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Abstract. We discuss uniform sampling algorithms that are based on stochastic
growth methods, using sampling of extreme configurations of polymers in simple
lattice models as a motivation.

We shall show how a series of clever enhancements to a fifty-odd year old algorithm,
the Rosenbluth method, led to a cutting-edge algorithm capable of uniform sampling
of equilibrium statistical mechanical systems of polymers in situations where compet-
ing algorithms failed to perform well. Examples range from collapsed homo-polymers
near sticky surfaces to models of protein folding.
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1 Introduction

A large class of sampling algorithms are based on Markov Chain Monte Carlo meth-
ods. In these lectures we shall introduce an alternative method of sampling based on
stochastic growth methods. Stochastic growth means that one attempts to randomly
grow configurations of interest from scratch by successively increasing the system size
(usually up to a desired maximal size).

For simplicity, we shall restrict ourselves to the setting of lattice path models of
linear polymers, that is, models based on random walks configurations on a regular
lattice, such as the square or the simple cubic lattice. If we impose self-avoidance, i.e.
if we forbid those random walk configurations that repeatedly visit the same lattice
site, we obtain the model of Self-avoiding Walks (SAW), used to describe polymers
in a good solvent. Monte-Carlo Simulations of SAW have been proposed as early as
1951 [6]. Extensions of SAW have been used to study a variety of different phenomena,
such as polymer collapse, adsorption of polymers at a surface, and protein folding.

While this setting is rich enough to allow for the simulation of physically relevant
scenarios, it is also simple enough to serve as the ideal background for the description
of the particular class of stochastic growth algorithms which we shall consider in this
chapter.

In contrast to expositions of uniform sampling using stochastic growth algorithms
elsewhere, and appropriate for the general setting of this summer school, we shall
focus in these notes directly on the central issue of uniform sampling. We therefore
begin in Section 2 with a discussion of the general problem of uniform sampling in the
particularly simple context of one-dimensional simple random walk. In Section 3 we
shift our attention to self-avoiding walks. Here, we introduce Rosenbluth sampling as
the basic algorithm, and by combining this with the ideas from the previous section,
discuss the Pruned and Enriched Rosenbluth Method (PERM), and its extension
to uniform sampling, flatPERM. In Section 4 we conclude with a description of an
extension of stochastic growth methods to settings beyond linear polymers, called
Generalized Atmospheric Rosenbluth Method (GARM).

2 Sampling of Simple Random Walks

In this section we introduce the main ideas by considering simple random walks in
one spatial dimension. Starting at the origin, a random walker takes n steps, each of
which is independently chosen with equal probability to be either a unit step to the
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left or a unit step to the right. Generated in such a way, there are 2n possible random
walks with n steps, each having equal statistical weight.

The end-point distribution of these random walks is a binomial distribution; there
are

(
n
k

)
different walks ending at position −n+2k, and the probability Pn,k of ending

at position −n + 2k is therefore

Pn,k =
1
2n

(
n

k

)
for k = 0, 1, . . . n. (1)

The subsequent algorithms are written using n and k as parameters for the length
and the position of the walk (a step to the left corresponds to leaving k unchanged,
whereas a step to the right corresponds to increasing k by one).

2.1 Simple Sampling

The straight-forward way of sampling these random walks is by Algorithm 1, which
directly implements the probabilistic growth process. While this algorithm is fairly
simple, we will use it as the skeleton for more sophisticated algorithms below.

Algorithm 1 Simple Sampling of Simple Random Walk
s·,· ← 0
Samples← 0
while Samples < MaxSamples do

Samples← Samples + 1
n← 0, k ← 0
s0,0 ← s0,0 + 1
while n < MaxLength do

n← n + 1
Draw random number r ∈ [0, 1]
if r > 1/2 then

k ← k + 1
end if
sn,k ← sn,k + 1

end while
end while

As Pn,0 = Pn,n = 2−n, the probability of generating a path ending at the endpoints
decays exponentially, and even for rather short walks with length n = 20 or so, only
about one in a million samples will hit these. For walks with several hundred steps this
algorithm is therefore clearly unable to sample the distribution near the endpoints,
and one needs to think of ways to modify this algorithm.

2.2 Biased Sampling

An obvious way to enhance sampling towards the endpoints of the distribution is to
introduce a bias by increasing the probability of jumping, say, to the left. The effect
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of this is to introduce an overall drift. This skewes the distribution, as walks are no
longer generated with equal probability. If we jump to the left with probability p and
jump to the right with probability 1− p, then walks ending at position −n + 2k are
now generated with probability

Pn,k =
(

n

k

)
pn−k(1− p)k for k = 0, 1, . . . n. (2)

To correct for this bias, the statistical weight needs to be corrected, which of course
leads to importance sampling. In the algorithm, this can be conveniently accomplished
by changing the statistical weight of a walk by a multiplicative factor of 1/2p or
1/2(1− p) for jumps to the left or right, respectively, as shown in Algorithm 2.

Algorithm 2 Biased Sampling of Simple Random Walk
s·,· ← 0, w·,· ← 0
Samples← 0
while Samples < MaxSamples do

Samples← Samples + 1
n← 0, k ← 0, Weight← 1
s0,0 ← s0,0 + 1, w0,0 ← w0,0 + Weight
while n < MaxLength do

n← n + 1
Draw random number r ∈ [0, 1]
if r > p then

k ← k + 1, Weight←Weight/2(1− p)
else

Weight←Weight/2p
end if
sn,k ← sn,k + 1, wn,k ← wn,k + Weight

end while
end while

This algorithm enables us to sample in the tails of the distribution. In order to
recover the full distribution, one needs to run several simulations at several values of
the bias p, and subsequently combine these results. As an example, Figure 1 shows
results of three simulations of 50-step random walks, with bias p = 0.15, 0.5, and
0.85. One can see that while the method works reasonably well, the histograms over-
lap minimally, and the tails are still sampled rather poorly. Even for such a small
system one needs to run simulations at more values of p. For n large, the width of
the individual distributions scales as

√
n, so that one in fact needs to run simulations

for O(
√

n) different biases to sample the whole distribution. (If the system to be
sampled shows a phase transition, the situation becomes more difficult.) Note that
there are methods available to generate a joint histogram from the individual simula-
tions. The so-called multi-histogram method [3] combines the individual histograms
systematically and enables one to properly analyse statistical errors.
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Figure 1: Biased sampling of simple random walk for n = 50 steps and bias
p = 0.85 (green), p = 0.5 (blue), and p = 0.15 (red). For each simulation, 100000
samples were generated. On the left the total number of samples for each value
of k are shown, whereas on the right the estimated distribution is shown on a
logarithmic scale (the dots indicate the exact values).

2.3 Uniform Sampling

Given the disadvantages of the biased algorithm discussed so far, the question arises
whether it is not possible to sample in such a way as to generate the whole end-
point distribution in one single simulation. This can be achieved if we generalize the
previous algorithm by allowing local biassing of the random walk to achieve uniform
sampling at each length. For the situation discussed here, this is done by replacing
the global bias p with a local bias pn,k that is given by

pn,k =
n + 1− k

n + 2
, (3)

i.e. an n-step random walk at position −n + 2k is required to jump to the left with
probability pn,k and to jump to the right with probability 1− pn,k.

Exercise: Verify that the choice of pn,k given by Equation (3) leads to
a uniform distribution, i.e. one that satisfies Pn,k = 1/(n + 1). How
would the result change if you considered a simple random walk in two
dimensions?

The weight of the generated random walk changes accordingly by a multiplicative
factor 1/2pn,k or 1/2(1 − pn,k) for jumps to the left or right, respectively, as shown
in Algorithm 3.
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Algorithm 3 Uniform Sampling of Simple Random Walk
for n = 0 to MaxLength do

for k = 0 to n do
pn,k ← (n + 1− k)/(n + 2)

end for
end for
s·,· ← 0, w·,· ← 0
Samples← 0
while Samples < MaxSamples do

Samples← Samples + 1
n← 0, k ← 0, Weight← 1
s0,0 ← s0,0 + 1, w0,0 ← w0,0 + Weight
while n < MaxLength do

n← n + 1
Draw random number r ∈ [0, 1]
if r > pn,k then

k ← k + 1, Weight←Weight/2(1− pn,k)
else

Weight←Weight/2pn,k

end if
sn,k ← sn,k + 1, wn,k ← wn,k + Weight

end while
end while

It is noteworthy that one obtains uniform sampling over significant orders of mag-
nitude by applying a local bias that does not vary very much at all. Figure 2 shows
results of a simulation of uniformly sampled 50-step random walks. The sampling
clearly is uniform, and the estimated distribution matches the exact values well across
fourteen orders of magnitude.

The effect of the change from simple sampling to uniform sampling can be sum-
marized as follows.

• Simple Sampling: n-step walks end at position −n + 2k are generated with
probability Pn,k = 1

2n

(
n
k

)
and have statistical weight Wn,k = 1.

• Uniform Sampling: n-step walks end at position −n + 2k are generated with
probability Pn,k = 1

n+1 and have statistical weight Wn,k = n+1
2n

(
n
k

)
.

Necessarily in each of these cases
n∑

k=0

Pn,kWn,k = 1 (4)

holds, as the total probability is conserved.
In our simple model system we have the advantage of a priori knowing the distri-

bution to be sampled. In particular, the precise values of the local bias pn,k can be
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Figure 2: Uniform sampling of simple random walk for n = 50 steps, with 100000
samples generated. On the left the total number of samples for each value of k are
shown, whereas on the right the estimated distribution is shown on a logarithmic
scale (the dots indicate the exact values).

written down explicitly in a simple closed form. Generally this will not be possible,
and ideally one would like to have an algorithm that is able to estimate the local bias
during the simulation. The basic idea for this seems rather simple. If the local bias is
incorrect, sampling will be non-uniform. This non-uniformity can then in principle be
detected and corrected for. Unfortunately direct adjustment of the local bias is rather
unstable. The reason for this is that a stochastic growth algorithm essentially is a
blind algorithm that only knows a local growth rule. If you did the previous exercise
to verify the expression for pn,k, you will have noticed that it is important to know
where walks that arrive at position k after n+1 steps have come from, which requires
a deeper understanding of the dynamics of the growth process than that which is
given by the growth rule alone.

Exercise: Experiment with different ways of estimating the local bias pn,k

from the data generated by the growth process. Try not to be guided by
the next section. In this way you will get a feeling for the dynamics of the
sampling algorithm, and good a idea might lead to new and interesting
algorithm.

2.4 Pruned and Enriched Sampling

An inportant observation that enables further progress is that the performance of
the algorithm depends on appropriately tuning the weight of the generated random
walks, and that the uniform sampling follows from this, rather than vice versa. As
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we have seen above, in order to achieve uniform sampling, walks have to be generated
with different statistical weights.

We now adopt a different approach to achieve this. Starting with simple sam-
pling, as in Algorithm 1, we do not bias the random walk to adjust the weights, but
rather change the weight of the walk after comparing it with a target weight. This
is achieved by employing pruning and enrichment procedures as detailed below. Nec-
essarily changing the weight needs to be accompanied by adjusting the probability
accordingly.

Suppose a walk has been generated that has weight w as opposed to a target
weight W . In the ideal situation w is equal to W as desired. If that is not the case,
either the weight w is to small, i.e. the ratio R = w/W < 1, or the weight w is
too large, i.e. R = w/W > 1. In the first case we will employ pruning, i.e. we will
probabilistically remove walks.

• If R = w/W < 1, continue growing with probability R and weight w set to W ,
and stop growing with probability 1−R.

In the second case we will employ enrichment, i.e. we will continue to grow multiple
copies of the walk.

• If R = w/W > 1, make bRc + 1 copies with probability p = R − bRc and bRc
copies with probability 1 − p. Continue growing with the weight of each copy
set to W .

While we chose to describe pruning and enrichment as different strategies, note that
enrichment procedure is actually identical to the pruning procedure if R < 1: when
bRc = 0 then enrichment reduces to making 1 copy with probability R and 0 copies
with probability 1−R, which is just the pruning procedure.

Whereas in simple (or uniform) sampling the generated walks are each grown
independently from length zero, pruning and enrichment leads to the generation of
a large tree-like structure of more or less correlated walks grown from one seed. We
call the collection of these walks a tour of the algorithm. The tree structure of a tour
allows for successively growing all copies obtained during the enrichment in a natural
way.

As this algorithm is more elaborate than the ones discussed previously, we sketch
the structure of the main loop separately. At the beginning of the main loop it is
assumed that there is a newly generated configuration available.

The essentials of the algorithm are summarised as follows:
repeat

if maximal length reached then
set number of enrichment copies to zero

else
prune/enrich step: compute number of enrichment copies

end if
if number of enrichment copies is zero then

prune: shrink to previous enrichment
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Algorithm 4 Pruned and Enriched Sampling of Simple Random Walk
for n = 0 to MaxLength do {Assign target weights}

for k = 0 to n do
Wn,k ← (n + 1)

(
n
k

)
/2n

end for
end for
s·,· ← 0, w·,· ← 0
Tours← 0, n← 0, k0 ← 0, Weight0 ← 1
s0,k0 ← s0,k0 + 1, w0,k0 ← w0,k0 + Weight0
while Tours < MaxTours do {Main loop}

if n = MaxLength then {Maximal length reached: don’t grow}
Copyn ← 0

else {pruning/enrichment by comparing with target weight}
Ratio←Weightn/Wn,kn

p← Ratio mod 1
Draw random number r ∈ [0, 1]
if r < p then

Copyn ← bRatioc+ 1
else

Copyn ← bRatioc
end if
Weightn ← wn,kn

end if
if Copyn = 0 then {Shrink to last enrichment point or to size zero}

while n > 0 and Copyn = 0 do
n← n− 1

end while
end if
if n = 0 and Copy0 = 0 then {start new tour}

Tours← Tours + 1, n← 0, k0 ← 0, Weight0 ← 1
sn,kn ← sn,kn + 1, wn,kn ← wn,kn + Weightn

else {Grow by one step}
Copyn ← Copyn − 1
Draw random number r ∈ [0, 1]
if r > 1/2 then

kn+1 ← kn + 1
else

kn+1 ← kn

end if
Weightn+1 ←Weightn, n← n + 1
sn,kn ← sn,kn + 1, wn,kn ← wn,kn + Weightn

end if
end while
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end if
if configuration shrunk to zero then

start new tour
store data for new configuration

else
decrease number of enrichment copies
grow new step
store data for new configuration

end if
until enough data is generated

A more detailed pseudocode implementation is given in Algorithm 4. Note that
the number of enrichment copies to be grown from step n is stored in the array Copyn.
One also needs to keep track of the position of the walk at step n and the weight of
the walk at step n, i.e. k and Weight get replaced by the arrays kn and Weightn,
respectively.

Figure 3: Pruned and enriched sampling of simple random walk for n = 50 steps,
with 100000 tours generated. On the left the total number of samples for each
value of k are shown, whereas on the right the estimated distribution is shown on
a logarithmic scale (the dots indicate the exact values).

Figure 3 shows results of a simulation of 50-step random walks sampled by prun-
ing and enrichment with respect to the a priori target weight Wn,k = n+1

2n

(
n
k

)
. A

comparison with Figure 2 shows that there is a somewhat larger fluctuation of the
number of samples as compared to the results obtained from Algorithm 3. Note that
the endpoints of the distribution get sampled with half the frequency; this is due to
the fact that the pruning and enrichment is done strictly locally.
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2.5 Blind Pruned and Enriched Sampling

Clearly pruned and enriched sampling performs less well than uniform sampling when
the distribution is known. Enrichment produces correlated data, and much enrich-
ment and pruning slows the algorithm down. Its major advantage (in addition to
being able to overcome the attrition present in the Rosenbluth algorithm, as will
be discussed below) is that it also performs well when the sampling distribution is
not known a priori. It actually suffices to add one single line to the pseudocode of
Algorithm 4.

Instead of a given target distribution Wn,k, one estimates Wn,k from the generated
data by computing

Wn,kn ← (n + 1)wn,kn/
∑

l wn,l

right before determining the pruning/enrichment ratio via
Ratio←Weightn/Wn,kn

on the fly.
As any fixed choice of the target weight Wn,k gives an algorithm that samples

correctly, one can expect that replacing the optimal choice of Wn,k by an estimate of
just that quantity obtained from the data already generated should converge towards
the optimal values, and hence lead to uniform sampling. While this is not yet math-
ematically proven, this heuristic argument is supported by the results of numerous
simulations.

Figure 4: Pruned and enriched sampling of simple random walk for n = 50 steps,
with 100000 tours generated. On the left the total number of samples for each
value of k are shown, whereas on the right the estimated distribution is shown on
a logarithmic scale (the dots indicate the exact values).

For the case of simple random walk discussed here, Figure 4 shows results of a
simulation of 50-step random walks sampled by blind pruning and enrichment. A

11



From Rosenbluth Sampling to PERM (Prellberg)

comparison with Figure 3 shows while the fluctuation of the number of samples has
increased, sampling is again reasonably uniform, and the algorithm is converging to
the correct distribution.

Note that while there is some freedom in the choice of pruning and enrichment
strategies, we have opted for the simplest version in which the weight w is forced to
be equal to the target weight W . Alternatively one can allow for some fluctuations
around the target weight, with the aim of reducing the overall amount of enrich-
ment and pruning, but doing so invariably requires the introduction of parameters
into an essentially parameter-free algorithm, and finding reasonable values for these
parameters can be somewhat fickle.

The algorithms from this section generalize immediately to the simulation of sim-
ple random walks in higher spatial dimensions, say, on the square lattice Z2. One
generates an (n + 1)-step random walk from an n-step random walk by stepping to
one of the neighboring lattice sites, which is chosen uniformly at random. In such
a way, each n-step random walk is generated with equal probability. On the square
lattice, this probability is 1/4n, as each lattice site on the square lattice has four
neighbouring sites.

Exercise: Extend the uniform sampling and the blind pruned and en-
riched sampling algorithms to simple random walk on the square lattice,
using

• uniform or pruned and enriched sampling in x-coordinate, bias in
y-coordinate,

• uniform or pruned and enriched sampling jointly in both x and y-
coordinates.

For uniform sampling, you need to determine the target weight distribu-
tion and derive the associated local bias.

3 Sampling of Self-Avoiding Walks

In this section we want to consider the simulation of self-avoiding random walks
(SAW), i.e. random walks obtained by forbidding any random walk that contains
multiple visits to a lattice site. SAW is the canonical lattice model for polymers in a
good solvent. Moreover, it forms the basis for more realistic models of polymers with
physically and biologically relevant structure, as indicated in Figure 5.

However, the introduction of self-avoidance turns a simple Markovian random walk
without memory into a complicated non-Markovian random walk; when growing a self-
avoiding walk, one needs to test for self-intersection with all previous steps, leading
to a random walk with infinite memory.
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adsorbed monomerroot monomer

force

nn-interaction

Figure 5: A lattice model of a polymer tethered to a sticky surface under the
influence of a pulling force.

3.1 Simple Sampling

Algorithm 5 Simple Sampling of Self-Avoiding Walk
s· ← 0
Samples← 0
while Samples < MaxSamples do

Samples← Samples + 1
n← 0, Start at origin
s0 ← s0 + 1
while n < MaxLength do

Draw one of the neigboring sites uniformly at random
if Occupied then

Reject entire walk and exit loop
else

Step to new site
n← n + 1
sn ← sn + 1

end if
end while

end while

It is straight-forward to generate SAW by simple sampling. Generating an n-step
self-avoiding walk with the correct statistics, i.e. such that every walk is generated
with the same probability, is equivalent to generating n-step random walks and reject
those random walks that self-intersect. Algorithm 5 accomplishes this by generating
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two-dimensional random walks and rejecting the complete configuration when self-
intersection occurs.

At each step, the walk has four possibilities to continue, and chooses one of these
with probability p = 1/4. Therefore an estimator for the total number of n-step SAW
after S samples have been generated is given by 4nsn/S.

Generating SAW with simple sampling is very inefficient. There are 4n n-step
random walks, but only about 2.638n n-step self-avoiding walks on the square lattice.
The probability of successfully generating an n-step self-avoiding walk therefore de-
creases exponentially fast, leading to very high attrition1. Longer walks are practically
inaccessible, as seen in Figure 6.
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Figure 6: Attrition of started walks generated with Simple Sampling. From 106

started walks none grew more than 35 steps.

3.2 Rosenbluth Sampling

A slightly improved sampling algorithm was proposed in 1956 by Rosenbluth and
Rosenbluth. The basic idea is to avoid self-intersections by only sampling from the
steps that lead to self-avoiding configurations. In this way, the algorithm only ter-
minates if the walk is trapped in a dead end and cannot continue growing. While
this still happens exponentially often, Rosenbluth sampling can produce substantially
longer configurations than simple sampling.

1 The algorithm can be improved somewhat by forbidding immediate reversals of the random walk,
but the attrition remains exponential
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While simple sampling generates all configurations with equal probability, configu-
rations generated with Rosenbluth sampling are generated with different probabilities.
To understand this in detail, it is helpful to introduce the notion of an atmosphere
of a configuration; this is the number of ways in which a configuration can continue
to grow. For one-dimensional simple random walks the atmosphere is always two, for
two-dimensional simple random walks on the square lattice the atmosphere is always
four (and if one forbids immediate self-reversals, the atmosphere is always three ex-
cept for the very first step). However, for self-avoiding walks on the square lattice
the atmosphere is a configuration-dependent quantity assuming values between four
(for the first step) and zero (for a trapped configuration that cannot be continued).
We shall denote the atmosphere of a configuration φ by a(φ). If it is clear from the
context, we will drop the argument and speak about the atmosphere a.

If a configuration has atmosphere a, this means that there are a different possibil-
ities of growing the configuration, and each of these can get selected with probability
p = 1/a. To balance this, the weight of this configuration is therefore multiplied
by the atmosphere a. An n-step walk grown by Rosenbluth sampling therefore has
weight

Wn =
n−1∏
i=0

ai ,

where ai are the atmospheres of the configuration after i growth steps. This walk is
generated with probability Pn = 1/Wn, so that PnWn = 1 as required. Algorithm 6
shows a pseudocode implementation of Rosenbluth sampling.

Algorithm 6 Rosenbluth Sampling of Self-Avoiding Walk
s· ← 0, w· ← 0
Samples← 0
while Samples < MaxSamples do

Samples← Samples + 1
n← 0, Weight← 1, Start at origin
s0 ← s0 + 1, w0 ← w0 + Weight
while n < MaxLength do

Create list of neighboring unoccupied sites, determine the atmosphere a
if a = 0 (walk cannot continue) then

Reject entire walk and exit loop
else

Draw one of the neigboring unoccupied sites uniformly at random
Step to new site
n← n + 1, Weight←Weight× a
sn ← sn + 1, wn ← wn + Weight

end if
end while

end while
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Figure 7 shows the improvement gained by Rosenbluth sampling over simple sam-
pling.
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Figure 7: Attrition of started walks generated with Rosenbluth Sampling com-
pared with Simple Sampling. Walks with a few hundred steps become accessible.

3.3 Pruned and Enriched Rosenbluth Sampling

It took four decades before Rosenbluth sampling was improved upon. In 1997 Grass-
berger augmented Rosenbluth sampling with pruning and enrichment strategies, call-
ing the new algorithm Pruned and Enriched Rosenbluth Method, or PERM [4]. There
are a variety of pruning and enrichment strategies that are possible, and the strategies
used in [4] were somewhat different from the ones encountered earlier in Section 2.5.
However, we shall present here our simplified version of PERM only. For alternate
versions and enhancements we refer to [5] and references therein.

From the point of view of the previously encountered pruned and enriched sam-
pling of simple random walk, the only thing that is different here is that the atmo-
sphere of the walk is variable and can be zero. This can be incorporated quite easily
as follows.

repeat
if zero atmosphere or maximal length reached then

set number of enrichment copies to zero
else

prune/enrich step: compute number of enrichment copies
end if
if number of enrichment copies is zero then
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prune: shrink to previous enrichment
end if
if configuration shrunk to zero then

start new tour
store data for new configuration

else
decrease number of enrichment copies
if positive atmosphere then

grow new step
store data for new configuration

end if
end if

until enough data is generated

Note that in case of constant atmosphere this reduced precisely to the pruned and
enriched sampling for simple random walks encountered earlier. Algorithm 7 contains
a more detailed pseudo-code version of PERM for self-avoiding walks.

Figure 8 shows the significant improvement gained by adding pruning and enrich-
ment strategies to Rosenbluth Sampling.
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Figure 8: Attrition of started walks with PERM compared with Rosenbluth Sam-
pling. In the case of PERM, a virtually constant number of samples is obtained.
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Algorithm 7 Pruned and Enriched Rosenbluth Sampling of Self-Avoiding Walks
s· ← 0, w· ← 0
Tours← 0, n← 0, Weight0 ← 1
Start new walk with step size zero
a← 0, Copy0 ← 1
s0 ← s0 + 1, w0 ← w0 + Weight
while Tours < MaxTours do {Main loop}

if n = MaxLength or a = 0 then {Maximal length reached or atmosphere zero:
don’t grow}

Copyn ← 0
else {pruning/enrichment by comparing with target weight}

Ratio←Weightn/wn

p← Ratio mod 1
Draw random number r ∈ [0, 1]
if r < p then

Copyn ← bRatioc+ 1
else

Copyn ← bRatioc
end if
Weightn ← wn

end if
if Copyn = 0 then {Shrink to last enrichment point or to size zero}

while n > 0 and Copyn = 0 do
Delete last site of walk
n← n− 1

end while
end if
if n = 0 and Copy0 = 0 then {start new tour}

Tours← Tours + 1,
Start new walk with step size zero
a← 0, Copy0 ← 1
s0 ← s0 + 1, w0 ← w0 + Weight

else
Create list of neighboring unoccupied sites, determine the atmosphere a
if a > 0 then

Copyn ← Copyn − 1
Draw one of the neigboring unoccupied sites uniformly at random
Step to new site
n← n + 1, Weightn ←Weightn × a
sn ← sn + 1, wn ← wn + Weightn

end if
end if

end while
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3.4 Flat Histogram Rosenbluth Sampling

The next advance was made by two groups in 2003/4. Motivated by work of Wang
and Landau on uniform sampling [10], Bachmann and Janke, using ideas from Berg
and Neuhaus [2], implemented Multicanonical PERM [1]. This was followed by Prell-
berg and Krawczyk [7], who designed flatPERM, a flat-histogram version of PERM
estimating directly the microcanonical density of states.

Within the context of the algorithms developed here, incorporating uniform sam-
pling into PERM is straightforward. First we note that PERM already is a uniform
sampling algorithm in system size. This is not apparent at all from the algorithm,
as the guiding principle has been to adjust pruning and enrichment with respect to
a target weight, not with respect to any criterion of poor local sampling. It is rather
that uniform sampling is a consequence of adjusting pruning and enrichment around
the desired target weight.

Figure 9: An interacting self-avoiding walk on the square lattice with n = 26 steps
and m = 7 contacts.

It is therefore reasonable (and very much in the spirit of the previous section) to
extend PERM to a microcanonical version, in which configurations of size n are sepa-
rated with respect some additional parameter. One simply determines this parameter
when growing the configuration and stores the data by binning with respect to this
additional parameter. Then, when considering pruning and enrichment, the target
weight is computed from the binned data. More precisely, if the additional parameter
is called m, storing the data is changed from

sn ← sn + 1, wn ← wn + Weightn

to
sn,m ← sn,m + 1, wn,m ← wn,m + Weightn

and computing enrichment ratio is changed from
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Ratio←Weightn/wn

to
Ratio←Weightn/wn,m

and this is about it.
In the previous section this additional parameter has been the end-point position

of the random walk. Here, we shall consider by example the case of interacting
self-avoiding walks, where each walk configuration has an energy proportional to the
number of non-consecutive nearest-neigbour contacts between occupied lattice sites.
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Figure 10: Number of States of Interacting Self-Avoiding Walks with 50 steps
at fixed energy estimated from 106 flatPERM tours. The lower graph shows the
number of actually generated samples for each energy.

Figure 10 shows the simulation results of a simulation of interacting self-avoiding
walks of up to 50 steps using 106 tours starting at size zero. This led to the generation
of about 106 samples for each value of m at n = 50 steps, and enabled the estimation
of the number of states over ten orders of magnitude.

Figure 11 shows the corresponding simulation results for all intermediate lengths
from the same run. While the histogram of samples is not as flat as in the case of
random walks discussed above, especially for large values of m, it is reasonably flat
on a logarithmic scale and leads to sufficiently many samples for each histogram bin.
Reference [7] contains results of a simulation of interacting self-avoiding walks with
up to n = 1024 steps, where the density of states ranges over three hundred orders of
magnitude, all obtained from one single simulation.
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Figure 11: Interacting Self-Avoiding Walks with up to 50 steps generated with
flatPERM. The upper figure shows that a roughly constant number of samples is
obtained across the whole range of sizes and energies, and the lower figure shows
the estimated number of states for a given Size n and Energy m.
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Exercise: Use flatPERM to uniformly sample self-avoiding walks with
respect to several different parameters, such as number of contacts, posi-
tion of the end point, number of turns in the walk (measuring stiffness),
etc. While some parameters are immediately accessible by the algorithm
or easy to calculate, others will necessitate a more careful design of data
structures.

4 Extensions

In the excellent review article [5] the algorithms of Section 3 and several extensions
are discussed.

Extensions of algorithms are usually motivated by the need to simulate systems
inaccessible with established algorithm. For example, algorithms based on Rosenbluth
sampling are well-suited to the simulation of objects that can be grown uniquely from
a seed. In the case of linear polymer models, this is accomplished by appending a
step to the end of the current configuration2.

However, if one wants to simulate polymers with a more complicated structure,
such as branched polymers, there no longer is an easy way to uniquely grow a config-
uration. A lattice model for a two-dimensional branched polymer is given by lattice
trees, i.e. trees embedded in the lattice Z2. For a given lattice tree it is no longer
clear how it has been grown from a seed; this could have happened in a variety of
ways.

4.1 Generalized Atmospheric Rosenbluth Sampling

It turns out that there is an extension to Rosenbluth sampling, called Generalized
Atmospheric Rosenbluth Method, or GARM [8], that is suitable for these more com-
plicated growth processes. The key idea is to generalize the notion of atmosphere
by introducing an additional negative atmosphere a− indicating in how many ways
a configuration can be reduced in size. For linear polymers the negative atmosphere
is always unity, as there is only one way to remove a step from the end of the walk.
However, for a given lattice tree the removal of any leaf of the tree gives a smaller
lattice tree, and the negative atmosphere a− can assume rather large values.

Surprisingly there is a very simple extension to the Rosenbluth weights discussed
above. If a configuration has negative atmosphere a−, this means that there are a−

different possibilities in which the configuration could have been grown. An n-step
configuration grown by GARM therefore has weight

Wn =
n−1∏
i=0

ai

a−i+1

, (5)

2 In a more abstract setting, Rosenbluth sampling has for example been used to study the number
of so-called pattern-avoiding permutations. Permutations can be grown easily by inserting the
number n + 1 somewhere into a permutation of the numbers {1, 2, . . . , n}, allowing for easy
implementation of Rosenbluth sampling.
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where ai are the (positive) atmospheres of the configuration after i growth steps, and
a−i are the negative atmospheres of the configuration after i growth steps. It can
be shown that the probability of growing this configuration is Pn = 1/Wn, so again
PnWn = 1 holds as required.

The implementation of GARM is not any more complicated than the implemen-
tation of Rosenbluth sampling. Algorithm 6 gets changed minimally by inserting the
lines

Compute negative atmosphere a−

Weight←Weight/a−

immediately after having grown the configuration.

Algorithm 8 Generalised Atmospheric Sampling
s· ← 0, w· ← 0
Samples← 0
while Samples < MaxSamples do

Samples← Samples + 1
n← 0, Weight← 1, Start with seed configuration
s0 ← s0 + 1, w0 ← w0 + Weight
while n < MaxSize do

Create list of growth possibilities, determine the atmosphere a
if a = 0 (no growth possible) then

Reject entire configuration and exit loop
else

Draw one of the growth possibilities uniformly at random
Grow configuration
n← n + 1, Weight←Weight× a
Compute negative atmosphere a−

Weight←Weight/a−

sn ← sn + 1, wn ← wn + Weight
end if

end while
end while

While implementing GARM is quite straightforward, there generally is a need for
more complicated data structures for the simulated objects, and one needs to find
efficient algorithms for the computation of positive and negative atmospheres.

It is now possible to add pruning and enrichment to GARM, and to extend this
further to flat histogram sampling, just as has been described in the previous section
for Rosenbluth sampling.

For further extensions to Rosenbluth sampling, and indeed many more algorithms
for simulating self-avoiding walks, as well as applications, see [5].
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