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Abstract. We present an analysis of a partially directed walk model of a
polymer which at one end is tethered to a sticky surface and at the other end
is subjected to a pulling force at fixed angle away from the point of tethering.
Using the kernel method, we derive the full generating function for this model in
two and three dimensions and obtain the respective phase diagrams.

We observe adsorbed and desorbed phases with a thermodynamic phase
transition in between. In the absence of a pulling force this model has a second-
order thermal desorption transition which merely gets shifted by the presence of
a lateral pulling force. On the other hand, if the pulling force contains a non-zero
vertical component this transition becomes first order.

Strikingly, we find that, if the angle between the pulling force and the surface
is below a critical value, a sufficiently strong force will induce polymer adsorption,
no matter how large the temperature of the system.

Our findings are similar in two and three dimensions, an additional feature
in three dimensions being the occurrence of a re-entrance transition at constant
pulling force for low temperature, which has been observed previously for this
model in the presence of pure vertical pulling. Interestingly, the re-entrance
phenomenon vanishes under certain pulling angles, with details depending on
how the three-dimensional polymer is modeled.

Keywords: solvable lattice models, phase diagrams (theory), mechanical
properties (DNA, RNA, membranes, bio-polymers) (theory)
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1. Introduction

There is ongoing interest in the study of linear polymers and their conformal entropy
using directed and partially directed walk models, both from theoretical [1,2] and
experimental [3| perspectives. These models are of particular interest because it is often
possible to obtain exact solutions for their generating functions, partition functions and
free energy. Thus a precise understanding of the phase transitions that the models can
exhibit may be obtained, which can then be used to guide and interpret laboratory
experiments on physical polymers [3].

In appropriate physical settings, for example when the polymer undergoes surface
adsorption, good qualitative agreement has been shown between the phase behavior of
directed walk models and that of self-avoiding walk (SAW) models [4], the latter of which
exhibit more of the configurational possibilities available to real polymers, but are less
tractable as mathematical models. Under the presence of a pulling force, this is intuitive,
because the application of such a force to a physical polymer tends to straighten it, making
it behave more like a directed or partially directed path [5].

In this paper we consider a two-dimensional partially directed walk model for a
polymer which at one end is tethered to a sticky surface and at the other end is subjected
to a pulling force in a fixed direction away from the point of tethering. We then extend this
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model into three dimensions in two different ways. The first extension is ‘minimally three-
dimensional’, in that its projection onto the surface is fully directed and, as a consequence,
walks adsorbed in the surface are fully directed. This extension has previously been
considered in [6] for a purely vertical pulling force. The second three-dimensional extension
we consider is different from the first in that walks adsorbed in the surface are partially
directed. To our knowledge, this model has not been considered previously.

Another novelty in our model is in the variable angle with which the pulling force
may be applied to our tethered polymers. In similar previously published literature the
pulling force was restricted to be vertical [5]-[11], a limitation which does not apply to
the technology of optical tweezers which is used by experimentalists in ‘pulling force’
experiments carried out on real polymers. Changing the pulling direction has been
considered previously in anisotropic self-interacting models [12]-[14].

Our use of partially directed walks, rather than simpler directed models such as
Dyck, Ballot and Motzkin paths, is for the purpose of allowing the extra degree of
freedom required to enable polymers to extend horizontally when pulled upon with a
force containing a horizontal component.

2. Partially directed walks

Let Y = Z x Zso be the square integer lattice in the upper half-plane. Let p =
vpervi€e) - - -epvr, be a path of length L consisting of an alternating sequence of vertices
and edges such that each vertex v; € U and each edge e; := (vi—1,%;) is of one of the
following three types:

(0,1) a vertical step up
v — -1 =1 (1,0) a horizontal step across (2.1)
(0,-1) a vertical step down.

We impose three additional constraints on walks in our model. The first is tethering
to the origin, imposed by the condition vy = (0,0). The second is that paths are self-
avoiding, that is, an up step may not be immediately followed by a down step, or vice
versa. We call such paths tethered partially directed walks. The third constraint is that
paths must always start and end on a horizontal step. This latter constraint makes
negligible difference to the physics, and is introduced for computational convenience in
finding the generating function.

Geometrically relevant parameters of a walk are:

N := the number of horizontal edges in the walk, (2.2a)
M := the total number of vertical edges in the walk, (2.2b)
K := the number of horizontal edges of the walk lying in the surface, (2.2¢)
R := the number of vertical edges of the walk leaving the surface, (2.2d)
H := the final height of the walk. [(22e)
We define the weight of a partially directed walk to be

eNyM K Ry H. (2.3)
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H
Partially directed walk ending horizontally,
tethered at the origin and
/beginning horizontally Pulling force
_A(
(N,H)
N g KK K

Figure 1. A partially directed walk with weight 2!1yl7x%w3u3. For clarity in the
diagram, the weights on the edges leaving the surface are indicated visually by
dots on their initial vertices.

An example of a partially directed walk and its weight is illustrated in figure 1. Also
illustrated is a pulling force at an angle § away from the N axis.

Note that the conjugate pair of variables w and R, which keep track of vertical
departures from the surface, is introduced for later convenience in our consideration of our
second three-dimensional model. For the purposes of the two-dimensional and first three-
dimensional model, these variables are unnecessary, and setting w = 1 in the following
calculations simplifies them considerably.

Also note that setting w = k corresponds to considering a model in which vertices of
the walk that are in the surface are weighted. We have considered both edge and vertex-
weighted models and, apart from small shifts in the location of the critical points, we have
found negligible differences. For simplicity we only present results for the edge-weighted
models in this paper. Results for vertex-weighted models follow mutatis mutandis.

3. Exact solution of the generating function

We define a generating function

G(z,y, k,w; u) = Z Gy i i wEp (3.1)

N,M,K,R,H>0

in terms of the path weight function given in equation (2.3), where ¢y a .k rz counts the
number of different configurations with given parameters N, M, K, Rand H. A functional
relation for the generating function may be obtained by considering paths ending at a fixed
height. Suppressing the first four variables, we abbreviate G(u) := G(z, y, K, w; ).

We perform a combinatorial decomposition of the set of all walks with respect to
generation by the addition of ‘hooks’ and ending in a horizontal step. The ‘hooks’” are of
three kinds: ‘upwards’, consisting of arbitrarily many steps in the positive H direction,
followed by a single horizontal step; ‘trivial’, consisting of a single horizontal step; and
‘downwards’, consisting of arbitrarily many steps in the negative H direction, followed by
a single horizontal step. A walk consists of either a horizontal step, or is constructed by
appending a hook to an already existing walk.

N
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Due to the presence of the surface, the addition of arbitrarily long ‘downward hooks’
will result in illegal walks. This over-counting is corrected for by a subtraction described
below. Furthermore, additional terms are included to account for the surface interactions
corresponding to weighted edges lying within the surface, and weighted edges leaving the
surface.

A careful consideration of all the cases leads to a functional equation for the generating
function G(p). This functional equation is stated in lines (3.2a)-(3.2g), followed by a
detailed explanation of the individual terms.

Glp)=rz horizontal step at height 0 (3.2a)
+ G(u) (:c horizontal step at height > 0 (3.2b)
yu B .
. T vertical steps up, then horizontal (3:2¢)
Y/ " ;
& vertical steps down, then horizontal (3.2d)
1—y/n
- G(y) 7 g/ : T T removes walks descending below the surface (3.2¢)
+ Gy (k-1)x plus contact weights for edges in the surface (3.2f)

+ G(0)(w—1) i yi & plus contact weights for edges leaving the surface. (3.2¢)
—Yu

Since our paths are required to start and end in a horizontal step, the shortest possible
path consists of a single horizontal step, and is accounted for by line (3.2a). Lines (3.2b)-
(3.2d) account for longer paths created by concatenating paths ending at height H, as
encoded by the factor of G(u), with paths containing a single horizontal step and any
number of vertical steps. Line (3.2d) entails some over-counting, as it includes paths
which contain vertices below the upper half-plane, ¢{. This over-counting is compensated
for by line (3.2e), which removes from the count any paths containing edges strictly below
the N axis.

So far paths which touch but do not drop below the surface have been included
without a weight x on those edges in the path that lie in the surface. Line (3.2f) corrects
for this. Similarly, line (3.2g) corrects for the missing weight w on vertical edges whose
initial vertex lies in the surface.

The functional equation thus obtained is amenable to the so-called kernel method [15].
First we simplify the functional equation somewhat by observing that G(0) and G(y) are
simply related by

G(0) = rz(1 + G(y)), (3.3)

due to the fact that any walk ending with a horizontal step in the surface must either be
a single step walk or have been obtained by dropping H steps down from height H and
adding a horizontal step in the surface.
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Using equation (3.3), the functional equation is expressed in equation (3.4) below in
a form suitable for solution by means of the kernel method:

kernel

’(1_ 1_y$a_y2) )‘G(#) = Kz (1+(w—1)x1 ol )

(b +1/p) + 92 —yu
L yp
—m(l_y/#—-ﬁw(w—l)nml_y#) G(y). (3.4)

The coefficient of G(1) is called the kernel. Setting the kernel equal to zero gives a
quadratic equation for u:

yp? —(l—z+y* +ap’)u+y =0. (3.5)

Of the two roots, one is physically meaningful—we call it x, and denote the non-
physical root by fin,. The correct root may be identified by expanding the power series
and choosing the one with correct asymptotic behavior for G as y — 0. Equivalently,
the correct choice may be identified as the one which is consistent with the combinatorial
interpretation of G(y). Using this criterion we choose the root whose series expansion
contains no negative exponents, and has only non-negative coefficients in that expansion.
Choosing the correct root u = u, gives

K:(]- + (w - l)x(y.u'p/(l - yﬂp))) (3 6)
/(1 = y/up) — & — (w = Drz(yuy/(1 — yup)) '

Thence, back-substituting G(y) into equation (3.4) gives the full general solution for
G(u); explicitly

G(z,y, k,w; =naz[<1+ el Vg2 )—(14— w—lxM—>
(z,y 1) (w-1) = (w—1) T

1/(1—y/p) =k = (w = Dsz(yp/(1 — yu)) J
1/(1—y/up) — k& — (w— Drx(yup/(1 — yup))

a1~ -
: [l_l—y(u+1/u)+y2] (3.7)

Gly) =

where

=z +y?+ay?) — V42 + (1 — z + y* + 2y?)?

i 5 (3.8)

4. The path-length generating functions

In this section we introduce the changes to the generating function (3.7) that are needed
for our three different models. We aim to write the generating function such that we
can start to analyze the finite-step partition functions Z;,, for walks of length L, which
are coefficients of t* in an expansion G = Y, ., t*Z, where ¢t is a new variable that is
conjugate to the path length L.

doi:10.1088/1742-5468,/2010/09,/P09018 6
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4.1. The 2D model

The finite-step partition function Zj, for walks of length L in two dimensions, is the
coefficient of ¢¥ in the following expansion of the path-length generating function:

Glo=My=trw=Lu=> t"Z(\ux) (4.1)

L21

under the substitutions
(x,y, kywy ) e~ (At £ K, 1 ), (4.2)

so that ¢ is conjugate to the path length, A is conjugate to the horizontal position and u
is conjugate to the vertical position. In this way we only give a contact weight to edges
in the surface. In section 5.1 we analyze the singularities of equation (4.1) to determine
the asymptotic growth of Z;, in two dimensions.

An alternative model would be obtained by weighting all vertices in the surface,
leading to the consideration of G(At,t, k,x;u). We have completed both analyses and
have found no significant difference, hence we only present the analysis of the case defined
by equation (4.1),

4.2. The first 3D model

Our first three-dimensional model is obtained by a substitution which replaces any step
in the NV direction with a step in either the N; or Ny direction. The projection of the
resuiting walk onto the Nj—-N, plane is fully directed. This model is equivalent to the bi-
colored walk model considered in [9]. This corresponds to a substitution in the generating
function variables given by

(Y, Byws i) — (At + Mo, 8 K, 15 ) (4.3)

so that ¢ is conjugate to path length, A; is conjugate to the Ni coordinate, A, is conjugate
to the Ny coordinate and p is conjugate to the H coordinate. A three-dimensional partially
directed walk of our first kind is illustrated in figure 2 and the asymptotic growth of Z,
in three dimensions is analyzed in section 5.4.

4.3. The second 3D model

Our second three-dimensional model is obtained by a substitution which has the following
effect. Given a two-dimensional partially directed walk in the N-H plane, we insert
arbitrariiy long sequences of steps perpendicular to the plane containing the original walk,
in positions prior to each step in the original walk, while observing self-avoidance in the
three-dimensional walk thus created. In this three-dimensional context we rename the
original N axis with a new name, Ny, and create a new axis, Ny, perpendicular to both
the N and H axes. The projection of the resulting walk onto the N,-N, plane is no
longer self-avoiding; likewise with the No—H plane. The projection of the resulting walk
onto the Vi~H plane is partially directed. The set of valid walks in our second 3D mode}
is a strict superset of the set of valid walks in our first 3D model.

[n order to construct these three-dimensional walks we introduce a Z-coloring of the
two-dimensional partially directed walks that we have already defined, hy associating with

doi:10.1088,/1742-5468,/2010/09/P0O9018 7
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Partially directed walk ending horizontally,
tethered at the origin and

beginning horizontally Pulling force

Figure 2. A tethered, partially directed walk in three dimensions, on a sticky
surface with contact weights x within the N;—Ny surface and a pulling force
applied at fixed angle ¢ away from the N; axis and angle § away from the
N1 N3 surface. This walk ends at position (N7, Na, H) = (8,4,0) and has weight
AP,

H

o

1] -1 1 N

Figure 3. A Z-colored walk with colors —2,—1,0, 1,2 occurring, where —2 is
shown in blue, —1 is shown in green, 0 is (implicitly) black, 1 is red and 2 is
orange.

each edge a color drawn from the set Z. These Z-colored walks are somewhat analogous
to the two-colored walks in [9], in which every horizontal edge was assigned one of two
colors. In our context we assign all possible edge colorings to all possible walks. Now,
given a walk with a fixed coloring, we insert before an edge of color &, a sequence of |k|
edges in the positive or negative Ny direction, as given by the sign of k. In this way,
every coloring of a two-dimensional walk produces a unique three-dimensional walk. An
example of a Z-colored walk is given in figure 3. The corresponding three-dimensional
walk is illustrated in figure 4.

The associated substitution rules for the weights can be derived as follows. In the
bulk (that is, for edges whose initial vertex does not lie in the surface), a k-colored vertical
edge of weight y gets replaced by 1 + |k| edges of combined weight t'** and summing
over all colors leads to the substitution
1+t
1—t

doi:10.1088/1742-5468/2010/09/P09018 8
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H Partially directed walk ending horizontally,

tethered at the origin and

beginning horizontally N Pulling force
P!

N

Figure 4. A tethered, partially directed walk in three dimensions, on a sticky
surface with contact weights & within the N-N, surface and a pulling force
applied at fixed angle # within the N;-H plane. This walk ends at position
(N1, No, H) = (7,4,0) and has weight A7t32x8,0.

k| edges of combined

and a k-colored horizontal edge of weight z gets replaced by 1 +
weight At'H* leading to

T = AM—, 4.5

T3 (4.5)

[n the surface {that is, for edges both of whose vertices lie in the surface), a k-colored edge

of weight kx gets replaced by 1 + |k| edges of combined weight Axt(xt)*, and summing
over all colors leads to the substitution

I+ xt
KL — AKL- i . (4.6)
I — &t

Finally, a k-colored edge that leaves the surface, having weight wy, gets replaced by 1+ k|
edges of combined weight ¢(xt)®*!, and summing over all colors leads to the substitution

1+ &t
wy — o5 (4.7)

1 —xt

The generating function for this three-dimensional model (or, equivalently, for the Z-
colored walks), is therefore given by the following substitution:

L+t 1+t (I=t)(1+st) (L—8) 1+ k) )

(2, 30, Ko ) (/\t t

—e T =" UL —rt) L+ i) <Rty (4.8)

5. Singularity analysis and phase diagrams

Phase transitions in the two-and three-dimensional models, as path length tends to infinity,
occur when singularities of the generating function closest to the origin coincide.

We calculate the singularities of the generating function by considering the
discriminant of the quadratic equation (G — Gp) (G ~ Ghap) = G? (Gp+ Gup)G + GG
satisfied by the generating function, where G, and G, are respectively the physical and

doi:10.1088/1742-5468/2010/09/P09018 9
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non-physical solution, corresponding to substituting roots p, and u., of equation (3.5)

into (3.7).
The discriminant, in original variables, is
where
A B D+ Dy tay -2+ Dy +ay—1+7) (5.2)
1 (—p+y+yp? — g2 — 2py? + o) -
and
R eyl = =y + ) = my (L= gt ) = p(1 - 5 =y (53)

(52221 — wy) {1 — w) + sy (1 + = — K2) — £K2(2 ~ W - KwW) — Kw + 1)

5.1. The 2D model: singularity analysis

In two dimensions, with path-length generating variables given by substituting (4.2) into
equation {5.1), the discriminant of the quadratic for G becomes

RENE(ut=1)2(kt — (k= D))t — 1)t -+ DM (A= 1)t + D)2 + (A + 1)t - 1)

AN =
ple = 1A+ 2= (A + o+ (L)t + 12 (eM5 — (r/(k — 12 — &At + 1)2
(5.4)
We find that the relevant singularities of G in ¢ are given by roots of
M+ A+ 1Dt -1 (5.5a)
)\ts—f—tg—(/\*i*,u,*%hlw)t—!-l (5.50)
I

KA — % — wAL+ 1. (5.5¢)

K —
The first gives rise to algebraic square-root singularities, whereas the latter two give rise
to simple poles.
When p =1 in (5.5b), it factorizes as

(- +N+Dt=1) (5.6)
and thus contains (5.54) as a factor. Thus for u == 1 the algebraic singularities coincide
with poles given by the roots of (5.5b). This coincidence implies the occurrence of
divergent square-root singularities (as opposed to convergent square-root singularities
when g # 1). When g > 1, the pole given by the smallest root in ¢ of (5.50) dominates
the algebraic singularities.

The simple poles arising from the smallest roots in ¢ of (5.58) and ({5.5¢) coincide
when
rp(r = 1= rp’) .
A= 5 (5.7)
(r = Dltr = 17 ~ w2

which defines a swrface in the space defined by A, ¢ and &, and is shown in figure 5.
This surface separates the space into two regions and a boundary between them. In one
region, the smallest root in ¢ of (5.5b) is the singularity closest to the origin. In the other
region, the smallest root in ¢ of (5.5¢) is the singularity closest to the origin. On the
boundary surface, both of these singularities coincide. To interpret the meaning further,
it 1s convenient to change to physical variables.

doi:10.1088/1742-5468/2010/09/P09018 10




Forcing adsorption of a tethered polymer by pulling

Figure 5. The surface in phase space given by equation (5.7), relating A, u and
A

5.2. The 2D model: physical variables

The relevant physical variables for our system are the temperature T of the statistical
mechanical ensemble of polymers and the force F by which the polymer is pulled at a
fixed angle # with respect to the horizontal axis. This leads to horizontal and vertical
force components F, = F'cosf and F,, = Fsin 8, respectively. The energy E of a polymer
under the influence of a pulling force is given by

E=KJ-NF, - HF, (5.8)

where K'J = (number of contacts) x (energy per contact), NF, = (horizontal distance) x
(horizontal force) and HF, = (vertical distance) x (vertical force).
The Boltzmann weight of such a configuration is then given by
¢~B/NT  o~(KJ=NEsmHE)/KT (5.9)

which after scaling, such that the Boltzmann constant & = 1 and the attractive energy
J = —1, becomes
e—E/kT - J%K)\N' H’ (510)

where
s el/T: % a= e(FcosB)/T) L= e(F'sinH)/T. (511)

The critical surface in terms of the physical variables, whose equation is determined
by substituting equations (5.11) into (5.7), is illustrated in figure 6.

The surface in figure 6 is indicative of a phase transition between an adsorbed and
a desorbed state for the polymer being modeled. This interpretation will be confirmed

doi:10.1088/1742-5468,/2010/09/P09018 B
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3 1.5

Figure 6. The 2D model: critical surface in physical variables T, F and . Slices
through this surface at constant angle ¢ are shown in figure 7.

in section 5.3 where we plot the fraction of the polymer which is in contact with the
surface, for various pulling angles between 0° and 90°. As will be seen, that part of phase
space which is behind the critical surface (as pictured in figure 6) corresponds to a state
of adsorption, in which a positive fraction of the polymer is in contact with the surface.
That part of phase space which is in front of the critical surface as pictured corresponds
to a state of desorption.

5.2.1. General observations. Some features of the desorption transition become clearer
when considering slices through the surface at constant pulling angle, leading to
temperature—force desorption curves as shown in figure 7.

When no force is applied, the polymer is adsorbed at low temperature and becomes
desorbed as the temperature increases past a critical value. This thermal desorption
occurs at

T =1/log(1 +v2/2) ~ 1.87 (5.12)

as can be computed by setting force equal to zero, i.e. letting 4 = A = 1 in equation (5.7).
Naturally, in the context of zero force, there is no dependence on the angle. When a
force is applied and pulling is in a purely vertical direction, the force favors desorption,
as expected. This may be seen by tracing upwards either through the front of the phase
surface, as pictured in figure 6, or equivalently through the leftmost curve within the
temperature—force plots in figure 7. (The area to the left of a curve in the temperature—
force plot corresponds to a state of adsorption and the area to the right to desorption.) As
is also intuitive, pulling with a purely horizontal angle favors adsorption, since horizontally
stretched polymers will favor adsorption. This may be seen by considering either the back
of the phase surface, as pictured, or the rightmost curve in the temperature—force plot.

doi:10.1088/1742-5468/2010/09/P09018 12
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F 24

=
—
- S
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Figure 7. The 2D model: temperature—force desorption transitions at different
pulling angles from purely vertical to purely horizontal pulling in increments of
9°. The leftmost curve corresponds to vertical pulling at 90° and the rightmost
curve corresponds to horizontal pulling at 0°.

5.2.2. Crritical angles. Perhaps surprisingly, we see that there is a non-zero critical angle
below which pulling will never induce desorption no matter how great the force, and will
eventually induce adsorption. To determine this value, we compute the angle for which
the temperature—force curve has a vertical slope at F' = 0. The force-temperature plots
in figure 7 show this value to be about 27°; and in fact the critical angle is

0 = tan~'(1/2) ~ 26.6°. (5.13)
At zero temperature, the transition to desorption occurs when
1
F= ——— 5.14
sinf — cos (5.14)

Hence, once 6 < 45°, no zero-temperature desorption occurs.

5.3. The order parameter

To confirm that there is indeed a transition between desorbed and adsorbed phases, we
consider the fraction
1
C = lim —(K) (5.15)

L—oo

of the polymer that is in contact with the surface, which is an order parameter for the
transition. In the desorbed state, we expect C = 0, whereas it will be positive in the
adsorbed state. For a polymer lying entirely in the surface C = 1. A second-order phase
transition between an adsorbed and a desorbed state will be reflected in a smooth change

doi:10.1088/1742-5468/2010/09/P09018 13
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of C, whereas a first-order phase transition will be indicated by a jump of C from zero to
a non-zero value.
We calculate C from

dlogt.
_ 1
. dlogk’ (8:1)

i.e. from the change of the critical fugacity ¢, with respect to the interaction weight . In
figure 8 we show the temperature—force dependence of C at various fixed pulling angles
ranging from vertical to horizontal in decrements of 18°. For zero force, we see that C
changes continuously with temperature, indicative of a second-order phase transition. As
shown in the bottom-right diagram of figure 8, the transition remains second order when
a horizontal pulling force is applied, and only the location of the transition shifts. On the
other hand, as shown by all the other diagrams of figure 8, the transition becomes first
order as soon as there is a non-zero vertical component of the pulling force. Note that,
once adsorbed, the value of C is independent of the pulling force F' and angle 6.

Thus, figure 8 confirms that there is indeed a desorption phase transition, as indicated
above.

5.4. The first 3D model: physical variables

According to the substitution (4.3), we now have variables A; conjugate to horizontal
variable NV} and A; conjugate to the other horizontal variable N,. The singularity analysis
that was carried out for two dimensions in section 5.1 is nearly unchanged, since it amounts
to replacing A with A; + A2 in equation (5.4).

The physical variables for three dimensions are now given by the substitutions
B s BI/T, )\1 — e(FcosBCOSqﬁ)/T‘ )\2 — e(FcosBsiné)/T} 1= e(FsinG)/T (5'17)

where, as before, T is temperature, F' is force and 6 is pulling angle upwards away from
the base surface. The extra variable ¢ is the component of pulling angle measured away
from the N; axis in the NN, plane.

As for the two-dimensional case discussed above in subsection 5.2, we consider
temperature—force desorption curves at constant vertical pulling angles 8. In figure 9
we show the resulting diagrams for two different horizontal pulling angles ¢ = 0° and
¢ = 45°. The pictures are qualitatively similar to figure 6 for two dimensions, with a few
interesting differences.

The phenomenon of reentrance is observable in both diagrams of figure 9, as is seen
by the shape of the temperature-force curves for steep angles. As may be observed in
either diagram of the figure, when pulling vertically with a force F slightly larger than one,
the polymer is desorbed at sufficiently high temperature, gets adsorbed upon decreasing
the temperature, but then desorbs again when the temperature is decreased even further
towards zero.

Notably, there is a difference between the two diagrams, in that in the left diagram
(¢ = 0°) the re-entrance phenomenon becomes weaker and disappears upon decreasing 6,
whereas in the right diagram (¢ = 45°) the re-entrance phenomenon persists up until a
critical value of @, at which zero-temperature desorption disappears completely, is reached.

Re-entrance has been observed before in related models, see, for example, [11].
An explanation of the occurrence of re-entrance is provided by a zero-temperature
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Figure 8. The order parameter C, the fraction of polymer adsorbed onto the
surface, as a function of temperature 7" and force F, for pulling angles # = 90°,
72°, 54°, 36°, 18° and 0° from top left to bottom right.
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Figure 9. The first 3D model: shown are temperature—force desorption
transitions for horizontal pulling angle ¢ = 0° (left) and ¢ = 45° (right). In
each diagram the curves correspond to different vertical pulling angles # from
purely vertical to purely horizontal pulling, in increments of 9°. The leftmost
curve corresponds to vertical pulling at 90° and the rightmost curve corresponds
to horizontal pulling at 0°.

entropy argument, which shows that the critical force changes for small temperature T
linearly as
F=1+4TS§ (5.18)

where S is the configurational entropy available to the walks adsorbed onto the two-
dimensional surface.

In this three-dimensional model walks adsorbed onto the surface are fully directed.
When pulling at a horizontal angle ¢ = 45°, all 2% possible adsorbed configurations of
walks of length L are equally likely, and hence the configurational entropy log 2 is positive.
This effect is clearly visible in the temperature—force diagram via the positive slope of the
curves for low temperature.

When pulling at a horizontal angle ¢ # 45°, there is a preferred direction for the
stretched walk, hence the configurational entropy is zero. This effect is visible in the
temperature—force diagram for ¢ = 0, where a non-vertical pulling angle § immediately
leads to a horizontal slope of the curves for low temperature. We argue that this effect is
ultimately responsible for the disappearance of the re-entrance phenomenon.

As for the two-dimensional model, we can calculate several quantities exactly. For
example, the critical value of thermal desorption is given by

T =1/log(7/8 + V17/8) ~ 3.03. (5.19)

For ¢ = 45° the non-zero critical angle below which pulling cannot induce desorption and
will eventually induce adsorption is given by
8 = tan~'((1 + V17/17)v2/4) = 24°, (5.20)
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zero-temperature desorption occurs when

2
= , 521
2sinf — v/2cosd 021

and the critical angle below which no zero-temperature desorption occurs is
f = tan™(v'2/2) ~ 35°. (5.22)

5.5. The second 3D model: singularity structure and physical variables

After the substitution (4.8), we obtain variables as in the two-dimensional model, i.e. we
only vary the vertical pulling angle  (analogous to letting ¢ = 0 in the first 3D model).
The singularity analysis that was carried out for two dimensions in section 5.1 needs
to be done carefully, as the substitution (4.8) potentially changes the phase diagram.
The resulting algebraic equations become rather large and cumbersome, for example the
equation corresponding to the surface given by equation (5.7) for the two-dimensional
model now becomes an algebraic equation in A, x and u which involves 932 monomials.
We are therefore restricted to performing a numerical analysis.
The physical variables are
e el/T, 3} e e(FCOSG)/T, p= e(Fsinﬁ)/T (523)

where, as before, T' is temperature, F is force and @ is the pulling angle upwards away
from the base surface.

We again consider temperature—force desorption curves at constant pulling angles 8
away from the Ny—N plane. In figure 10 we show the resulting diagram. The picture
is qualitatively very similar to the diagram for pulling at ¢ = 0° in figure 9 for the first
three-dimensional model.

The phenomenon of re-entrance is again observable in figure 9. Similar to what
was observed in the temperature—force diagram of the first three-dimensional model for
¢ = 0, a non-vertical pulling angle § immediately leads to a horizontal slope of the curves
for low temperature and ultimately to the disappearance of the re-entrance phenomenon
for sufficiently shallow pulling. We argue that this is again due to the fact that, with
pulling as described, a stretched polymer adsorbed onto the surface at T = 0 has zero
configurational entropy.

6. Conclusion

Naively, one might expect that pulling sufficiently hard on a polymer tethered to a
horizontal surface, at any angle containing a non-zero vertical component away from that
surface, would eventually affect desorption. We have shown that in our models this is not
the case, and that pulling with any positive angle below a certain critical value will induce
adsorption. With our study of three-dimensional models, we have also shown how the re-
entrance phenomenon, which is present in force-induced polymer desorption, is affected
by changing the entropy of the adsorbed polymer due to pulling with a horizontal force
component. Interestingly, in semi-flexible polymers, which are modeled on a lattice by
weighting bends, hence making the polymer stiffer, re-entrance is affected in a somewhat
similar manner [9]. It would be interesting to extend our study by including the effect of
stiffness.

doi:10.1088/1742-5468,/2010/09/P09018 SV ¢



Forcing adsorption of a tethered polymer by pulling

T

Figure 10. The second 3D model: shown are temperature-force desorption
transitions for different vertical pulling angles # from purely vertical to purely
horizontal pulling, in increments of 9°. The leftmost curve corresponds to vertical
pulling at 90° and the rightmost curve corresponds to horizontal pulling at 0°.
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