossing model p, converges to a nonzero value

for all values of 7.
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FIG. 7. (Color online) Plot of the density p, = n/R? as function of the temperature, for the four models defined at the beginning of Sec. IV:
(a) the crossing model, 7, = 1; (b) the symmetric ISAT model, 7. = t,; (¢) the colliding model, 7, = 1; (d) the VISAW model, 7, = 0. For
three of the models there is a clear crossing point such that for small values of t the value of the density decreases with length, while for large
values of t the value of the density increases with length. For the crossing model, no such crossing point exists, and the density decreases with

length for all values of t.

As argued above, the curves converge to zero for small
Boltzmann weights (high temperatures) and are consistent
with an increase to a temperature-independent constant for
large Boltzmann weights (low temperatures). This is consistent
with the behavior of p, discussed previously. The crossing
model seems to have a different behavior. Consistent with a
varying limiting value of p,,, the limiting value of the density p,
does not approach a temperature-independent constant, either.

V. CONCLUSIONS

We have studied a generalized model of ISATs on the
square lattice as proposed by Foster [9], where the weight
associated with crossing-type interactions (z,) and collision-
type interactions (7.) may differ.

From the analysis of the specific heat divergence, we can
confirm the conjecture in Ref. [9] that the ISAT universality
class extends over a region of asymmetry around t, = 7.. We
can conclude that this region extends down to t, = 0, which is
also known as the VISAW model, and seems to extend to some

larger 7, > .. We need to clarify that we haven’t attempted
to estimate the scaling exponent v because it would have
been too difficult at this length scale without precise critical
temperature estimate and, therefore, there is the possibility
that ISAT and VISAW have different size scaling exponents at
their respective collapse points.

Our simulation results for t, = 1 are compromised numer-
ically by poor convergence: in fact, at small lengths we see
some evidence of multiply peaked probability distributions but
these seem to become unimodal at larger lengths. Importantly,
the peak of the specific heat seems to decrease on increasing
x = 1, /7.. Indeed, the specific heat of the 7, =1 model
diverges with an effective exponent that is much smaller (albeit
with large error bars) than the ISAT universality class would
predict and, in fact, the specific heat may not diverge: we would
expect a more strongly diverging specific heat if a first-order
transition occurs.

Supporting these conclusions is our investigation of the low-
temperature phase for different asymmetry. For the symmetric
ISAT and the VISAW model the low-temperature phase seems
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to be fully dense as it is in the extended triangular lattice
model in certain regimes. Also, in agreement with our tentative
prediction for the t. = 1 case is the evidence that here the
low-temperature phase is no longer fully dense, which implies
a globular ISAW-like low-temperature phase. Putting this
information together leads us to predict a 8-point-like collapse,
as occurs in interacting self-avoiding walks for x sufficiently
large. Further numerical work is clearly needed to pin down
the large x behavior of the AISAT model, including where the
change of universality class occurs. Finally, we point out that
our evidence that the low-temperature phase is fully dense for
symmetric ISAT implies that there is a first-order characteristic
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of this transition, as predicted by Foster and Pinettes [14]
and subsequent work [9,15,16], even though there is no latent
heat.
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