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a b s t r a c t

Recently it has been shown that a two-dimensionalmodel of self-attracting polymers based
on attracting segments displays two phase transitions, a θ-like collapse between swollen
polymers and a globular state and another between the globular state and a polymer
crystal. On the other hand, the canonical model based on attracting monomers on lattice
sites displays only one: the standard tricritical θ collapse transition. Here we consider the
attracting segment model with the addition of stiffness and show that it displays the same
phases as the canonical model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The canonical description of the thermodynamic states of an isolated polymer has a reference high temperature
disordered state known as the ‘swollen coil’ or ‘extended state’ which is described by theN → 0 of themagnetic O(N)model
and correspondingly by the N → 0 of the ϕ4 O(N) field theory [1]. The lattice model of self-avoiding walks is a good model
of this situation where in both two and three dimensions the fractal dimension of the polymer df is less than the dimension
of space and also less than the fractal dimension of simple random walks (which is 2). The values of df = 1/ν, where ν is
the exponent describing the scaling of the radius of gyration of the polymer with its length, are 4/3 in two dimensions [2]
and 1.702(1) in three dimensions, have been well studied [3]. It is expected that if the temperature is lowered then the
polymer will undergo a collapse at one particular temperature, called the θ-temperature. At temperatures lower than the
θ-temperature the fractal dimension of the polymer attains that of space, that is df = d. The standard description of the
collapse transition is a tricritical point related to the N → 0 limit of the ϕ4–ϕ6 O(N) field theory [4–6]. Thermodynamically
this implies that there is a second-order phase transition on lowering the temperature: the specific heat exponent α is
conjectured to be−1/3 in two dimensions [7] and 0 in three dimensions with a logarithmic divergence of the specific heat.
In two dimensions the fractal dimension of the polymer is expected to be df = 7/4 [7]. The low temperature state has
been likened to a liquid drop; it is compact but disordered [8]. The corresponding lattice model which displays this collapse
θ-transition is the Interacting Self-Avoiding Walkmodel (ISAW) [9,10] where an attractive potential is associated with pairs
of sites of the walk adjacent on the lattice though not consecutive along the walk. The ISAW model is the canonical model
of polymer collapse.
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Fig. 1. A self-avoidingwalkwith the interactions of the attracting segment (AS)model shown as intertwined curves between bonds of thewalk on opposite
sides of the squares of the lattice. Also shown is an example of a stiffness segment pair which obtains a stiffness energy in our generalisation.

Fig. 2. Estimated phase diagram for the square lattice semi-flexible ISAWmodel where βis is proportional to the energy of nearest-neighbour interactions
and βss is proportional to the energy of stiffness.

More recently two other simplemodels of a single polymer have been studied. These have been introduced in the context
of biopolymers where hydrogen bonding plays an important role [11], and the interacting residua lie on partially straight
segments of the chain. The first one, the Interacting Hydrogen Bondmodel (IHB) [12–14], modifies the ISAWmodel such that
a pair of sites on the self-avoiding walk acquires a hydrogen-like bond potential if the sites are (non-consecutive) nearest
neighbours, as in the ISAW model, and each site lies on a straight section of the walk. This model displays, in contrast to
ISAW, a single collapse transition which is first order in both two and three dimensions. Here the low temperature state is
an anisotropic ordered compact phase that is described as a polymer crystal.
The secondmodel introduced to account for hydrogen bonding is the Attracting Segmentsmodel (AS) [15–17] (also known

as ‘interacting bonds’). It is a lattice model based upon self-avoiding walks where an attractive potential is assigned to bonds
of the walk that lie adjacent and parallel on the lattice (though not consecutive along the walk), see Fig. 1. This model has
been less extensively studied on regular lattices – it has been studied on the square lattice [17] – though twophase transitions
have been identified, one of which is identified as the θ-point.
Crucially, there is a differentmodification of the ISAWmodel that displays twophase transitions for a range of parameters,

namely the semi-flexible ISAWmodel [18–21]. Here two energies are included: the nearest-neighbour site interaction of the
ISAW model and also a stiffness energy associated with consecutive parallel bonds of the walk (equivalently, a bending
energy for bends in the walk). This has been studied on the cubic lattice by Bastolla and Grassberger [18]. They showed that
when there is a strong energetic preference for straight segments, this model undergoes a single first-order transition from
the excluded-volume high temperature state to a crystalline state. On the other hand, if there is only a weak preference for
straight segments, the polymer undergoes two phase transitions. On lowering the temperature the polymers undergoes a
θ-point transition to the liquid globule followed at a lower temperature by a first-order transition to the frozen crystalline
phase. Recent work [22] on the semi-flexible ISAWmodel on the square lattice displays a similar phase diagram (see Fig. 2)
though the transition between the globule and the frozen state has been seen to be second order.
It would seem reasonable to conjecture that the phases and phase transitions seen in the semi-flexible ISAW model

are essentially those seen in both the IHB model and the AS model. On the other hand the addition of stiffness to the
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IHB model has been seen to change little of the behaviour of that model [22]. Importantly, the IHB model was recently
extended [23,24] to a hybrid model (IHB-INH) that includes both the hydrogen-like bond interactions and non-hydrogen-
like bond interactions, with separate energy parameters. When the non-hydrogen bonding energy is set to zero the IHB
model is recovered. If both energies are set to be the same value then the ISAW without stiffness is recovered. For large
values of the ratio of the interaction strength of hydrogen bonds to non-hydrogen bonds it was found that a polymer will
undergo a single first-order phase transition from a swollen coil at high temperatures to a folded crystalline state at low
temperatures. On the other hand, for any ratio of these interaction energies less than or equal to one there is a single θ-
like transition from a swollen coil to a liquid droplet-like globular phase. For intermediate ratios two transitions can occur,
so that the polymer first undergoes a θ-like transition on lowering the temperature, followed by a second transition to
the crystalline state. In three dimensions it was found that this second transition is first order, while in two dimensions
they found that it is probably second order with a divergent specific heat. In other words, by adding an energy to both the
hydrogen-like and non-hydrogen-like interactions a phase diagram similar to the one for the semi-flexible ISAW is found.
We note that the IHB model has been generalised on the cubic lattice in such a way that two different crystalline phases
were observed [14].
Here we bring together some of the pieces of this puzzle by studying the AS model in the presence of stiffness on the

square lattice. We concentrate our study in two dimensions where only one type of crystalline phase has been observed.

2. Our study

2.1. Semi-flexible attracting segments model

Our semi-flexible attracting segments model (semi-flexible AS model) is a simple self-avoiding walk on square lattice,
with self-interactions as in the ASmodel [15–17] and a stiffness (or equivalently bend energy) added. Specifically, the energy
of a single chain (walk) consists of two contributions (see Fig. 1): the energy−εas for each attracting segment pair, being a
pair of occupied bonds of the lattice that are adjacent and parallel on the lattice and not consecutive along the walk; and
an energy −εss for each stiffness segment pair, being a pair of bonds consecutive along the walk that are parallel. A walk
configuration ϕn of length n has total energy

En(ϕn) = −mas(ϕn) εas −mss(ϕn) εss, (2.1)

where mas denote the number of attracting segment pairs and mss denotes the number of stiffness segment pairs. The
partition function is defined then as

Zn(βas, βss) =
∑
mas,mss

Cn,mas,msse
βasmas+βssmss , (2.2)

where βas = εas/kBT and βss = εss/kBT for temperature T and Boltzmann constant kB. Cn,mas,mss is the density of states,
which we have estimated by means of Monte Carlo simulations.

2.2. Simulations

On the square lattice we performed simulations using the FlatPERM algorithm [25], estimating the density of states up
lengths for n = 128 over the two parameters mas and mss. We have also estimated the end-to-end distance as a measure
of the size of the polymer: this enables us to estimate the fractal dimension of the polymer via estimation of the exponent
ν. We are unable to reliably estimate the entropic exponent γ . The density of states allows us to calculate the internal
energy and the specific heat, or equivalently, the mean values and the fluctuations ofmas andmss, respectively. This allows
to locate phase transitions through the possible divergences in the specific heat. To detect orientational order, we estimated
the anisotropy parameter [18]. In two dimensions, denoting the number of bonds parallel to the x-, and y-axes by nx and ny,
respectively, we define

ρ = 1.0−
min(nx, ny)
max(nx, ny)

(2.3)

to be the anisotropy parameter. In a system without orientational order, this quantity tends to zero as the system size
increases. A non-zero limiting value less than one of this quantity indicates weak orientational order with nmin ∝ nmax,
while a limiting value of one indicates strong orientational order, where nmax � nmin.
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Fig. 3. Phase boundaries based upon data at length 128. The boundarieswere found by looking for themaximum in fluctuation in the number of as contacts
(the left boundary) and the number of ss segments (the right boundary).

Fig. 4. The end-to-end distance 〈R2e 〉 divided by N
2ν for the extended phase in 2d, for (βas, βss) = (0.5,−0.5). We used three different values of ν centred

around the expected 0.75.

2.3. Results

Fig. 3 shows the peak positions of the fluctuations in mas and mss at length 128 from simulations on the square lattice.
It is clear from shorter lengths that some of these peaks are asymptotically diverging. We therefore have a finite size
approximation to a phase diagram in this figure. While the collapsed phase seems to be small on this diagram, it is
thermodynamically stable. Except for small shifts in the location of the transition lines, we do not expect any significant
changes to the phase diagram in the thermodynamic limit.
To characterise the possible phases in each region we have considered the scaling of the end-to-end distance. For small

βas we find that the exponent ν is close to 3/4: specifically we find df = 1.33(1) for (βas, βss) = (0.5,−0.5) (see Fig. 4).
On the other side of the first curve separating small βas from larger βas we find that ν is close to 1/2 no matter how large

βas becomes: at points (βas, βss) being (1.8,−0.5), (2.3,−0.5) and (3.0,−0.5)we find df = 2.00(1) (see Fig. 5). Hence the
two phases to the right of the leftmost curve are dense.
To distinguish the two low temperature phaseswe havemeasured the anisotropy parameter.We find that the anisotropy

parameter is tending to zero for values of βas smaller that the right boundary and tending towards one for values of βas larger
that the right boundary. That is, it tends to zero in the swollen and globular phases and one in the crystal phase. In Fig. 6 we
show the anisotropy parameter at fixed βss = 1.5 and at fixed βas = 2.0 plotted for three different polymer lengths. There
are stronger corrections to scaling in the globule-to-crystal transition evident.
We therefore surmise that for high temperatures the polymer is in the swollen phase,while at intermediate temperatures

the polymer may be in a globular state, and for low enough temperatures always enters the anisotropic crystalline state.
One can compare the finite size phase diagram that we have to that of the semi-flexible ISAWmodel [18,22], see Fig. 2. Apart
from a shift of boundaries, so that for βss = 0 there is only one phase transition, the two diagrams are remarkably similar.
Let us now focus on positive βss where straight segments of the walk are favoured. For definiteness let us consider

βss = 1.5. From Fig. 3 we expect to see a single phase transition on varying βas from the swollen phase at low βas to
the crystalline state at large βas. This is indeed what we observe when considering the fluctuations in mas. Fig. 7 shows the
fluctuations ofmas scaled by N2 (proportional to the specific heat per monomer divided by a factor of length) plotted against
a scaling βas: they display a single point at which this quantity converges, indicating a strong first-order-like divergence in
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Fig. 5. The curves show the behaviour of the end-to-end distance at three points, (1.8,−0.5), (2.3,−0.5) and (3.0,−0.5), in the phase diagram. These
are expected to cover both the collapsed ‘globule’ phase and the crystal phases. In all three cases we observe linear scaling with the length, which is in
good agreement with theory prediction that νcollapsed = 0.5 in two dimensions.

Fig. 6. The anisotropy parameter ρ for βss = 1.5 (left) and βas = 2.0 (right) for polymer lengths n = 64, 128 and 256. For βss = 1.5 it is converging to 0
for small βas and to 1 for large βas , changing over roughly at βas = 0.4. For βas = 2.0 it is converging to 0 for small βss and to 1 for large βss , changing over
roughly at βss = −0.5.

Fig. 7. A plot of the fluctuations per monomer divided by N in the number of attracting segment contacts (as) at βss = 1.5 with the horizontal axis scaled
as ((βas − β

(c)
as )N). We have used β

(c)
as = 0.424(3). Shown are lengths 64, 128 and 256.

the specific heat per monomer. This is in accord the nature of the swollen-to-crystal transition in the semi-flexible ISAW
model [18,26]: it is first order.
We now examine negative βss, where turns in the walk are favoured. Having identified the phases here to be swollen and

globular in nature wemay expect that the associated transition should be in the universality class of the θ-point [7] with its
specific heat signature beingweak (α < 0). Let us refer to this transition point asβθas(βss). It is difficult to see a transitionwith
a convergent specific heat singularity at the lengths considered here. Our data indicates aweak second-order-like transition,
certainly not first order, with the transition clearly weakening with length. Corrections-to-scaling do not allow an exponent
analysis.
Finally we have tried to examine the globule-to-crystal transition that occurs for large enough βas on varying βss, or

for some range of βss about zero at large negative values of βas (larger than βθas(βss)). In the semi-flexible ISAW model the
globule-to-crystal transition [22] has been found to be second order. This transition between low temperature phases has
yet to be carefully characterised and the simulations here did not shed further light on it.
It is also instructive to consider the phase diagram of the extended interacting hydrogen bonding model [23]. While the

different type of parameters make comparisons indirect, we note that the same phases occur and same phase transitions
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as the two semi-flexible models discussed in two dimensions. This supports the idea that regardless of how stiffness is
introduced in the interacting polymer model, these three phases will occur in an appropriate parameter space. To make this
conclusionmore concrete one can realise that by enlarging the parameter space of concern in themanner considered in [16]
the ISAWmodel, the IHB and the ASmodels are all specialisations of a more general model. Nowwe have seen that with the
addition of a further stiffness parameter the general phase structure of the more general model should still contain these
three phases and phases transition discussed above.
While the previous arguments focus on the general phase structure, it is worth noting that details of the phase diagram

depend sensitively on how attraction and stiffness is incorporated into the lattice model. For example, while stiffness does
not significantly affect the location of the θ-transition in the semi-flexible ISAW model, stiffness enhances the occurrence
of neighbouring attracting segments in the semi-flexible AS model. This leads to the globule–coil transition occurring at
increasing values of βas as βss decreases, as shown by our simulations, see Fig. 3.
In this article we have analysed the semi-flexible attracting segments model of polymer collapse in two dimensions and

shown that it has a phase structure in common with the standard model of semi-flexible ISAWwhich interacts via nearest-
neighbour occupied sites. This phase structure is also in common with extended hydrogen bonded polymer models in two
dimensions. In future work it would be interesting to consider the three-dimensional case and understand the connection
to the work on various O(n) models of polymer collapse [27,28].
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