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Abstract

We study a Langevin equation describing the Brownian motion of an object
subjected 10 a viscous drag, an external constant force and a sofid friction
force of the Coulomb type. In a previcus work (Touchette ef al 2010 7. Phys.
Ar Math, Theor 43 445002), we have presented the exact solution of the
velocity propagator of this equation based on a spectral decomposition of
the corresponding Fokker-Planck equation. Here, we present an altiernative,
exact solution based on the Laplace transform of this equation, which has
the advantage of being expressed in closed form. From this solution, we
also obtain closed-form expressions for the Laplace transform of the velocity
autocorrelation function and for the power spectruny, L.e. the Fourier transform
of the autocorrelation function. The behavior of the power spectrum as a
function of the dry friction force and external forcing shows a clear crossover
between stick and slip regimes known to occur in the presence of solid friction.

PACS numbers: 05.40.Jc, 46.55.-d, 05,10.Gg, 02.30.Jr, 02.50.Cw

(Some figures may appear in colour onty in the online journal)

i. Infroduction

We continue in this paper our study of Brownian motion involving solid (dry or Coulomb)
friction in addition o viscous [riction; see [1-3]. As in these works, we consider the piecewise
linear Langevin equation

Do —pv - Ao (p) 4 F 4 VTED. (0

where y > 0 denotes the viscous coefficient, & > 0 the dry friction coelficient, F an
external constant forcing, £{1) a Gaussian white noise and I" the related diffusion constant.
The term —Ae (v), where o (v) denotes the sign of v with the convention ¢ (0} = {, represents
the dry friction force. Its physical interpretation follows by considering equation (1) in the
determinissic limit I = (1 for |[F] < A, the stationary slate of this equation is the ‘sticking’
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seate v = 0, whereas for IF] > A, the stationary state is a ‘sliding’ state with v 3 0. Thus, 10
induce motion (v 5% ) from rest (v = ), F has to be larger than A, the dry friction contact
force.!

The effect of dry friction on the properties of Brownian motion was studied by de Gennes
{41, who showed, for the special case y = F = 0, that the velocity—-velocity correlation
function (w(v(()) acquires a dependence on the noise power when A > 0. In [3], we
extended his study by obtaining eigenfunction expansions of the propagator p(v, 1vg, 0) for
the general case ¥ > 0 and F = 0. From these expansions, which involve a special function
known as the parabolic cytinder function, we were also able o compute (v ({1}, Our main
finding was that the stick and slip states of the deterministic system (I" = 0) translate into stick
and slip regimes in the noisy system (1" # 0}, which are characterized by a strong and weak
dependence, respectively, of the correlation time of the velocity—velocity correlation function
with the external force [,

Our goal in this paper is to show that our exact results of [3] can he expressed in a
maore convenient way by solving the Fokker-Planck equation associated with equation (1) in
Laplace space rather than in direct space. The resulting expressions for the propagator and
velocity-velocity correlation function are indeed somewhat more compact and more elegant
than the eigenfunction expansions presented carlier, Qur solution in Laplace space also enables
us 10 complete the study of equation (1) by deriving exact, closed-form expressions for the
power specirum of this equation, i.e. the Fourier transform of the velocity--velocity correlation
function. These expressions extend early articles by Caughey and Dienes [5] and by Atkinson
and Caughey {6, 7], recently brought to our attention, which considered the power spectium of
the Langevin equation with pure Coulomb friction, i.¢. the same case {y = F = 0y considered
by de Gennes.

2. Propagator

As in (3], we study the propagator P(x, f1x', 0) of equation (1), expressed in terms of the
non-dimensional variables /2y /Ty — x, yr — ¢ The Fokker-Planck equation governing
the evolution of this propagator has the form

a2

axt’
where 8 = AJ2/(pT) measures the magnitude of the dry friction relative to the viscous
damping while j = F//27(7T) stands for the external constant force, measured also against
the viscous damping.

The time-independent or stationary solution of the Fokker-Planck equation has the
standard form

(@)

ef—‘b(‘\')
{x) = 3
.Dj{ S 7 (3)
in terms of the potential
NEES
oy = BT gy e

Depending on the sign of the parameter 8, the potential refers to adry friction problem (8 > 0)
or a Kramer-type tnneling problem (§ < 0).}

b Mathematically speaking, equation (1) is incompleter in order o ensure (he exisience of well-defined globat
solutions of this equation, we must ask in addition that all external forees vanish in the stick state v = 0 when
Fisa.

T Altough we do not study the case § < 0, all vesults derived here are also valid for this case.
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For piecewise-linear Fokker-Planck equations, the propagator can be obtained exactly, as
was observed in [6, 71, by coasidering its Laplace transtorn:

P, sl 03 = f e P,y O dr, (5)
0
With this transform, equation (2) becomes a second-order ordinary differential equation
~ , ‘ .. d s , arp
sP s, 0) (v —a) = mim(_x + o (x) — [P s, 0y -+ el {4)]
dy X7

which can be solved in terms of parabolic cylinder functions, The detail of this solution is
given in appendix A. The final result obtaired for positive values of the initial condition, 1.e.
x" = O, has for expression

Pl sl 0) = g (s, 8, f}v(:l WD (4§~ [

o O (xS ) (7
forx = 0,

. Sy vase i ; S
P, s 0) = g (s, f) e T IAD W 18 = )
; ‘

xR D (8- f)
I"(s3

do L QWD s e )
V2r ' -
=Py (p § 4 ) (8)

for() < x < &', and

Blx, sy, 0) = g (3, 8, f)r/_(:i et

.J'S-nj")?/-‘l .D‘()" - § - Jl‘)

P's) wasepip / -
Sl QDD (e =8 )
x e WD (b8~ ) (%)

for x > x'. The coefficients g. and g. are defined in appendix A by equations (A. y and
(A.23), respectively. The propagator for negative values of lhc initial condition, i.e. & < 0,
is obtained from the equations above simply by replacing x, ', and J by —x, - X', and —f,
respectively.

The set of equations (7)-(9} is the main result of this paper. To gain some insight into the
form of this solution, consider the case without dry friction and external forcing, ie. & = 0
and f = 0, which corresponds o the Ornstein-Uhlenbeck process. Then g..(s, 0, ()) = } and

2. (5.0, 0) = 0, according to equations (A.21)-(A2 3y of appendix A, and we are led '

D) [eWPAD (e D (-5, k<X
S ST AD (—xe DL, X
which is the Laplace transform of the Omstein—Uhlenbeck propagator. Comparing this
particular form of P with the general solution above, we see that the products of parabolic

eylinder functions occurring in equations (73-(9) are essentially the Laplace transform of
the Ornstein—Uhlenbeck process, modified to include the dry friction and external forces.

Py, st 0y = (1o

3 The sieps leading o this result yield some interesting integral idemtities for parabolic cylinder functions, which. 1w
the best of our knowledge, cannol be found in the Titeratwre,
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Figure 1. Propagator P(x,t|x’,0) in real time obtained by numerically inverting the
Laplace transform P(x,s|¥,0). Parameters: § = 1, f = 0.5, ' = 3. The different colored
curves moving to the left are obtained for increasing times 7 = 0.25, 0.5, 0.75, 1 and 2. The dash
curve corresponds o the stationary density pr(x).

Following the method of images, the additional term with the coefficients g and g.. can then
be considered, at a superficial level, as convolution integrals in the time domain, with g and
g~ playing the role of the source terms.

From the relatively compact solution of the propagator in Laplace space, we are not
able to obtain the propagator itself in closed form, except for special cases, such as the
Ornstein-Uhlenbeck process (§ = f = 0) and the pure dry friction case corresponding to
y = F = 0. However, for all cases it is possible to obtain the propagator numerically by
inverting the Laplace transform. Figure 1 shows the result of this procedure using the so-called
Talbot method [8—10].4 This figure reproduces exactly our previous results for the propagator
based on the spectral decomposition of the Fokker—Planck solution (see figure 10 of [3]).
In general, we have found that the numerical computation of P(x, 7]x’, 0) from the inverse
Laplace transform of P(x, 5], 0) is stable and can be carried out to arbitrary level of accuracy
for a large range of physically-relevant parameter values. Our Laplace solution can therefore
be considered a useful complement to the spectral solution presented in [3].

3. Power spectrum

Using the closed-form solution for P(x, 5|, 0), we now derive an expression for the Laplace
transform of the auto-correlation function:

C(s) = f e {x(H)x(0)) dt. (1)
0
In terms of ﬁ(x, slx’, 0), we thus have .
é(s)zf dxf dxx X' P(x, s|¥', 0)pr(x'), (12)

where pf(x) is the stationary density of the Fokker—Planck equation, given by

i = b e—CH8=2 =2 if x>0 i
Pf x)—Z o= == oGH2 if  x <0 (13)

4 A Mathematica implementation of this method is available at http://library.wolfram.com/infocenter/
MathSource/5026/.
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with normalization

D8+ ; Doy (14)
Dot -+ 1) Dy(s =)~
This expression of py(x) is invariant with respect (o the inversions x — ~xand [ - —f, as

is the propagator. As a resulf, we can rewrite Cis) as

PG oo
é(.s') = / d.\"[ du(x x’ P(\ sl ())p;(\ YA e ) (15)
S0 .

where the symbol *f ~» — /7 indicates the contribution to the kesnel obtained by replacing f
by —f.

We proceed to evaluate the integrals in equation (15). The first one n x can be performed
using a known relation for the derivative of parabolic cylinder functions, which can be obtained
from the relation shown in equation (A.17) of appendix A. The result is

f dy’ [ dyxx’ Plx, sy, 0)p, (4 = [ dx’ ({'Z_)— Lt (‘:(”3;)])) P’y

2 (3 O G
+ 2 o ( ----- e 5 8 D20 )
8o (5.8, FID (8 1)+ Do (=8 f)) {16)

The second term on the right-hand side of this expression can be simplified using the definitions
(A21) and (A.23) as well as the identities (A.17) and {A.19):

. PG AN . )
B ez~ 13— EW'!”"(S’ 5. 1D 28+ 1)

g2 (5,8, I g2 @ = [ Doya (34 f))

282w Dot 5+
55+ DE) Dol — NIDoget B+ )+ DB+ HDgt (8 - 1)
By combining this result in equation (15), and by performing the integral over X', we then
obtain

1
Cis) = *( %

(rn

7 oo . },. S+ 8l = Slap
" 28 lm Doy (5 D a8 = P+ Doy (8~ D28+ 1)
s+ D2 DL+ AR G —= D= DB )

(18)
where {-); denotes (he expected value with respect to the stationary distribution py,
Surprisingly, all of the stationary expected values appearing above can be conveniently written
in terms of parabolic cylinder functions:

B Dois 4 338 — ) 4 Do(d — [iDa(8 + )

Yo Lo Teien (%
Do+ DA = )+ Dol — NI @+ 1)

)y = Dol -+ 1D o (8 — [y -+ Do — DA+ ) (20)
T DS A DS - Y+ Dol — HID (S + ) B

o = Dy(8 A+ fHD-3 (8 = f) = o6 — [ID.2 G + [) on
LT D0E + DS = Dol ~ DS+ ) B
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The expression shown in equation (18) can be re-written in other ways to make some of
its properties more explicit. Using the identity (A.17), itis easy to check, in particular, that the
stationary cxpeclafion values abey the relation

() A4 Sl — flady = 1. (22)

s0 that

o L 2D B+ D
Gl =7 ((" e T T T b

(B [Y Dy (S — Iyl _f}‘)
(5= A D6 D 8+ )

i ( WD G D2 = ) Dt (5~ DB .f')) o
SEIN 2D G PG = DG DGy )T

"This form of the Laplace transform of the correlation function, or resolvent, is quite useful
to uncover its analytical struciure. Because of equation (14} and the identity (A.17) (for v = 0),
the coefficient of 1/(s - 1) vanishes als = —1 for § 3 0. Thus, the apparent singularity at
¢ = 1 is removable. For a similar reason, the coefficient of § /s at s == 0, which corresponds
to the residue at s = (. is given by {x )” Thus, the long-time limit of the correlation function
is given, as expeeted. by the square of fh(. mean velocity. All the other poles of the resolvent
C(s) are determined by the deneminaior of the expression above, i.e. by the zeros of

Doy 4 D 55 )+ Doy = D (4 ), (24)

which is precisely (he characteristic equation derived from the I ‘okker-Planck operator {31,
Another form of C(s) can be obtained by rearranging equation (23) using the
aforementioned identities to obtain

&s) = () -wl+ l " 28/ 487 (f),.(s 0 1).._v(8 - f) )‘
T s s+ 1 s+ sle+ 12 {34+ N TGN

(25)

This expression is better suited for numerical caleulations than either equation (21)or (23). The
limit 8 = f = 0 is also cleaver at the level of this expression. Noting from equation (22) that
{x* ) = 1 in this limit, we recover C'{s) = 1/ (5413, which characterizes the simple exponential
decay of the correlation function of the Ornstein-Uhlenbeck process. Finaily, we obtain from
Lqud{l(m {25) a simple analytic expression for the power spectrum plw) = ReC(s = iw), 1.e.
for the Fourier gransform of the auto-correlation functicn, namely,

() I 487
Hy = — .
/ | e ? (1 + oty
452 7z | 120+ e (6 oy
- Lo : ( OLD, Dl '“..) (26)
1) (1 +0P \ D S D (3 ),

This resull is used in the next scction t discuss the stick-slip transition occurring at f = 8.

4. Stick-slip transition

We have discussed in detail the behavior of the correlation funciion {x{r)x(0}} as a function of §
and £ in 3] and, more precisely, how the stick-slip transition that appears in the deterministic
(' = 0) equation when f = § is modified in the presence of noise (' > 0) o a smooth
crossover between a stick and a slip regimes, characterized by different exponengial decay of
(D)), Figure 2 shows how this crossover shows up at the level of the power spectrum,
We see that p(e») is rather flat in the stick regime (f < &), and that it starts to develop a sharp

4]
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Figure 2. 3D plot of the power spectrum p(e) normalized by the variance Ax? obtained for § = 12
as a function of frequency e and the exiernal forcing f. The stick—slip transition line f = 4§ is
shown as the red line.

50 70 100 150200

10 1520 30

Figure 3. Solid lines: log-linear plot of the power spectrum p(e) as function of the frequency
w for § = 12 and different values of the external forcing f (shown in the plot). Colored dashed
lines: approximation of the power spectrum given by equation (29). Top dashed line in black:
power spectrum of the Ornstein-Uhlenbeck process without dry friction. Inset: log-log plot of
pl(e) showing the w2 tail behavior.

zero-frequency peak at the stick—slip transition f = 8. This peak is the translation in frequency
of the increase of the correlation time associated with {x(#)x(0)) as we go from the slip to the
stick regimes [3].

To gain further insight into the behavior of p(w), we plot this function on a log—linear
scale in figure 3 together with an asymptotic expansion of this function obtained in the limit
of large dry friction & and large forcing f. Mathematically, this expansion is equivalent to the
small noise limit of the Langevin equation, and is obtained by using the representation (23)
for C(s) to express the power spectrum as

1 1
i) = alm(l + iw
y ( 28 Fl+iw(6 + f) - Fl+i(u(8 == f) _ 1) (27)
RG+ D+ RGN B+ (1 +i0)Emd+ D+ FrwG - ) )

7
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Figure 4. Left: simulated paths of Brownian motion with dry friction (for the rescaled variable .x)
for § = 12 and f = 10 (blue, stick regime) and f = 14 (purple, slip regime). The numerical
integration was done with the Euler-Maruyama method with Ar = 0.01. The steady-state velocity
for the slip regime is x* = f —§ = 2. Right: corresponding power spectra (colored lines) compared
with the theory (black line). The numerical spectra were obtained by averaging 50 times series
over the time interval [0, 100].

where

D_;—1(8)

D0 &)

Fi(3) =

With some results of asymptotic analysis, presented in appendix B, we can then obtain the
following approximation, which is valid for large values of the parameters & and f:

pl@)
N I e L e
2y —Im 1+ iw)? 44 4‘, P 0 f<é
~{o (1 +iw) /“J;”'+1+ico+\/“’;““+1+iw+a +iw
1/(1 4+ ?) Dgd < f
(29)

(see [11] for related results derived via continued fraction expansions). Figure 3 shows that
this asymptotic formula is relatively accurate, even for rather small parameter values. Larger
deviations are visible close to the transition point § = f. The inset of figure 3 also shows that
the tail of p(w) decays at large frequencies as w2, which is the sign that temporal correlations
decay exponentially, as in the Ornstein—Uhlenbeck process.

To give an idea of how these results might compare in practice with experimental results,
we show in figure 4 simulated paths of the Brownian motion equation with dry friction for the
rescaled variable x(t) together with their corresponding power spectrum. Two paths are shown
on the left-hand side of figure 4: one in the stick regime (§ = 12 and f = 10) and one in the
slip regime (8 = 12 and f = 14). The power spectrum characterizing each of these regimes,
shown on the right-hand side of figure 4, is computed numerically by averaging the spectra
of many random paths (here 50) over a relatively long time (here 7 = 100). The numerical
results compare well with the theory, as can be seen. Instead of averaging different spectra,
one can also use, as is well known, a frequency window larger than the frequency spacing
Aw = 27 /T to obtain a relatively smooth spectrum.

8
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Figure 5. Left: covariance Ax? given by equations (19) and (21) as a function of the dry friction
and driving forces. Right: diffusion constant D = p(w — 0) as a function of § for various values
of f. The solid line is the exact expression shown in equation (27), whereas the dashed line is the
diffusion constant obtained from the approximation shown in equation (29).

To close this section, let us now briefly discuss the behavior of two quantities derived
from the power spectrum. The first is the stationary variance Ax*, which is proportional to the
total spectral weight:

9 ) l i
Ax-= {xz)f - (x)}r — ;[ plew)do. (30)

As shown in figure 5, there is a sharp increase of Ax* at the stick—slip transition f = &,
separating a low variance (stick) regime from a high variance (slip) regime. The second
quantity is the (non-dimensional) diffusion constant:

D =f (x()x(0)) dt = lirr}]p(w). (31)
0 e

This quantity is of particular interest, since it can be measured in experiments. Its expression
is obtained from equations (27) or (29) and is plotted in figure 5. We see that in the slip
regime, the diffusion constant does not depend much on the external force, as is the case for
the Ornstein—Uhlenbeck process. This is consistent with the observation that the slip regime
is essentially a regime of normal Brownian motion in which dry friction force plays little
role; see [3] for more details. In the stick regime, on the other hand, the diffusion constant
is relatively small, and sharply increases when the stick-slip transition is approached. This
behavior is also seen if we derive D from the asymptotic expression (29). This is illustrated
with the dashed lines in figure 5.

5. Conclusion

We have presented the exact solution of the propagator of a Langevin equation modeling
Brownian motion in the presence of solid friction, viscous damping, and an external constant
force. The main feature of this equation is that it shows a stick—slip transition often encountered
in real systems involving solid friction and external forcing. The solution of this equation
follows by considering the Laplace transform of its associated Fokker—Planck equation,
and serves as a complement to a previous exact solution, derived in [3] using the spectral
decomposition of the Fokker-Planck operator. It also extends a similar Laplace solution,
previously derived in [5-7] for the special case where only solid friction is present.

A clear advantage of the Laplace solution over the spectral solution is that the former
is given as an explicit and compact formula, which can be used to obtain the propagator by

9
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inverse Laplace transform. The Laplace solution is also useful as it enabies us 1o obtain the
power spectrum of the system, in addition o the diffusion constant of the Brownian motion
alfected by solid friction. Both of these characteristics are easily accessible experimentally,
and so might be useful o compare the model with experiments involving noise and solid
friction, such as those recently reported for example in [12, 13].
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Appendix A. Laplace transform of the propagator

We provide here some details of the derivation of the expressions (7)) for the Laplace
transform Plx, sy, 0) of the propagator Plx, iy, 0).

The derivation starts with the Fokker—Planck equation (5), which for positive values lor
the initial condition 2" > O reads

~ , d s .o dP
PO s D) = (=~ 8 — 1Pl sl O A =, v ) (A1)
dy s
. , d s B ,
sPEe, SV, 0) = o (x4 8 — PIPOL s, D) 4 —, O < x <X (A
dx dx”
. . d o , &P
sPO s, ) = == (x4 8 — P sl 0+ =y, X = (A
dx dx?
These equations must be solved with the following matching conditions at x = 0:
Pl =07, s]x’, () = Plx = 0%, 5", 0) (A4)
o L dP ok o dp .
(—8 — FIP{x =07, s, 0) 4 — = {5 — 1P = 07, sl 0 4+ o (A.S5)
dx dx )
yel) o
Plx=x —0, s, 0) = Pla = &' + 0, s]x, 0) (A6)
i ap
= - , (AT)
dx d:
eSS gy ()

which results from the continuity of the probability current, as well as the usual decaying
boundary conditions at x = oo,
The equations (A.1)~(A.3) have the form of the Hermite differential equation
W () A (g 4 va(z) = 0. (A8)

The solution can be written in terms of parabolic cylinder funceions either as "D () or

e/, (7). In view of the asymptotic property of the parabolic cylinder function,
DylD) ~ 2%e 4 1 0o, (A9)

5 These two solutions are linearly independent, i.¢e. they constitute a fundamental system il the index v is not an
inieger. For a complete account of parabolic cylinder funcuions, the reader may consult [H4].

10
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the solution of equations (A.1) and (A.3) having vanishing currents at infinity can be written
as

Plx, s|X,0) = C_(x, 5) e " 3=D'BD_(—x + 5+ f) (A.10)
forx < 0 and
P(x, s, 0) = Cp (¥, 5) e T AD_(x + 6 — f) (A.11)

for x > x’. On the other hand, the solution of equation (A.2) is given by a linear combination
of the two fundamental solutions:

B(x, s|¥, 0) = B(x, 5) e &H=D/4D_ (x4 8 — f)
+B_(s, ) ®H-N'rp_(—x— 8§41, 0<x<x. (A.12)

The amplitudes B, and Cy are determined by the matching conditions (A.4)—(A.7), which
result in a set of inhomogeneous linear equations:

C_(,5) e E M D_ (54 f) =B (W, 5)e O D_ (5 - f)
+B_(5,X)e" O D_ (=5 + f) (A.13)

—C (K, 5)e D (6 + f) =By, 5)e D (56— f)
—B_(x,5)e - NVADp_ . ((=5+ 1) (A.14)

Co(,5)D_(X +8 = F) =B, )D_5(X +8— f)
+B_(,$)D_(=x' =8 + f) (A.15)

W=D = C (), $)D_p1 (X + 58— f)
_B+(st S)D_sq1 (-’fr +é& —f}
B, )D—y1 (=¥ — 8 + ). (A.16)

In writing these equations, we have used the following identities for the parabolic cylinder
functions:

ve D, (2) = e ¥ 2Dy (2) — Dyy1(2))
=267 D, (2) + (€7 Dy (2)) (A.17)
to evaluate and simplify the derivatives.

Equations (A.13)-(A.16) can be solved directly to find By and Cy. The difference of
equations (A.15) and (A.16) yields

T(s)Y s
B_(X,s) = —=e"H=Dlp_ (X +8-1), A.18
(', 8) 2 s’ +8—f) (A.18)
if we take into account the product identity
V2
Dy, (2)Dy~1(— D,(—z)D,- =rEee——, A.19
(@D-1(~2) + Du=0Dy1 @ = £ 7T (A.19)

which follows from the Wronskian of the fundamental system.® Then the difference of
equations (A.13) and (A.14) yields

C_(x',$) =g<(s5,8,)B_(¥,5), (A.20)

6 Equation (A.19) corrects a typo in equation (33a) of [14].
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where

eGP (DB Do (b))
2081} Do 8-1)

o (5,8 )= (A2
g<(5:0. 1) am @0 (Dol 1 (31 1) )
B0 U B

Summing equations {A.13) and (A.14), we also find

B 8) = g (5,8, OB, 8y (A.22)
with

Do (3 Do (-8 f)
, e oy Beatdd ) BIRCENS) ok
n‘)b (‘s! (S, ,JI} - I M{.. o, 71(5___’,*) . (A—-—%)
Do n VB G

Finally, summing equations (A 13} and {A.10), we find

. . H ) ISy . .

Colx,s) = B (X 5) Fe(“ AR EIAS ) W Gep ey SR (A24)

2

The substitution of all these expressions back into equations {A10)-(A.12) leads us 1o
equations (7)-(9)

Appendix B, Asymptotic expansion

The power spechum, defined in equation (20), 1s entirely determined by the ratio F(8}) of
parabolic cylinder functions defined in cquation (28). Using the linear recurrence relation
(A7), this rado is found o obey the refation
}

84 (5 -k D F(8)
iteration of which leads t¢ continued fraction expansions [11].

Asymptotic expressions for F(8) for Jarge values of § and s can be obtained from the
contour integral representation of parabolic cylinder functions,

FA8) = (3.1}

P R peos s
B R A

[
Di(2) = e

iﬁf? o—iow
which is valid forail z, v € €, and any integral contour safisfying fargt| < w/2and ¢ > 0.To
this end, we introduce a large parameter N and change the variable of integration to w =t/ JN.
This leads o

1Mdr, (3.2)

/'f"!'im CN(-wb‘u-\:-u?'/’;!---.\'l()gn) di

f,% i (B.3)

2 C.IV(-'M?M'{'N! f2-xlog u}(;” '

Fs (VN8) ==

Lach of the integrals above has the Laplace form
[ez\{f‘(;:)g(:,’) dz, (B.4)
S

which can be approximaled following the saddlepoint method as

] ei\f,-(;j‘g(:)d: — iiCN‘” ("'")53{3:) (BS)
[

where 7, is the saddlepoing of the integral given by f'(z) = 0, and the sign depends on the
orientation of the contour €, which is deformed to a sleepest-deseent contour passing through
the saddlepoint. This approximation is valid to leading order in N provided g does not vanish

al zy-

12
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In our case, we obtain the saddiepoints from

a l § .
0 = =8 At slogu ] = =8 - -, (B.6)
it .

u

which has two solutions:

=G VT A5, = (8- V8 ). (B.7)

On the one hand, it §7 -+ 45 = 0, then 1, > 0 > 1z and the steepest-descent contour passes
through u; onfy. In this case, much of the saddlepoint approximation cancels, leaving us with

1 2
JN W NS+ NS - NS
On the other hand, if 87 + ds < 0, then w; and 1z are complex conjugate o cach other, and
the steepest-descent contour passes through both saddlepoints. The crossover between these
cases is given by coalescing saddlepoints; a uniform asymptotic expansion or this case can
he obtained in terms of Airy Tunctions 1531

A second case of interest is given when the argument of F is kept constant, i.e.
]"' [ N( Siepet f2) i du

1 " |
U/ NEY = s o, (B.9)
N /" oo LN( STERT /“)d“
In this case, there is only one saddlepomt at g = &, which collides with a singularity of the
integrand when § approaches zero. For § = 0, we then find

|
FAVNS o B.10
HNE) fvm, T (510

which matches the previous asymplotic evajuation. For § < 0, i.e. for Kramer’s problem, the
integral is dominated by the singalarity at the origin, and its confribution gives

E(VN8) ~ WQ (B.11)

Frg (WNS) ~ (13.8)

fors # 0, -1, =2,.... Ifs = ~1, 2, .., we find instead F(VN8Y ~ 1JIJ/NS),
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