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Abstract We define (k, �)-restricted Lukasiewicz paths, k ≤ � ∈ N0, and use these paths
as models of polymer adsorption. We write down a polynomial expression satisfied by the
generating function for arbitrary values of (k, �). The resulting polynomial is of degree �+1
and hence cannot be solved explicitly for sufficiently large �. We provide two different ap-
proaches to obtain the phase diagram. In addition to a more conventional analysis, we also
develop a new mathematical characterisation of the phase diagram in terms of the discrimi-
nant of the polynomial and a zero of its highest degree coefficient.

We then give a bijection between (k, �)-restricted Lukasiewicz paths and “rise”-restricted
Dyck paths, identifying another family of path models which share the same critical be-
haviour. For (k, �) = (1,∞) we provide a new bijection to Motzkin paths.

We also consider the area-weighted generating function and show that it is a q-deformed
algebraic function. We determine the generating function explicitly in particular cases of
(k, �)-restricted Lukasiewicz paths, and for (k, �) = (0,∞) we provide a bijection to Dyck
paths.

Keywords Polymer adsorption · Lattice path · Lukasiewicz path · Dyck path · Motzkin
path

1 Introduction and Definitions

The study of the statistical mechanics of polymers has been a topic of much interest for
nearly 70 years, with a great deal of focus devoted to systems of long, linear molecules
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Fig. 1 An illustration of the
discrete two parameter family of
adsorption models given by
(k, �)-restricted Lukasiewicz
paths. The points (1,1) and (0,1)

correspond to Dyck paths and
Motzkin paths, respectively. At
the points (0,∞) and (1,∞)

there are also bijections to Dyck
and Motzkin paths, as indicated
in the figure

modelled by random walks [2, 10]. The class of simple models known as directed paths have
received much attention when studying the behaviour of such molecules in the presence of
an impenetrable surface [3, 6, 11].

In this paper we propose a new discrete two-parameter family of directed path models,
(k, �)-restricted Lukasiewicz paths, with k ≤ � ∈ N0, that have a tuneable step set. This
family of paths is a generalisation of well-known directed path models [1, 8, 9] and for
some particular choices of the parameters leads to several interesting bijections to classical
directed path models.

In addition to defining the paths, we use them to study the problem of adsorbing polymers
at an impenetrable surface. The generating function for each model satisfies a polynomial
equation of degree � + 1, and hence cannot be solved explicitly for large �. We present a
new method of extracting the phase diagram from these polynomials. The phase diagram
for each member of the family is composed of two regimes: (1) a regime independent of
the contact parameter and (2) a regime which depends explicitly on the contact parameter.
We identify the first regime by evaluating a discriminant, while the second regime is the
physically relevant solution of a high-degree algebraic equation. We use PGL(2)-invariance
of the discriminant to show that Regime 1 is indeed independent of the contact parameter
for all values of (k, �).

We also give a weight preserving bijection from the (k, �)-restricted Lukasiewicz paths
to (k + 1, � + 1)-rise restricted Dyck paths and hence give another family of models which
have the same phase digram as the Lukasiewicz models. The set of all these models is
conveniently illustrated in Fig. 1 which shows the location of Dyck and Motzkin paths and
of two additional bijections discussed in this paper.

Finally, we find an equation satisfied by the area-weighted generating function of (k, �)-
restricted Lukasiewicz paths which we solve in two cases, namely (k, k) and (0,∞). The
latter solution can also be obtained via a bijection to Dyck paths which we present. The area-
weighted generating function gives a simple model of a single membrane vesicle above a
surface with adsorption. The area generating variable corresponds to a ‘volume’ fugacity.

Definition 1 Let N0 = {0,1,2,3, . . .}. A length n direct path is a sequence of vertices
v0v1 . . . vn with vi = (xi, yi) ∈ N0 × N0, v0 = (0,0) and vn = (n,0), where the steps,
vi − vi−1, belong to a given step set S ⊆ {1} × Z. Choosing

S = {(1,−1)} ∪ {(1, j) | k ≤ j ≤ �, and k, � ∈ N0}
defines (k, �)-restricted Lukasiewicz paths. A step (1, j) is called a jump j step. The height
of a vertex vi = (xi, yi) is yi and the height of a step is the height of its first (i.e. left) vertex.
A contact weight, a, is associated with any vertex v1, . . . , vn of height zero.
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Fig. 2 An example of a
(1,2)-restricted Lukasiewicz
path of length eleven with two
contacts. The jump steps are
shown in colour (dashed)

Note, contact weights are only associated with returns to the surface i.e. v0 does not
contribute a contact weight.

Clearly Dyck paths are (1,1)-restricted Lukasiewicz paths, while Motzkin paths are
(0,1)-restricted Lukasiewicz path. An example of a (1,2)-restricted Lukasiewicz path is
shown in Fig. 2.

2 Contact Polynomials for Restricted Lukasiewicz Paths

We now consider the partition functions and their associated generating functions. Let
R(k,�)(z;a) be the generating function for (k, �)-restricted Lukasiewicz paths with partition
functions Z(k,�)

n (a), namely,

R(k,�)(z;a) =
∑

n≥0

Z(k,�)
n (a)zn. (2.1)

The following theorem gives the algebraic equation satisfied by R(k,�)(z;a) in terms of
L(k,�)(z) = R(k,�)(z;1).

Theorem 1 The generating function R(k,�)(z;a) is given by the following pair of algebraic
equations

R(k,�)(z;a) = 1 + az

�∑

j=k

(
zL(k,�)(z)

)j
R(k,�)(z;a) (2.2)

L(k,�)(z) = 1 +
�∑

j=k

(
zL(k,�)(z)

)j+1
. (2.3)

Since the derivation of these equations is a direct generalisation of known methods
[1, 8, 9] we provide only an outline of the proof.

Proof (Outline) We note that these equations arise by partitioning the set of all Lukasiewicz
paths weighted by contacts according to the height of the leftmost jump step. After jumping
to height j the path must take j down steps in order to return to the surface. Between each
of these down steps a sequence of steps all above a fixed height, with corresponding gen-
erating function L(k,�)(z), are permitted. These sequences are denoted schematically in the
Fig. 3 by a ‘loop’. After returning to the surface the paths can finish with the corresponding
Lukasiewicz path. This factorisation argument is illustrated schematically in Fig. 3. Note
that the jump step gets a weight z irrespective of the jump height. �
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Fig. 3 Schematic representation of the Lukasiewicz path factorisations

We remark that by solving for the summation in (2.3) and using it in (2.2), it follows that
R(k,�)(z;a) and L(k,�)(z) are related by the simple equation

L(k,�)(z) = aR(k,�)(z;a)

1 + (a − 1)R(k,�)(z;a)
. (2.4)

Substituting (2.4) into (2.2) shows that R(k,�)(z;a) satisfies a degree � + 1 polynomial.

2.1 Singular Behaviour and Free Energy

The free energy κk,�(a) for each model is related to the radius of convergence zc(a) of the
generating function R(k,�)(z) by,

κk,�(a) = − log zc(a).

We deduce the radius of convergence of R(k,�)(z) in two ways, (i) from the singular be-
haviour of L(k,�)(z) and its relationship to R(k,�)(z), namely (2.4), and (ii) a more direct ap-
proach which gives the singularity structure of R(k,�)(z) without first finding that of L(k,�)(z).
The first method gives the phase boundary of each model in terms of a unique positive root
of a certain polynomial. The second approach yields a more general result that the high tem-
perature regime of the phase boundary arises from the root of the “indicial” equation and the
low temperature regime from the discriminant of the polynomial satisfied by R(k,�)(z)—see
Fig. 5 below.

2.1.1 Radius of Convergence of R(k,�) from L(k,�)(z)

The following theorem states the radius of convergence of R(k,�)(z), and hence the phase
boundary of the models, all in terms of the unique positive root of a certain degree � polyno-
mial. The proof uses the singular behaviour of L(k,�)(z) and its rational relation to R(k,�)(z).

Theorem 2 Let uc be the unique positive real root of the polynomial

�∑

j=k

juj+1 = 1 (2.5)

and

zc = uc

1 + Γk,�(uc)
, (2.6)
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ac = 1 + 1

Γk,�(uc)
, (2.7)

where

Γk,�(u) =
�∑

j=k

uj+1. (2.8)

Then the radius of convergence zc(a) of R(k,�)(z;a) for a ≥ 1 is

zc(a) =
{

zc if 1 ≤ a ≤ ac,

z+
c (a) if a > ac

(2.9)

where z+
c (a) is the unique positive real root of

1

a − 1
= Γk,�

(
az

a − 1

)
. (2.10)

Proof To reduce the notational clutter in the proof we use

R = R(k,�)(z;a)

L = L(k,�)(z).

From Theorem 1 we have

L = 1 +
�∑

j=k

(zL)j+1 = 1 + Γk,�(zL) (2.11)

and

L = aR

1 + (a − 1)R
. (2.12)

Since L(z) is a generating function (with positive coefficients), for z ≥ 0 it is an increasing
function of z. From (2.11) it follows that L(0) = 1 and L(z) has a singularity at zc ≤ 1 on
the positive real axis.

From (2.11) we compute the derivative as

L′ = L
∑�

j=k(j + 1)(zL)j

1 − z
∑�

j=k(j + 1)(zL)j
. (2.13)

At zc , L′ must diverge, i.e. the denominator vanishes. This implies that at zc

zc

�∑

j=k

(j + 1)(zcL)j = 1. (2.14)

Therefore L has a finite value Lc at zc (unless k = � = 0).
Combining (2.11) and (2.14) gives

�∑

j=k

juj+1 = 1 (2.15)
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with u = zL, which clearly has a unique positive solution, denoted uc . We can now express
both zc and Lc in terms of uc as

Lc = 1 + Γk,�(uc) (2.16)

and

zc = uc

1 + Γk,�(uc)
. (2.17)

We now turn our attention to the singularity structure of R. Inverting (2.12) gives

R = L

a − (a − 1)L
. (2.18)

Clearly R is singular at zc . This singularity can be dominated by a second singularity z+
arising from a vanishing denominator, i.e. if

L = a

a − 1
(2.19)

and thus, using (2.11), we get that z+ is given by the unique positive root of

1

a − 1
= 1 + Γk,�

(
az

a − 1

)
. (2.20)

Rearranging the above equation gives (2.10). By choosing a arbitrarily large, (2.20) implies
that z+ can be arbitrarily small. If a is sufficiently large this will be the closest singularity
to the origin, i.e. 0 < z+ ≤ zc . At zc both singularities coincide, and the critical value ac is
determined by

ac = 1 + 1

Γk,�(uc)
. (2.21)

�

As an example, a plot of ac is shown for k = 1 and � = 1,2,3, . . . ,8 in Fig. 4.

2.1.2 Singular Behaviour of R(k,�) from Its Algebraic Structure

In this section we focus on the fact that the generating function R(k,�)(z) is an algebraic
function, i.e. it is the root of a degree � + 1 polynomial of the form

pk,�+1(z, a)R�+1 + pk,�(z, a)R� + · · · + pk,0(z, a) = 0. (2.22)

We show that in one regime the free energy arises from the discriminant of (2.22), whilst
in another regime the free energy arises from the zeros of pk,�+1. This generic structure is
shown schematically in Fig. 5.

Since R = R(k,�)(z;a) satisfies a degree � + 1 algebraic equation, there are at most � + 1
solutions, R

(k,�)
i (z;a), one of which will correspond to the generating function. For finite z

and a considered a parameter there are only two sources of non-analyticity in R(k,�)(z;a)—
see Theorem 12.2.1 of Hille [5]. Either (i) R(k,�)(z;a) → ±∞ as z → zc(a) or (ii) the branch
structure of R(k,�)(z;a) changes at zc(a).
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Fig. 4 A plot of a
(k,�)
c for k = 1 and � = 1,2,3, . . . ,8. The point (1,1) is Dyck paths, where ac = 2,

and the limiting value ac|k=1,�=∞ = 3 is the Motzkin path bijection point. The latter bijection point has
non-standard surface weights (i.e. the bijection is not weight preserving) and hence ac 
= 3/2

Fig. 5 Adsorption free energy as
determined by the discriminant
and indicial equation

The non-analytic points zc(a) in case (i) arises from the zeros of pk,�+1(z, a), which we
will call the indicial equation.1 On the other hand, the non-analytic points in case (ii) arise
from the zeros of the discriminant of (2.22). If zc(a) is real then the zeros of the discriminant
occur where the curve R

(k,�)
i (z;a) is finite but has infinite slope.

An explicit expression for the indicial equation for (k, �)-restricted Lukasiewicz paths
is readily obtained by substituting (2.4) into (2.2) and extracting the coefficient of
R(k,�)(z;a)�+1, which gives

pk,�+1(z, a) = (a − 1)� −
�∑

j=k

(az)j+1(a − 1)�−j (2.23)

= (a − 1)� − (a − 1)�−1 Γk,�

(
az

a − 1

)
, (2.24)

1This coefficient does not appear to have a standard name. Thus we name it analogous to that from differential
equations.
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where Γk,� is given by (2.8). Note, this is the same equation as (2.20)—thus we see the zero
in the denominator of (2.18) is the same as the (unique positive) root of the indicial equation.
Following the same argument as in the proof of Theorem 2 is follows that for a sufficiently
large this unique root must be the radius of convergence of R since, as show below, the
discriminant zeros are a independent.

The discriminant, denoted ΔP , of a polynomial P (R) whose coefficients are polynomi-
als in z is the resultant of P (R) and its derivative

ΔP(z) = Res

(
P,

∂P

∂R
;R

)
,

and thus may be obtained from a Sylvester determinant [4]. Below we will prove that for
(k, �)-restricted Lukasiewicz paths the discriminant always possesses a factor in z indepen-
dent of a.

In order to prove this generic structure we need the discriminant of the polynomial satis-
fied by R = R(k,�)(z;a), that is

P1 = pk,�+1(z, a)R�+1 + pk,�(z, a)R� + · · · + pk,0(z, a). (2.25)

We want to express the discriminant of (2.25) in terms of the discriminant of the polynomial
satisfied by L = L(k,�)(z), obtained from (2.3) as

P2 =
�∑

j=k

(zL)j+1 − L + 1.

We are aided by the following theorem (for a proof see [4]).

Theorem 3 (PGL(2)-invariance) Let Q(z) be a polynomial of degree n and r : z �→ αz + β

γ z + δ
with α,β, γ, δ ∈ R. The discriminant of

(γ z + δ)nQ
(
r(z)

)

is given by

(αδ − βγ )n(n−1)ΔQ,

where ΔQ is the discriminant of Q(z).

Note, the (γ z + δ)n factor is present to clear the denominator introduced by the substitu-
tion r . We now apply Theorem 3 to the polynomial in (2.25) along with the inverse of (2.4),
namely,

R(k,�)(z;a) = L(k,�)(z)

a − (a − 1)L(k,�)(z)
. (2.26)

The result is the discriminant of polynomial P1 given in terms of the ‘contact-free’ polyno-
mial, P2, that is

ΔP1(z;a) = a�(�+1) ΔP2(z). (2.27)

This shows that the a dependence of the discriminant of P1 is contained in the a�(�+1) factor,
and therefore that the roots (as a polynomial in z) of ΔP1(z;a) are independent of a.
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We identify the critical contact weight, ac , as the value of a for which the discriminant
(2.27) and indicial polynomials have simultaneous zeros,

ΔP2(zc) = 0, (2.28)

pk,�+1(zc, ac) = 0. (2.29)

Eliminating zc from these equations by taking the resultant gives us a polynomial equation
satisfied by ac , namely,

Ak,�(a) = Res (ΔP2(z),p�+1(z, a); z) . (2.30)

This is the same equation that would be obtained by eliminating uc between (2.21) and
(2.15) by taking the resultant.

For example, for Motzkin paths it is simple to obtain

A0,1(a) = a4(2a − 3)2

which gives the familiar result ac = 3/2. However, for other values of k and � the equation
can become rather complicated, for example,

A2,4(a) = 7a5 − 113a4 + 770a3 − 2756a2 + 5180a − 4112

which does not factor over Z; as such the root has to be found numerically.

3 Rise Restricted Dyck Path Bijection

We now show that the (k, �)-restricted Lukasiewicz paths are in bijection with the (k, �)-
rise restricted Dyck paths, hence giving another family of models with the same critical
behaviour.

Definition 2 (Rise, valley, peak, hook) Let s1s2 . . . sn be the step sequence of a Dyck path.
A valley (resp. peak) is a pair sisi+1 with si a down (resp. up) step and si+1 an up (resp.
down) step. A rise of length j is a maximal subsequence of j steps, ri,j = sisi+1 . . . si+j−1

such that

– ri,j contains no valleys or peaks
– si−1si is a valley (or i = 1) and si+j−1si+j is a peak.

A hook is a rise and the down step of the peak, that is the subsequence ri,j si+j . The length
of the hook is j + 1. A Dyck path is (k, �)-rise restricted iff the length j of all rises satisfies
k ≤ j ≤ �.

Thus a (k, �)-rise restricted Dyck path contains no rises shorter than k or greater than �.
An example of a Dyck path with rises shown is given in Fig. 6.

We can now state the following bijection.

Theorem 4 The set of (k, �)-restricted Lukasiewicz paths of length n is in bijection with
the set of (k + 1, � + 1)-rise restricted Dyck paths of length 2n. Furthermore the bijection
preserves the contact weight of the path.
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Fig. 6 An example of a Dyck
path shown the rises, hook, peaks
and valleys

The bijection is a generalisation of the classical bijection between Lukasiewicz paths
(with no jump restriction) of length n and Dyck paths of length 2n. The idea of the classical
bijection is to replace the jump j step of the Lukasiewicz path with a length j + 2 hook as
illustrated below.

Since this is a straightforward generalisation of the classical bijection we do not provide a
detailed proof, only the outline.

Proof (Proof outline) First note that the hook-to-rise replacement does not change the height
of any of the Lukasiewicz vertices (only their x-coordinates) and hence all the steps after
the replacements are above the surface (i.e. it must be a Dyck path). After the hook-to-rise
replacement, two consecutive Lukasiewicz jump steps are separated by a peak (at the end of
the first hook) in the Dyck path, and hence going back from a Dyck path to a Lukasiewicz
path, the heights of the jump steps are well defined.

All that remains to show is that the resulting Dyck path is length 2n i.e. has twice as
many steps as the Lukasiewicz path. This follows if we can partition the set of steps of the
Dyck path into two sets of equal size and have the rise-to-hook replacement remove one of
the two sets. The partition is simple; an up step set, Su and a down step set, Sd . We define a
bijection Γ : Sd → Su and show the rise-to-hook replacement removes all the steps in Su. If
si is a down step then s ′

i = Γ (si) ∈ Su is defined to be the step “horizontally visible”, to the
left as illustrated in Fig. 7.

More precisely s ′
i is the rightmost of the set of up steps to the left of si that are at the same

height as si . Consider the rise-to-hook replacement as the composition of two subsequent
constructions: (i) first delete all the steps in Su as they constitute the rises (leaving the n

down steps of Sd ) and then (ii) replace the ‘down’ step of each of the hooks by a jump j up
step (no change in number of steps).

Clearly if the jump steps are (k, �)-restricted then the length of the rises, j are restricted
to k + 1 ≤ j ≤ � + 1 as a jump j step maps to a length j + 1 rise.

Finally, since the height of the Lukasiewicz path vertices (or inversely the Dyck vertices)
are not changed under the bijection the contact weight of the path is unchanged. �
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Fig. 7 Horizontally visible steps—to the left (left) or to the right (right)

Since the above bijection is weight preserving, the partition functions for the Lukasiewicz
paths and bijected rise restricted Dyck paths will be identical; hence they will have the same
thermodynamic properties and thus critical behaviour and phase diagrams.

4 (1,∞)-restricted Lukasiewicz Paths and Motzkin Paths

We now consider a new Motzkin path bijection—the (k, �) location of the corresponding
model is shown in Fig. 1. The bijection is somewhat unusual for lattice paths in that it
bijects paths of two consecutive lengths to a single length path. Unfortunately it does not
preserve the contact weight. However, the generating function is readily obtained (it is a
quadratic algebraic function) and the critical contact weight is given by

ac = 3,

which is the limiting point of the sequence shown in Fig. 4.

Theorem 5 Let Mn be the set of Motzkin paths of length n and Ln the set of (1,∞)-
restricted Lukasiewicz paths of length n. Then there exists a bijection between L+

n =
Ln ∪ Ln+1 and Mn.

Proof Let l ∈ L+
n and let l have the step sequence s1s2 . . . sk (with k ∈ {n,n + 1}). If si is a

jump j step then denote the set of down steps which are ‘horizontally visible’ to the right
from si as RightViz(si), see Fig. 7.

We define two maps Γ o
n and Γ −

n which act on jump steps si and the jump steps’ associated
sequence of horizontally visible down steps, RightViz(si). Combining these two maps gives
the bijection Γn : L+

n → Mn. We then show that Γn is well defined, injective and surjective
and hence a bijection. The two maps are defined as follows.

– Γ o
n : Let si be a jump step of l

– Replace the jump step by an up step
– Replace all but the last step of RightViz(si) by horizontal steps

– Γ −
n : Let si be a jump step of l

– Delete si

– Replace all steps in RightViz(s1) by horizontal steps
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These two maps are illustrated schematically below.

Note that (1) since there are no horizontal steps in any l ∈ L+
n (as all jump j steps have

j > 0) it is clear from Fig. 3 that the defining characteristic of the ‘ ’ factor is that it
contains no horizontal steps on its ‘surface’ (a horizontal line at the same height of the left
vertex of the first step of the factor), (2) Γ o

n does not change the number of steps (hence the
superscript “o”) whilst Γ −

n decreases the number of steps by one and (3) the height of the
first vertex of the jump step si and height of the last vertex in RightViz(si) is unchanged
under the action of either map.

The bijection Γn : L+
n → Mn is then defined as follows

– If l ∈ Ln apply Γ o
n to all jump steps si ∈ l.

– If l ∈ Ln+1 apply Γ −
n to the first (i.e. leftmost) jump step and Γ o

n to all the remaining jump
steps.

An example of the action of Γn is show below.

Well defined: As noted above, neither Γ o
n nor Γ −

n change the height of the first and last
vertices and hence their recursive action results in a path which has all steps above the
surface. Since all steps are either up, down or horizontal the resulting path must be a Motzkin
path. Γ o

n does not change the number of steps hence if l ∈ Ln then Γn(l) ∈ Mn. Γ −
n only acts

on paths in Ln+1 and only acts on the first jump step thus if l ∈ Ln+1 then Γ −
n decreases the

number of steps by one and hence Γn(l) ∈ Mn. Thus Γn : L+
n → Mn.
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Injective: We need to show that if m = Γn(l) and m = Γn(l
′) then l = l′. We show this by

arguing that m uniquely defines its preimage in L+
n i.e. Γn has an inverse. Note, there are

no horizontal steps in any l ∈ L+
n as all jump j steps have j > 0. All the horizontal steps of

m on the surface come from the action of Γ −
n on an l ∈ Ln+1 path. Thus if m has j surface

horizontal steps then the first jump step is uniquely jump j and the surface horizontal steps
become down steps. An up step in m arose from a unique jump step in l ∈ L+

n , the jump
height of the jump step j is uniquely determined by the number of horizontal steps on the
“surface” (at the height of the up step) between the up step and the right-visible down step.
If there are k such horizontal steps then the up step becomes a k + 1 jump step and the
horizontal steps are replaced by down steps. Two examples are shown below for Γ13.

The above example also illustrates how the order of two consecutive jump steps of different
jump heights, in otherwise identical paths, arise from (or give rise to) different paths m.

Surjective: The injective paragraph defines the inverse of Γn which clearly applies to every
m ∈ Mn and hence there exists an l ∈ L+

n for which m is an image i.e. Γ is surjective. Those
m with any surface horizontal steps map to Ln+1 (as an initial jump step is added) and all
the paths m without horizontal surface steps map to Ln. �

5 Area Under (k, �)-Lukasiewicz Paths

In this section we find a q-deformed algebraic equation satisfied by the area-weighted gen-
erating function of (k, �)-restricted Lukasiewicz paths which we solve in two cases, namely
(k, k) and (0,∞). The later solution can also be obtained via a bijection to Dyck paths which
we present.

Definition 3 The area of a (k, �)-restricted Lukasiewicz path is the sum of the height of all
its vertices.

Equivalently, one can connect all consecutive vertices of a path by straight lines and
consider the area enclosed by the path and the horizontal line that connects its end points.

Area-weighted Lukasiewicz paths satisfy a generalisation of Theorem 1.
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Theorem 6 Let R(k,�)(z;a, q) be the generating function for (k, �)-restricted Lukasiewicz
paths keeping track of contacts and area. With respect to the partition functions, Z(k,�)

n (a, q),
we have

R(k,�)(z;a, q) =
∑

n≥0

Z(k,�)
n (a, q)zn. (5.31)

The generating function R(k,�)(z;a, q) is given by the following pair of q-deformed alge-
braic equations

R(k,�)(z;a, q) = 1 + az

�∑

j=k

(
j∏

i=1

zqiL(k,�)(qiz;q)

)
R(k,�)(z;a, q), (5.32)

L(k,�)(z;q) = 1 +
�∑

j=k

(
j∏

i=0

zqiL(k,�)(qiz;q)

)
(5.33)

where L(k,�)(z;q) = R(k,�)(z;1, q).

Again, this is a standard generalisation of known methods. Note that in contrast to The-
orem 1, a Lukasiewicz path raised by height i leads to a term qiL(k,�)(qiz;q) due to the
inclusion of area weights.

An advantage of the inclusion of area weights is that we can express R(k,�)(z;a, q) via
the solution of a linear q-difference equation. To obtain this result, we substitute

L(k,�)(z;q) = H(qz;q)

H(z;q)
(5.34)

into (5.33), and note that (2.4) (solved for R) holds also when area weights are included.
Thus we obtain the following theorem.

Theorem 7

R(k,�)(z;a, q) =
(

1 − a + a
H(k,�)(z;q)

H (k,�)(qz;q)

)−1

(5.35)

where

H(k,�)(qz;q) = H(k,�)(z;q) +
�∑

j=k

zj+1q(j+1
2 )H (k,�)(qj+1z;q). (5.36)

As L(k,�)(z;q) is a combinatorial generating function, it follows that H(k,�)(z, q) must be
of the form

H(k,�)(z;q) =
∞∑

n=0

znc(k,�)
n (q). (5.37)

This leads to the recurrence

(qn − 1)c(k,�)
n (q) =

�∑

j=k

q(j+1
2 )+(j+1)(n−j−1)c

(k,�)

n−j−1(q), (5.38)
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with c(k,�)
n (q) = 0 for n < 0. As H(k,�)(z;q) is determined up to a multiplicative constant,

we let c
(k,�)

0 (q) = 1 without loss of generality.
We can solve the recurrence in (5.38) explicitly for (k, k)-restricted and (0,∞)-restricted

Lukasiewicz paths. The resulting q-series are summarised as follows.

Theorem 8

H(k,k)(z, q) = ∑∞
n=0

q
(
(k+1)n

2 )
(−zk+1)n

(qk+1;qk+1)n
(5.39)

and

H(0,∞)(z, q) = ∑∞
n=0

qn2−n(−z)n

(q;q)n
, (5.40)

with the q-product notation

(t;q)n =
n−1∏

j=0

(1 − tqj ). (5.41)

Note that this even makes sense for k = 0, where Euler’s product formula implies that

H(0,0)(z, q) =
∞∑

n=0

q(n
2)(−z)n

(q;q)n

= (z;q)∞ (5.42)

and hence

R(0,0)(z;a, q) = (1 − a + a(z;q)∞/(qz;q)∞)−1 = 1

1 − az
(5.43)

as trivially required.
More importantly, note that

H(0,∞)(z, q) = H(1,1)(qz2, q2) (5.44)

which implies that there must be a bijection between (0,∞)-restricted Lukasiewicz paths
and Dyck paths counted by length, contacts, and area. More precisely, this observation pro-
vides a generating function proof of the following theorem.

Theorem 9 There exists a bijection between (0,∞)-restricted Lukasiewicz paths of length
n and area m and Dyck paths of length 2n and area 2m + n, which preserves the number of
contacts.

We now give an explicit bijective proof of this theorem. Recall that Dyck paths have an
even number of steps, and the difference of their vertex coordinates is even. Dyck paths are
uniquely determined by their down steps.

Given a Dyck path w0w1 . . .w2n, for each integer j with 1 ≤ j ≤ n there is a unique
down-step starting at a vertex wij = (ij , hij ) with coordinate difference ij − hij = 2j . This
down-step gets mapped to vj = (j, hij −1). Necessarily hij ≥ 1, and the height between two
subsequent down-steps cannot decrease by more than one, i.e. hij+1 − hij ≥ −1. As there
is a down-step starting at (2n − 1,1), necessarily vn = (n,0). If we define v0 = (0,0), the
resulting path v0v1 . . . vn is therefore a Lukasiewicz path.
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Conversely, given a Lukasiewicz path v0v1 . . . vn, for each integer i with 1 ≤ i ≤ n we
map the vertex vi = (i, hi) to a down-step starting at the vertex w2i+hi−1 = (2i + hi −
1, hi + 1) (and the associated up-step, which is defined implicitly). Subsequent down-steps
are separated by precisely hi+1 − hi + 1 up-steps. vn = (n,0) implies that w2n = (2n,0),
and if we define w0 = (0,0) and augment with the intermediate up-steps, the resulting path
w0w1 . . .w2n is a Dyck path.

Clearly both mappings are injective, and therefore also bijective. One can easily check
that they are inverses of each other.

There is a one-to-one mapping between vertices of height zero, and as a vertex with
height h of a Lukasiewicz path gets mapped to a pair of vertices of a Dyck path at height h

and h + 1 (the starting vertices of an associated pair of up/down-steps). Therefore, a Dyck
path of area m gets mapped to a Lukasiewicz path of area 2m + n.

Alternatively, this mapping can be visualised by considering the figure below.

Due to the bijection to Dyck paths, the associated phase diagram can be found in [7].
For 0 < q < 1 paths are bound to the surface, while for q > 1 configurations with maximal
area dominate the ensemble irrespective of the value of a. Only for q = 1 does there exist a
genuine binding/unbinding transition when varying a.
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