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Abstract
A directed path in the vieinity of a hard wall exerts pressure on the wall
ssure 2t a particeiar point may be estimared

because of loss of enropy. The pre I
by estimating the loss of entropy 1f the point is excluded from the path, in
this paper we determing asymplotic expressions for the pressure oi the X-axis
in modets of adsorbing directed paths in the first guadrant. Our models show
that the pressure vanishes i the lhinit of fong paths in the desorbed prase, bt
there is a non-zero pressure in the adsorbed phase. We determine asymplotic
approximations of the pressure for finite length Dyck paths and directed paths,
as well as for & model of adsorbing stairease polygens with both ends grafted
fo the X -axis.

PACS numbers: 02.50.Mg, 02.70.Uu, 05.10.La, 36.20.Ey, 61 4] e, 64.60.0c
80,75 D
ilathematics Subject Classification: 82541, 82180

(Some figures may appear 1n cojour only in the online journal)

L Intraduction

A Bnear polymer attached 10 a hard wall by an endpoint loses czmow due fo the presence
of the wall, The loss of enropy induces a repulsive mm* on the wall. Such forces have been
measured c):pem‘ﬂemaiiy [1, 3, 4] and decay with distance from the point where the polymer
ig attached.

A simple model of the above 15 a divected path from the origin in the first quadrant of the
square lattice, More precisely, let ¢ be the number of dz; cued paths from the origin given
North-ast and Souvth—-Fast sieps in the half square lattice = {(n, ) € B = 0). Since
the path Joses entropy due 10 the boundary of //J‘ {the X - amn) there i a net pressure on the
Xeanis (which we shall also call a fard well).
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The entropy of the paths is given by 8 = ky logd}, where &y is Boltzmann's constant.
The pressure af a point x == (N,0) in the hard wall may be compuied by calculating the
reduction in entropy if paths passing though this point are excluded from the ensemble,

Let the number of paths avoiding the point x be denoted by 4} (x). Then the loss of entropy

is given by

AST(x) = kg logd! (v) — kplogd). (
Tir this case the change in free energy of the model is also given by AF, (1) = —T AST(x) at

temperatare 7. Hence the pressure of the path on the wall can be estimated by computing the
change in extensive free energy i the point v is excluded and thereby changing the volume by
AV,

That is, the pressure on the poini x is given by the discrete derivative of 7, (T') to the
volume element containing x:

P = AFAT) kT AST @) o
AV, AV

In twao dimensions, AV, will be an area element containing the point x.

Adopr units &zT = 1 and AV, = [ {0 see that the pressure at the point x in this model is
given by

P, (1) = log df (x) — logdF. 3

In other words, the pressure at v is the discrete derivative of the extensive free energy with
respect t0 a unit change i volume at the point x in reduced wnits,

Observe that we use the convention that £, (x) is negative.

More generally, the paths may be interacting with the hard wall by adsorbing in it, or
may be interacting in some other way. In thig case the above is a direcied maodel of a polymer
adsorbing in the hard wall, and P, (x} is the pressure due to presence of the hard wall,

If kT == 1 as above, then the interaction strength of the path with the wall is given by
an activity z, and the partition function Z7(2) of the model gives the extensive free energy
Fu(z) = log Z1{2). The pressure at a point x in the hard wall is then obtained as above, and is
given by

Py = log Z (z: x) — tog Z (2) “4)

where Z(2; x) is the partition function of the ensemble of paths which avoids the point v is
excluded from the ensemble.

The above approach was used for a square Iattice self-avoiding walk model of lincar
polymers grafied to a hard wall [7}. In this exact cnumeration study the data show that
pressure decreases with distance from the origin.

In this paper owr intension is o add o these self-avoiding walk results by examining a
directed version of this model, We shall in particular look at the asymptotic behaviour of the
pressure as function of the length of the directed walk and the location of pressure poisnt x,
We shall also extend our results (o include adsorbing directed paths, as well as a model of an
adsorbing staircase polygon.

1.1 The pressure due to directed paihs

The number of directed paths of # steps from the origin in the square lattice Z° is P, = 2",
If the path is restricted o the half laitice /Z%, then 1% is a positive parh, and if it is further
constrained by having to end in the X-axis (which is the hard wall), then it is a Dyck parh [8].
Exanples are illustraied in figures [{a) and ().
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(a) (b)

Figure 1. Two models of an adsorbing polymer grafied 10 a hard wall. (@) A directed path from
the origin in Z'j. The path interacts with the X-axis with an activity z > 0. If z > | then the path
is atracted to the X -axis, if z < 1 it is repelled. The path exerts a force on vertices of the X -axis.
(h) This model is similar to («), but both endpoints of the path are constrained to lie in the X-axis.
This is a model of adsorbing Dyck paths. Observe that we use the convention that the vertex at the
origin is not weighted by z. '

The number of positive paths of length n is given by

2n 2n+1
TErr = ( n ) and T2n+l == ( o { ); (5)
and the number of Dyck paths of length 2n is given by
1 2n
Dy = —— . 6
2n nt 1 ( % ) (6

From these expressions one may determine that the number of Dyck paths passing through
the point x with coordinates x = (2N, 0). This is given by
1 2NN /2(n—N ))
Doy - Dayow = . 7
W (N+l)(n—N+l)(N)( n—N M
Thence, one may determine the pressure on the hard wall at the point x from equation (3) to
be

Doy - Doy
P (2N) = log (D24 — Doy - D2y—an) — log Day = log (1 == 5 2 2N) : €))
2n
Putting N = |an| for some a € (0, 1) and expanding asymptotically in n gives
1
P22 lan]) = ——————==+0(""). 9)

andad(l —a)’
Observe that P2 (2 lan]) = O (n~>/?) and that if pressure is rescaled by 7312, then one obtains
1
T 3/2pD _
PP@ = lim (wPPh(21an)) = v
as a residual rescaled pressure in the scaling limit.

A similar calculation may be done with positive paths. In this case the pressure on the
point (2N, 0) is given by

(10)

D i n—2
P} (2N) = log (Tay — Day - Tan—2v) — log Tay = log (1 — —Z‘NT—”‘Q) . (11
2n
Expanding asymptotically, and keeping the leading order term gives
1
Pl (2an) = — 0 (12)

Vrmad(l —a)

for pressure of positive paths of length 2 at a distance 2N = 2 |a n] from the origin.
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Observe that PJ (2Lan]) = O(~*?) (as was scen for Dyck paths) and again rescaling
the pressure by 7%/ one obtains

. . i
p @) = lim (7P (2 lan))) = g (13
M=% O3

as the residual rescaled pressure in the scaling limit.

We shail gencralize the resuits in equations (9) and (123 to models of adsorbing Dyck
paths, adsorbing directed paths, and a model of adsorbing staircase polygons grafied o the
X-axis. White we extract the infimite n behaviour in each model, we wili mostly be concerned
with finite # behaviour, which we shall approximate by asymptotic expressions,

1.2. Adsorbing paths and siaircase polygons

A directed path with steps (1, 1) and (1, 1) from the origin in the half lattice 71,’ is illustrated
in figure 1{a). Vertices of the path in the adsorbing line Y = O are called visirs, and they are
weighted with the generating variable z (which is related to temperature by z = e5 T i attice
units). By convention, the origin, although itself a visit, is not weighted. A directed path with
weighted visits is an adyorbing directed path.

If the dirceted path is constrained to end in the adsorbing line, then it is a Pyck path {sce
figure 1{b)). A Dyck path with weighted visits i an adsorbing Dyck path 12, 101,

The model in figure 1(D) is that of an adsorbing Dyck path £2]. If the partition function of

this model is denoted by D, (z), then the generating function of the model may be evaluated:
o
2

o, z) = ﬂDn ATEES p——esat’ 143
" ?—5 © 2 2() — /T4 (14)

where the generating variable 7 is conjugate the length # (the nuimber of steps i the path). The
intensive timiting free energy of the modet is defined by

Fplz) = lim ll()gD,,(z} (19}
=0l
and by comparison to g(z, z) #t foliows that Fp(z) = ~ logr{z), where 1.(z) is the radivs of
convergence of g(r, £). One may explicidy compute this from the above:
log 2, fz<2
Fp(z) = (10)

1
logz — 5 log(z — 1), ifz> 2.

In other words, Fp(z} is non-analytic at .::j.' = 2, For 2 = 2 the density of visits (given by

. N - P 4 FomD
E(z) = z;‘,’;}}) ()) is zero——this is the desorbed phase. For z > 2 this is £(z) = s > O
and the model is sald (o be in an adsorbed phase since the density of visits o the hard wall is
positive.

Similar calculations can be done for the model in figare 1{a), and the critical point is also
at zf' = 2 with a desorbed phase for z < 2 and an adsorbed phase forz > 2.
The partition functions of adsorbing directed and Dyck paths are known 10 be given by

lif2]
e -\ " .y
Talz) =y (Mm N m) (z—1) (amn

=}

for adsorbing directed paths, and

b2}
dm -2 n "
2= 3 55 g2y ) € (1)

a={)

for Dyck paths, see for example [2, 6],
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sg) - FP(z) (20
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(27
wheie
A 3 N o9
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x (1)
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U - . " - 3]
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H 4
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) A 3 . ]
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From these expressions one similarly obtains that there are different scalings in the different
regimes: In the desorbed phase the pressure is of order O(n3?), at the critical adsorption
point O(n~"?) and in the adsorbed phase — log(z — 1)+ 00 7),

2. The forces exerted by adsorbing directed paths in a half-space

The partition function of adsorbsing directed paths which pass through the vertex (g, () is given
by £2,(2) g (z) (by equations (17) and {18)). Thus the partition function of paths avoiding
the vertex {g, 03 is T,(q) — D, (z) T,—,(z). Substitution into equation (20} and simplifymg
gives

Dy () Ty (2) ) (25)

P e Y oz Jog | ] e et 2078
Pz g) = log (1 T
Observe that P! (z; ¢} s negative, since the pressure is direcied onto the veriex (g, 0) from
above (and in the negative direction).
A similar argiment shows that

Dq(z) Dn-—fj&)) (26)

PPl gy == log | 1 — Rn 20007
i) =tog (1 - 205 0eal)
in the case of adsorbing Dyck paths,

A result in [2] shows that Yor 7 > 0 the pariition function D, (z) may be expressed in as

2 — 2 #2 il 1. RN
Dy (2) == - -~ (W 1) 0(z=2)+ ~ ZC (m:;;—) 27

T ow=n

2 hl : s - "
where the C = ﬁ “) are Catalan numbers and ¢ is the Heaviside step function. The

sumnation can be bound as follows: C, < 4* and thus

o PR s 2 1N 4rgt
pe (m;im) <Ay ( ) =T (28)

I= S=i

This shows that forz = 2

=24 2N 2l BN 2z — 1) f4z — 1YY"
) (;::'7) g”%“%‘:"{(;—;) (”‘ G mzp( 2 )) &)

Since 4 < 22/(z — 1) if z > 2. the above proves that

D, () = {w? ( : _1) (4 o0(1)), ifz>2. (30)

The result in eguation (30) can be substituted into equation (26) 1o give the following lemma:

Lemma 1. The limiting force on the adsorbing line by a Dyck path if z > 2 iy

Jorany a e (0, 1), where the limit is taken thraough even values of n.

A similar argument may be made for directed paths, using the following representation
for the partition function

Z?' " 1 0_(1\ =
Tonl2) = ("“T) 6z =2+ =5 3 Ol = s =) ( -

e

(31

from i2]. This shows that

-

’J;.(z)::( - ;) (14o(1). ifz=2 (32)

Substitution of equations (30) and (372) into equation (25) shows that

6



3. Phys, A: Mah, Theor, 46 (0133 15202 1 danse van Rensburg and T Pretlberg

a 2. The limiting force oi the adsorbing Hie by o direcied paifiif 2= 20y

- dogls -~ 1),
Joranya e {0, 1)
Lermmas |and 2 show that the Yiminng fores w the icvin ¢ 2 - log(s - 1) in both

models, Observe that this foree approach 3y equation (30) the force cannot

N:,f[{ (o 2 an/2)y = 0if e (0,21

e positive, and thenes T, fj.'?(.., 2 lanf2))

3 Approximaiing ihe pressuie
! &

The pastition funct

approximaiion o i

yapproximate the binomial cosficients, The sumimat
which itself will be estimated using a saddle point method,

Substitute the Stirling approximation In the summands of cquations (175 fake
g8 1
lggaritins and simphfy the results. This gives
5 NAT H1/20 i oy )
f(:: - By N GTe /n (n — 2" e o
P ll‘g ; . - i, (3dy

b i’ ‘
STk B 2y

Fising #, there is an m = 18n] wiich maximizes the above (101 § € {0. 1/21}. The parameter
& s determined by an d‘sﬂ?‘i’;’)i’(}(i{: expansion in )/ Puta = e, m o= /e in thc sumimand,
expand the resulti s order and simplify. This gives

Take the derivative with respect to & an
f
I

8 = mnax i -

3
,0% . (30}
where we note that § cannot be negative.

A similar approach i the case of 7,(2) gives exactly the same result for ihe location of
the saddle point, as enpected.

22 Case ) o

The general approach is 1o approximate the summations in eguation (17) and (18} by iniegraly
eluf2) i E

R EI R g[ o ) (z— 1yYWdm (37
o \ i f2] -

for adsorbing directed paths, and

Y din (38}

w1 2004 1) \ L2 i
for adsorbing Dyck paths (and where the binomial co“f’;”x(‘iem::; are generalized (0 continuous
values of m by replacing factorials by Gamma functions),

For asympiotic values of #, the integrals above are dominated by values of m elose to the
saddie poinis which are located close 1o m = 0 by equation {36} and which have a spread of
S above = O

o i a2 i N
Duc) Ve
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The approximation of T;,(z) and D,{z} are achieved by substituting n = i/e? and
m = o fe = o/ in the summands above. Expand the results in ¢, and simplify.
1 the case of T, (2), the above prescription results in
Aife’

4 oo / 3
To(zy o ——— [ 7 D)%™ @ dar. 3N
( NGTI (

Fvalnating the integral gives

To(x) oo 208 @ I () e (/20 [ log(z — 1)/40). (40)
An asymptotic expansion of this in n and keeping only Jeading order terms gives

- 2;»{-1 )

Tylz) = - ST (41)

""" Jrn Jlog(z — 1))
The same procedure may be applied to D, (z): this shows that
f)l-l-ljn:-2 o

D, (,_,) ~ /_"____-_m {7 i )(z‘;’(- CU.?_QE de. {42)

m‘ 0

Evaluating the miegral produces

’3 1 2z q . pad
D(z) o 2R ( e Jlog(z — DM E DR e (Vo] log(z - DA L
AN

Expanding this asymptotic in n and simplifying gives
gn-i—ﬁs
Dy (2) 2 e . (43)
V2an? joghz 1)

The above results produces the following approximations for the pressures:

b!'{‘ (z; 2lan/2}) = log (1 8 ) (44)

\/2_;*?71303(2 —a) togi(z ~ 1)
for directed paths, and

3
PP (2 2 anf2)y 22 log | ] — — o 45
fu ( ' l_ﬂ.”/ j} 10p 1 \/i):w”jas{] = (:)3 logz(z - 1) ( )

for Dyck paths. For large values of n the logarithms may be expanded, and the results should

be compared to equations (%) and (12) forz = L.

In figure 2 the approximation for P,;' (z: 2 Lan/2]) (solid cusve) is compared with the exact
values (dotted curve) for n = 128 and 2 = 3/2. Observe that as n > co, then P! (2 2 [an/2])
approaches zere.

Expanding the expression for the pressures asympiotically in i gives the expressions for
7 < 2 in equations (22) and (23).

23 Casedrz=2

The partition functions evaluate exactly in terms of factorials and Gamnma functions Hr=2

-l ) (ﬂ"';—l) . 7Y — n!

{2y =2 («/J? e (L*_jil) 1, and D(2) = BTG {46)
Substituting these expressions into equations (25) and (26) gives exact expressions for the
pressure, which we do not reproduce here. Observe that as n — 00, then 1t follows from
the above that limy.. o PP(2; 2[an/2]) = liMye Pl (2 2{an/2]) = 0. The exact pressure
P25 2]an/2]) is plotted for n = 128 in figure 4.

8
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0 0.5 a 1

{
0 & as

YT
-0.25 /

LI |

Pl(s) '!/

|
e

Eed

Figure 2. The pressure P (z: ¢) for directed paths in Z7, forn = 128,z = 3/2and ¢ = 2 lan2].,
plotted as a function of a. The magnitude of the pressure is large close to the origin and decays
with increasing a towards the free endpoint of the path. The curve is the asymptotic expression for
PT(z: ¢) as in equation (44). The dotted curve is the exact computed pressure, as determined from

n ¥
the partition functions in equations (17) and (18).

Figure 3. The pressure PP (z; ¢) for Dyck paths for n = 128, z = 3/2 and ¢ = 2 |an/2], plotted
as a function of a. The magnitude of the pressure is large close to the endpoints of the path.
but is smaller for values of a towards the middle region of the path. The curve is the asymptotic
expression for PP (z; g) as in equation (45). The dotted curve is the exact computed pressure, as
determined from the partition functions in equation (18).

Asymptotic expressions for the pressure can be determined by using Stirling’s
approximation in equations (46). Substitution and simplification gives

2 20l —a—+1—a)

PT(2;2 |an/2)) =log (1 - NoiTT e d = +oE ], (47)
P,',D (2, 2|_a J!/ZJ) = IOg (l — m +0 (11_3/2)) (48)

for the pressure in these models. Expanding the pressures asymptotically in n gives the results
for z = 2 in equations (22) and (23).
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0 0.5 a 1
04 .
e
-0.25
B ()
-0.75
1

Figure 4. The pressure P! (z; ¢) for directed paths in Z% for n = 128,z = 2 and ¢ = 2|an/2],
plotted as a function of a. The pressure is large close to the origin and decays with increasing @
towards the free endpoint of the path. The curve and dotted points are determined from the exact
expressions for the pressure, which is obtained from equations (17) and (18) on the one hand, and
equation (46) on the other hand.

24.Case3:z2>12

Asymptotic expressions in this regime are obtained by exploring the saddle point in the
summands of D,(z) and T,(z). This saddle point is located at §n in the asymptotic regime
(where § is given by (z — 2)/2z in equation (36)).

The width of the saddle is proportional to /n. Hence, use the Stirling approximation in
the summands, putm = (32) n+a+/nand n = 1/€*, expand in € to O(1), and simplify. This
gives the saddle point approximations

2+

eﬁ z - e MJZET’I_]
Ty(z) ~ Jﬁ( m) f R (49)

and

2
£+l

e/n (22 z e i - ‘
D’l(Z)_JQ_n(Z—I)( z—l) /;me 21 do. (50)

Integrating « over (—oo, co) gives the saddle point approximations

z n 2_2 7 n
Ty(2) =~ (m> , and D,(z) ~ ;(ﬁ) : (51

These results are not unexpected, since substitution and simplification into equations (25) and
(26) give the results in lemmas 1 and 2.

This also shows that the expansion to O(1) in € does not produce expressions which give
corrections for finite n effects.

Finite n corrections to the pressures are obtained by improving the saddle point
approximations above. Expanding to O(¢) instead gives the approximations

r2+l
e/n z & 22
T,(z) ~ e 3N AT gy 52
,(@) Tﬂ( _Z_l) [m (52)

where
(222" — (40? — 3)2* + (4a* +9)z* — 18z + 12) az

A= 6(z— 1)2(z—2)

10
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; 0.5 ° 1
0 l 1
-0.25 -]
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ol |
|
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Figure 5. The pressure F‘”T(z; ¢) for directed paths in Zi for n = 256,z = 5/2and g = 2 lan/2},
plotied as a function of a. The pressure is large close to the origin and decays with increasing @
towards the frec endpoint of the path. The curve is determined using the asymptotic expressions
in equations (54) and (55). The dotted curve is the exact pressure (determined from equations (17)

and (18)).

and
241
esn [z—2 z e g
Da) = ( ) ( ) f om0 4o (53)
g A/ 2}1’ g ] AfZ = 1 —00
where
((x223 — (202 +3) 4+ 92— 6) oz
Ap = ;

6(z — 1)?

Expanding e™7¢ = 1 —Are + 1ATE + 0(e) and e™40¢ = 1 — Ape + SALe* + 0(e?) in the
above and integrating to  should give improved asymptotic expressions for 7,(z) and D, (z)
if z is not too large. Simplification gives

NZ2—|—4(3n—1)z—4(3n—1) z "
Tuia e =) ( 2_1) : (54)
and
2 +4G3n—2)2 —30Q2n— D2 +162z— DBn - 1) ( NI
Dii(z) = ; 55
@) 12n(z —1)2(z—2) Mz — 1) o)

Substitution of the above in equations (20) and (25) and taking 2 — 60 again gives — log(z—1),
the expected limiting pressure.

For finite values of n these results show a correction. In figure 5 a plot of P (z,2 |an/2))
against a is shown for n = 256 and z = 5/2. Similarly, in figure 6 a plot of the Dyck path case
is shown by plotting P (z, 2 |an/2]) as a function of a for n = 256 and forz = 5/2.

3. The forces exerted by adsorbing staircase polygons

A staircase polygon adsorbing in the upper half plane is illustrated in figure 7(a). If the
left-most and right-most vertex in the staircase polygon is deleted, then it becomes a pair of
directed paths in the upper half plane, one path below the other, and avoiding each other.

The bottom path is assumedto start in the origin, and by geometry the top path starts in the
vertex with coordinates (0, 2). In this situation we say that the staircase polygon is attached

11
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.3 0.5 a 1
-0.251
PP(2:9){ & — >
0754 ’
N \

Figure 6. The pressure PP (z; ¢) for Dyck paths in Z2 for n = 256, z = 5/2 and ¢ = 2 |an/2],
plotted as a function of a. The pressure is large close to the endpoints of the path, and smaller
towards the centre. The curve is the asymptotic approximation of the pressure, obtained by using
equation (55). The dotted curve is the exact pressure (determined from equation (17) and (18)).

(a) (6)

Figure 7. A model of staircase polygons. (a) A staircase polygon with its left-most and right-most
endpoints grafted to the adsorbing line. If the first two and last two edges are deleted, then a pair
of osculating directed paths are obtained. These paths avoid one another, and the bottom path
interacts with the adsorbing line via the activity z. (b) A staircase polygon can be cut in a vertical
line through one of the visits of the bottom path to the adsorbing line into a left and a right pair of
paths. If the first two and last two edges of the polygon is removed, then each pair of paths consists
of a Dyck path below a directed path.

to the X -axis. Observe that if the final vertex in the bottom path has coordinates (X,Y ), then
the final vertex in the top path necessarily has coordinates (X, Y + 2).

The bottom path may visit the X -axis, and these visits are weighted by z. By convention,
the visit at the origin is not weighted.

In this model we assume that the bottom path always ends in the X-axis in a point with
coordinates (21, 0)—these are grafted staircase polygons.

Since we have reduced the model to two directed paths, we relax the conditions above
and assume that the top path ends in a point with coordinates (2n, 2j + 2). In this case the
partition function of the model is known [2]. This generalization will be useful, since it will
enable use to compute the partition function of staircase polygons passing through a point x
in the adsorbing line (or hard wall).

Hence, consider two directed paths in the square lattice, avoiding one another, and with
steps (1,1) and (1, —1). Suppose the first path is a Dyck path starting at the origin and

12
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125 + 2
|
|
|

g
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Figure 8. A Dyck path below a direct path. By deleting the first two edges of this pair of paths,
two directed paths which avoids one another are obtained. The bottom path is constrained to end
in the adsorbing line; it is a Dyck path, and it adsorbs via the activity z in the adsorbing line. The
top path is a directed path, and its endpoint has height 2 + 2 above the adsorbing line.

terminating in the vertex with coordinates (2n, 0). Suppose furthermore that visits of the first
path to the X -axis are weighted by z.

Let the second path start in the vertex with coordinates (0, 2) and terminate in the vertex
with coordinates (21, 2 + 2), as illustrated in figure 8.

Then the partition function of the pair of paths is

n J
Culzs jy =Y ) Klmy,ma, j,)

my=0mr=0

" 2n -+ 3 ( 211 + 3 ) (2 . l)m|+mg (56)
n4my+2) \n+m+j+3

where

Qmy + 1D@my +2j+3)(m +ma+ j+2)(my —ma+ j+ 1)
(2n+ @20 +2)(2n + 3)? ’

K(my, ma, j,n) =

One may check that Co(z; 0) = 1,Ci(z; 0) =z, Ci(z; 1) = zand C2(z;0) = z + 222, For a
derivation of this result, see for example [2, 9, 6] but note the misprint in those expressions
when compared to the above. Observe that the length of each path is 21 so that n is the
half-length of each path. Similarly, the distance between the endpoints is 2 + 2, so that j + ]
is the half-distance between the endpoints.

The pressure on a vertex with coordinates (g, 0) in the X-axis can be computed by
determining the partition function of pairs of paths which avoids this vertex. This, in turn, can
be done if one first determines the partition function of pairs of paths which passes through
the vertex with coordinates (g, 0). This situation is illustrated in figure 7(b), where the bottom
path is constrained to pass through the marked visit. By cutting the polygon into two parts
in the vertical line which passes through the visit, the pair of paths are divided into two sets
of two paths each (one pair stepping from the left, and the other from the right), and each
pair with endpoints a distance 2j + 2 apart as illustrated in figure 8. (Reflect the paths on the
right-hand side of the cut to get it in the same orientation.)

13
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Figure 9. Exact pressures for adsorbing staircase polygons with z = 2, ¢ = 2 lan/2] and for
n e (16,32, 64, 128, 256). The pressure is zero in the limit that n — co. These points were
computed by using equation (64), which is the exact expression for .P‘Y (2 9).

In other words, the partition function of the model in figure 7(b) is given by

n
Z:(5:q) = ) _Colz; ) Cagl2: ). (57)
j=0
The partition function of staircase polygons avoiding the visit (g, 0) is given by
Zy(z; ) =Cu(z:0) — Z;(z: q). (58)
These give an expression for the net pressure on the vertex with coordinates (g, 0):
Z,(z q)
PS(z; q) = log(Ca(z; 0)) — log(Z2(z; q)) = log | 1 — 2=—— .. 59
w (2: q) = 10g(Cp(z; 0)) — log(Z;(z; ) = log .z 0) (59)

In other words, to determine the force, one must compute both C,(z; 0) and Z;; (z; ).

In principle, P,f (z;¢) can be determined exactly from the results above, but these
expressions are complicated and not very informative. Hence, we shall approximate them
to both estimate the pressure at finite values of n, and in the case that n — 00. As in the case
of directed walks, there will be different results for z > 2 (the adsorbed phase) and z < 2.

3idz=2
In the case that z = 2 and j = 0, equation (56) simplifies to
22n+1) |
n 2 i e 6
Ca(250) [ s ]c,, (60)
where C,, = F-:T? 2}:’) is Catalan’s number.
Summing j = 0 to n instead in equation (56) gives
(n+ )16”
C 61
Z w(z; J) = fr(}!—}-Z) (61)
More generally, for fixed j, C,(2; j) simplifies to
) 220+ D(j + 1’C, ]( 2n )
Cal2; )= s 62
5 [(n+j+l)(ﬂ+j+2) net g o
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These resulis can be used 1o obtain exact expressions for the force £ (21 ¢) in equation (5
2o ) n equation (57) eractdy ©

In particulas, one may evaiuale

it
fael G -1 P e A it TR 3w l a i ..i.. - i
o 24n(3g -+ 2) - N ISR A B n’? I{J o
ALV e ( i ')') ( ) ) {63)
\/.'FZ" Plg -+ 200+ 3000 —g+2)
Dividing by 0 (2 Oy and ¢ pmm P f( ) in eguation (39} gives

G

{5
{0 G2y -3 1 g - %} I (\
o i 1"‘((5 A I N 5
nf2) wheve O < a = 1 and take the limit g > oo, then a syibolic
carn (5] shows that Hm, o, 70 (2 2 lan/21) = 0. This shows that thic

e 18 zero i e limit as g oo and @ = 2

-

If one put ¢ =
COIPHALoNS Dre

3.2 Asympionics
By puiting a7y -+ e = L and summing over i, equation (36) can be cast in the form

\->—\ (k4 2) / o \ ( prE ) '\ P

(’Fi = BT
ok o (- 1y \n/

o ((J i ))(n ?;{ ) -2k - 1Y
AN 2 1P+ D
-2 \ f D2 ; &
® 5/ \! 5 )L . (65)

Lk ) Lo ﬂ,

This form presents a smu!:’ sumamand over k which one may consider for approximation.
[solate the summands of Cylz: /) above and cast them in terms of Gamma functions. This

aives

. 8(j+k+ N1 {n-+ 1) (6~ D6 c

Cr= w0t D DU Gk J b+ @y (= = k) 00

o 2 AED Q) 2k - 1317 (f-'ifz b2 (- 1
T I ok T G+ DT G k37 G kb 1
wheve £ 18 the summand of the first summation in u;uzmon (G3) and Cy s the summand of
the second summation.

Numerical evaluations of € and & for qiven w indicate that the summands are Jarge
for small & < j (and j is also smadl) for & = 2, & noth & and j small for 5 = 2 and ar
Lo jforz > 2 {and both & and [ are diszv} iy addition, both sums in the above make a
substantial ummbuu(m of opposite signs, and so both must be examined (o determine suitable
asymplolics,

Proceed by determinting the dominant terms in the summa rds of equation (65). The
binomial coefficients will be approximated by using the Stirling approximation for f factorials
(%e“ cquation (33)). Take logarithms of the first Siii'ﬂi‘ﬂ?md. subsiituting 7 = 1/¢, /= §/¢ and
k = /e and expand the resuliing expression in ¢, The leading fenn is

bt |
log ( AUtk 1)“) : (6%
TG D!
Taking the derivative and solving for o gives

(67

:f e}
Ly w2 THAX E_j_— o 0} (69

SHICE (o cannot be negative,
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A similar treatment of the summand in the second suni in equation {65) gives the leading
term in an expansion in ¢

60— 8 (et
l%( Greia e ¢ ) (70)

Taking the derivative and solving for o gives

.2 } )
) (7%)

Gy == MK {

since oy, cannot be negative.

3.2, 2 < 2. Procead by approximating the summands O and C; above. Take logarithms of
) and Cy, substituie the Surling approximation for faciorials (see equation (G3)) and simplify
the resulis. Since the summands are dominated by k < j, and j small, substitute j = 4 /¢ and

that io leading order Cy and Cy cancel,

This shows that higher order terms must be determined in this case. Expanding to O(¢ 2y,
summing over k and combining the contributions of Cy and C» and then extracting the leading
order terms give

(72)

2 o - N
(g -2y

— AF 4 1202 = 2) + j(B— 2} 4+ 6 SLPST
S G (D@7 -2) 4 jE— 2 +6)c "
k

Ome may extract the asymptotic behaviouy for /= 0 and j = 0(/n). The above can be
simplified taking onty the fastest growing terms Iz each factor. This shows that

242 16" —
N b A A
Culzs )= ) (G HC) = g ol Frgn (73)
i : if = O(J/).

The partition function in equation (57) can be approximated from these last expressions, and
similarly, one may approximate C,{z; 0) n equation (56). This finally gives an approximation
for Pf(zf; q) in equation (59).

In particular, one obtaing that

7 .,.'3 e a1 8y P o P la) 1 gy

- > (8
Cy(z; DCyglz 3 . - 1. 74
%gg‘n¢m.n ﬁ o g R e Yo S L (74)

‘The integral can be readily done, and after division by the asymptotic expression for £ (z; 0)
one is left with the following approximation for the force:

‘ - 52772
P2z q) o2 log (1 = : - )7> : (75}

Replacing ¢ by 2 [an/2} and simpiifying then gives

5z
e . (76)
232 na (5 — Y (2 )2
Hence, fora € (0, 1) P¥(z; 2 lan/2]} — Gas n — oo. By expanding the logarithm, the case
that z < 2 in equation (24) is obtained.
in figure 10 the pressure P,'f (z;2|an/2]) is plotied for e € (0, 13, 2 = 3/2 and n = 250
comparing the approximate expression in equation (76) against the exact calculated pressure.

PS 2 lan/2)) = log| 1 —

16
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Figure 10. The pressure P;f(:;q) for staircase polygons in Zi for n = 256,z = % and
q = 2|an/2], plotted as a function of a. The pressure is large close to the endpoints of the
polygons. The curve is the approximate pressure (equation (76)) while the dotted curve are the
exact values of the pressure.

0 0.5 a 1

Figure 11. The pressure P,f (z; ¢) for staircase polygonsin Zi forn = 256,z =2andg = 2 lan/2],
plotted as a function of a. The pressure is large close to the endpoints of the polygons. The curve
was determined from equation (64) and the points along the dotted curve are the exact values
computed from the partition function in equation (65).

322 z=72. Thecasez = 2 has been solved explicitly, as seen in equations (63) and (64).
The expression for P;f (2; ¢) in equation (64) is in terms of Gamma functions, and these can be
approximated when g = 2 [an/2] for large n using Stirling’s approximation. This shows that

3
5(2; 2 =log( 1 - ——— e i
P(2;2an/2)) Og( W +0(n )) amn

By expanding the logarithm, the case that z = 2 in equation (24) is obtained. In figure 11 a
plot of the approximation and exactly calculated values of the pressure is presented.

323 2> 2. The summands C; and C» in equations (66) and (67) provide the starting
point. Numerical experimentation shows that C, is dominated by terms with k = O(n) and
j = O (y/n) while j + k = O(n) with a spread of the peak proportional to /n. This is in
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Figure 12. The pressure P (z; ¢) for staircase polygons in Z'i forn € {32,64,128,256),z =3
and ¢ = 2 |an/2], plotted as a function of a. The pressure is large close to the endpoints of the
polygons. The solid curve is the exact pressure at n = 256 (determined from equation (65)) while
the set of dotted curves are the asymptotic results (equation (81)) for # doubling from 32 to 256.
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Figure 13. The pressure P3(z; g) for staircase polygons in 2.'_‘:_ for n € {32, 64, 128,256}, z = 4
and ¢ = 2 |an/2], plotted as a function of a. The pressure is large close to the endpoints of the
polygons. The solid curve is the exact pressure at n = 256 (determined from equation (65)) while
the set of dotted curves are the asymptotic results (equation (81)) for n doubling from 32 to 256.

particular confirmed by the result in equation (69) which indicates that the dominant values of
j and k in equation (66) are at k = ((z — 2)/z)n — jand j = O(/n).

Hence, put n = 1/€%, k = (z —2)/(z€%) — 8/€ + a/€ and j = §/¢ in equation (66). Take
logarithms and expand in € to O(1). Exponentiating and integrating the resulting expression
gives the asymptotic expression

G- (9 )
N e ( ~ s +o(1))

where the substitution § = j/./n was made. Expanding to higher order in € before integrating
gives subleading corrections, and does not alter this leading term correction.

A similar approach should give an approximation to C;. However, some care is needed
in this case. Determining only leading term behaviour leads to incorrect results, and it is
necessary to include higher order corrections. The arguments leading to equation (71) show

Ci(n, j) =

(78)
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Figure 14. The pressure P3(z; ¢) for staircase polygons in 773 forn € {32,64,128,256),z =5
and g = 2 |an/2], plotted as a function of a. The pressure is large close to the endpoints of the
polygons. The solid curve is the exact pressure at n = 256 (determined from equation (65)) while
the set of dotted curves are the asymptotic results (equation (81)) for i doubling from 32 to 256.

that the appropriate choices for jand kisn = 1/e*and k = (z— 2)/(ze*)+afeand j = é/e.
Substitute this into equation (67), and as before, take the logarithm, expand to O(e) (rather
than just O(1)). Exponentiate the result and expand in € to O(€?). Integrating & € (—00, 00)
for small € then gives the asymptotic expression

A T =D \z-1 n
20z —2)
x(z(2j+1)~4(j+l)— (—nima(l/u)) (79)

for the summand Cs.

The approximation for C; peaks sharply at j = 0 while that for C; dominates the
contribution from C; when j > 0 and peaks at a value of j > 0. At j = 0 both terms
make a contribution. Hence, approximate the pressure at the point (g, 0) by

Tisg (1 - /w [(Cl(q',f) +Calg, ) (Ci1(n—q. ) +Caln — 4, j))} dj) ' (80)

Ci(n, 0) +Ca(n,0)

co

Put ¢ = 2 [an/2) and expand the integrand above and integrate term by term. Expand the
results asymptotically in n and keep terms to O(n?). This finally gives the result

34zzﬁ29z+64( 9z )

1
57 . g
Fu(zi2\an/2]) = log (z— 1 8n(z—1(E—-2) 8n(z — 2)?

i BzE
- : (81)
2/mmda3 (1 —a)}(z —2)(z — 1) log(z - i))

Taking n — 00 shows that P;f (z;2lan/2]) — —log(z — 1), consistent with the result for
adsorbing Dyck paths in the z > 2 regime (see lemma 2). By factoring (z — 1) from the
argument of the logarithm in equation (81) and expanding the logarithm asymptotically, the
case z > 2 in equation (24) is obtained.
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4. Conclusions

In this paper we have investigated the pressure exerted by a directed path ina half-space on the
X -axes. This is a directed model of the forces exerted by a two dimensional polymer grafted to
a hard wall. Qur fisst model is of a directed path, in which we considered two cases, namely an
adsorbing Dycek path model with both endpoints grafted fo the adsorbing line, and a directed
path with only one endpoint grafted to the adsorbing line.

The pressure curve for the Dyck path is both a function of the length of the path (1),
and the adsorption activity {z). Asympiotic expressions were obtained for the pressure at
(g, 0) = (2 Lan/2], 0) for & (0, 1). The pressure curve is symmetric about @ = 1/2 and is
asymptotically given by equation (45) for z < 2, equation (48) for z = 2 and equation (55} for
z > 2. The presswre is zero as n —> oo and £ £ 2. but there is a net constant limiting pressure
of magnitude log(z — 1) for z > 2. In this regime the adsorbed paths are close o the hard wall,
and the result is a non-vanishing pressure.

Similar observations can be made for the pressure due (o an adsorbing direcied path. In
ihis model, asympiotic expressions for the pressure were determined and is given in equation
(45) for z < 2, and by substituting equation (47) into equation (26} for z = 2, and equation
(54) for z > 2. The pressure profiles for finite length paths are not symmetric in this model,
but the limiting pressure is equal o the Hmiting pressure of Dyck paths.

We have also determined the pressure due to adsorbing staircase polygons which were
grafied to the adsorbing line at both ends. Determining the limiting pressure involved more
careful analysis, but the results are given by expressions which are similar to the Dyck path
results. The pressures are given asymptotically by equation (76) for z < 2, equation {77) for
z = 2 and equation (81) for z = 2.

Acknowledgments

EIVR acknowledges support in the form of a NSERC Discovery Grant from the Government
of Canada.

References

[1] Bijsterboseh M D, de Baan ¥ O, de Graal A W, Mellema M, Leermakers F A M, Stuwt Cohen M A and van
Weli A A 1995 Tethered adsorbing chaing: newtron refiectivity and surface pressure of spread diblock
copolymer monolayers Langmuir 11 4467-73

[2] Brak R, Bssam ] W and Owezarck A L 1998 New resulis for directed vesicles and chains ncar an aitractive wall
J. Star. Phys. 93 155-92

(3] Carignane M A and Szleifer 1 1995 On the stracture and pressure of tethered polymer layers in good solvent
Macromolecufes 28 3197204

(4] Currie EP K, Norde W and Cohen Swart M A 2003 Fethered polymer chains: surface chemistry and their
impact on colloidal and surlace propentics Adv. Colloid tnterface Sci. 380102 20565

(5] Waterioo Maple Inc. 2008 Maple 12

[6] lanse van Rensburg 123 2000 The Staiistical Mechanicy of Interacting Walks, Polygons, Animais and Vesicles
vol 18 (Oxford; Oxford University Press)

171 Jensen I, Dantas W G, Marques C M and Stilek I F 2013 Pressure exeried by 2 arafted polymer on the limiting
line of a semi-infinite square lattice J. Phys. A: Marh. Theor, 46 115004

[81 Stanley R P 1999 Enwmerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 62} vol 2
(Cambridge: Cambridge University Press)

[9] van Rensburg B 1999 Adsorbing stairease walks and staircase polygons Ann. Comb. 3 45113

[10] Whitlington $ G 1998 A directed-walk model ol copobymer adsorption /. Phys. A: Math, Gen. 31 8797804



