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a b s t r a c t

We investigate the addition of stiffness to the lattice model of hydrogen-bonded polymers
in two and three dimensions. We find that, in contrast to polymers that interact via
a homogeneous short-range interaction, the collapse transition is unchanged by any
amount of stiffness: this supports the physical argument that hydrogen bonding already
introduces an effective stiffness. Contrary to possible physical arguments, favouring bends
in the polymer does not return the model’s behaviour to that comparable with the semi-
flexible homogeneous interaction model, where the canonical θ-point occurs for a range
of parameter values. In fact, for sufficiently large bending energies the crystal phase
disappears altogether, and no phase transition of any type occurs. We also compare the
order-disorder transition from the globule phase to crystalline phase in the semi-flexible
homogeneous interaction model to that for the fully-flexible hybrid model with both
hydrogen and non-hydrogen like interactions. We show that these phase transitions are
of the same type and are a novel polymer critical phenomena in two dimensions. That
is, it is confirmed that in two dimensions this transition is second-order, unlike in three
dimensions where it is known to be first order. We also estimate the crossover exponent
in two dimensions and show that there is a divergent specific heat, finding φ = 0.7(1)
or equivalently α = 0.6(2). This is therefore different from the θ transition, for which
α = −1/3.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

When modelling a single polymer in dilute solution by a lattice self-avoiding walk [1–3] the effects of solvent mediated
intra-polymer interaction are often included by assigning an energy to each non-consecutive pair of monomers lying on
the neighbouring lattice sites: the interaction is homogeneous in that in does not depend on shape of the two parts of the
polymer containing the interacting monomers. This is the well-studied Interacting self-avoiding walk (ISAW) model which
is the standard model of polymer collapse using self-avoiding walks. If the energy is repulsive the polymer behaves as a
swollen chain (the so-called excluded-volume state) regardless of temperature and one says that it is in a good solvent.
When the energy is attractive, and the temperature is low enough, the chain becomes a rather more compact globule [2,
4], reminiscent of a liquid droplet: this is also known as the poor solvent situation. The transition point between these two
phases is called the θ-point; it is awell studied continuous phase transition (seeRef. [5] and references therein). However, the
mapping ofmonomers onto lattice sites ignores the natural rigidity of real polymers. An energy for bends in the self-avoiding
walk can be introduced to take account of this feature. The model of semi-flexible polymers has been investigated mostly in
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three dimensions [6–8]. In particular, Bastolla and Grassberger [6] investigated semi-flexible interacting self-avoidingwalks
(semiflexible ISAW ) on the cubic lattice, which interact via all nearest-neighbours, as in the θ-point model, and included the
bending energy. They showed that when there is a strong energetic preference for straight segments, this model undergoes
a single first-order transition from the excluded-volume high-temperature state to a crystalline state. Intriguingly, if there
is only a weak preference for straight segments, the polymer undergoes two phase transitions: on lowering the temperature
the polymers undergoes the θ-point transition to the liquid globule followed at a lower temperature by a first-order
transition to the frozen crystalline phase. In two dimensions, the transition between the globule and the frozen state has
been studied in Hamiltonian walks, and there it seems to be a continuous one [9].
The modelling of polymers in solution changes as soon as we want to describe any biological system (e.g. proteins), in

which the hydrogen bonding plays an important role [10]. One of the main features of the bonding is that the interacting
residua lie on a partially straight segments of the chain. Hydrogen-like bonding was first modelled on the cubic and square
lattices using Hamiltonian paths by Bascle et al. [11]. There a monomer acquires a hydrogen-like bond with its (non-
consecutive) nearest neighbour if both of them lie on straight sections of the chain.Wenote in passing that hydrogenbonding
can give rise to other structures in proteins, such as alpha helices. Note that the identification of a single contact of this type
with a single hydrogen bond is only valid if fully-flexible polymers are considered; otherwise the contact represents an
agglomeration of such bonds. The interacting self-avoiding walk modified to have only such interactions will be referred
to as the hydrogen-like bonding model, or rather IHBmodel. The IHBmodel was studied in mean-field approximation [11]
and a first-order transition from a high-temperature excluded-volume (swollen) phase to a quasi-frozen solid-like phase
was found in both two and three dimensions. Hence this would indicate that it is a different type of transition from the θ-
point. Note also that the low temperature phase was found to be anisotropic whereas the collapsed globule of the standard
θ-point model is isotropic. The IHB model on the square lattice was studied directly by Foster and Seno by means of the
transfer matrix method [12] and by Krawczyk et al. [13] on both the square and cubic lattice using a Monte Carlo method. In
both of these studies a first-order transitionwas found between an excluded-volume (swollen-coil) state and an anisotropic
ordered compact phase in two and in three dimensions, again in opposition to the θ-point [2].
However, the IHBmodel was recently extended [14] to a hybrid model (IHB–INH) that includes both the hydrogen-like

bond interactions and non-hydrogen like bond interactions, with separate energy parameters. When the non-hydrogen
bonding energy is set to zero the IHB model is recovered. If both energies are set to be the same then the ISAW without
stiffness is recovered. For large values of the ratio of the interaction strength of hydrogen-bonds to non-hydrogen bonds, a
polymer will undergo a single first-order phase transition from a swollen coil at high temperatures to a folded crystalline
state at low temperatures. On the other hand, for any ratio of these interaction energies less than or equal to one there is a
single θ-like transition from a swollen coil to a liquid droplet-like globular phase. Importantly, for intermediate ratios two
transitions can occur, so that the polymer first undergoes a θ-like transition on lowering the temperature, followed by a
second transition to the crystalline state. In three dimensions it was found that this second transition is first order, while in
two dimensions it is probably second order with a divergent specific heat. In other words, at least in three dimensions, by
adding an energy to both the hydrogen-like and non-hydrogen like interactions a phase diagram similar to the one for the
semi-flexible ISAW is obtained.
Various issues then arise. Firstly it is worth studying the addition of stiffness to the IHB model since stiffness clearly

affects the type of phases that occur in the ISAW model. Moreover, one could argue that since in the IHBmodel interactions
occur only between straight segments of the walk, an effective stiffness has already been introduced: one could then go
further and argue that favouring bends may result in behaviour such as that in the ISAW model. Note, however, that
stiffness effects the overall probability of straight segments not just close to each other on the lattice, and therefore
stiffness does not simply renormalise the hydrogen-bonding interaction strength. Secondly, it is worth investigating the
semi-flexible ISAW model in two dimensions to check if the similarity of the IHB–INH phase diagram to the semi-flexible
ISAW extends to that dimension. In particular, given the existence of the same three phases (as we shall find) whether the
globule-crystal transition is of the same second order type as in the IHB–INH model. Finally the more general relationship
between these three potentials (nearest-neighbour interaction, hydrogen-like bonding and stiffness) on the phase structure
of the model polymers is worth pursuing. Hence, in this paper we investigate via Monte Carlo simulations the effect of
adding stiffness to the interacting hydrogen bonding model and compare this to adding stiffness to the canonical ISAW
model. Intriguingly we find that favouring stiffness does not change the single transition found in the IHB model without
stiffness. However, for a sufficiently large bending energy favouring bends the transition temperature is found to go to
zero, and for larger ratios of bending energy to hydrogen bonding energy no phase transition occurs. We then compare the
globule-crystal phase transition in the semi-flexible ISAW model on the square lattice (on the cubic lattice they are both
first-order) to that of the IHB–INH model and show that the exponents are most likely the same: we also estimate these
exponents.
In general, we have considered various restrictions of a model of three parameters where stiffness is added to the

hydrogen-bond interactions and non-hydrogen-bond interactions. In our conclusions we argue that only three phases exist
in the larger parameter space: an excluded-volume dominated state (where the polymer is ‘swollen’), a disordered globular
state where the polymer is in a condensed liquid-like drop and a crystalline state.
The paper is organised as follows. In Section 2 we explain more carefully details of the models considered. In Section 3

we consider the semi-flexible interacting hydrogen bond model. In Section 4 we consider the semi-flexible version of the
canonical interacting SAWmodel andwe compare our results to those from amodel that has different energies for hydrogen



106 J. Krawczyk et al. / Physica A 388 (2009) 104–112

Fig. 1. Stiffness sites and non stiffness sites on the square lattice.

Fig. 2. The partition of the types of nearest-neighbour contacts into hydrogen-bonds and non-hydrogen-bonds for the square lattice is shown. Rotations
of these are also possible.

Fig. 3. Hydrogen-bond contacts for the simple cubic lattices.

and non-hydrogen nearest-neighbour interactions. In Section 5 we investigate a semi-flexible interacting polymer where
there are no hydrogen bonds. We end with some conclusions about the most general model defined in Section 2.

2. Definitions

Let us define a general model that contains each of the models considered as sub-cases via restricting parameters.
We begin with a self-avoiding walk on the square and simple cubic lattices. The walk consists of a sequence of occupied

lattice sites joined by steps of the walk. A walk of n steps occupies n+1 sites. Consider the sites of the lattice occupied by the
walk. When two sites of the walk are adjacent on the lattice and not consecutive along the walk, so as not to be joined by
a step of the walk, we refer to this pair of sites as a nearest-neighbour contact. Additionally, let us refer to two consecutive
steps that follow the same lattice direction as a stiff step-pair, so that there are three consecutive occupied sites along a line
on the lattice, and the site in the centre of this trio to be a stiffness site (see Fig. 1).
Now, partition the possible types of contact into two classes: when they occur between stiffness sites then we refer

to these as hydrogen-bond contacts, and all others are non-hydrogen-bond contacts. In Fig. 2 the partition of the types of
nearest-neighbour contacts for the square lattice is shown. In Fig. 3 the hydrogen-bond contacts (only) are shown for the
cubic lattice.
We now add an energy to the self-avoiding which consists of three contributions: an energy for each hydrogen-bond

contact −εhb, an energy of non-hydrogen-bond contact −εnh and an energy for stiff step-pairs −εss. The total energy of a
walk configuration ϕn of n steps is

En(ϕn) = −mhb(ϕn) εhb −mnh(ϕn) εnh −mss(ϕn)εss, (2.1)
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Fig. 4. A sample walk configuration with the various type of interaction highlighted for the square lattice.

wheremhb denotes the number of of hydrogen-bond contacts,mnh denotes the number of non-hydrogen-bond contacts, and
mss denotes the number of stiffness sites in the walk configuration (see Fig. 4).
Wewill denote the total number of all nearest-neighbours interactions asmis, where it is equal to the sum of the number

of the two types of interaction considered in our full model, that ismis = mnh +mhb.
The inverse temperature is denoted as β = 1/kBT , where kB is the Boltzmann constant and T the absolute temperature.

We define for convenience βhb = βεhb, βnh = βεnh and βss = βεss. The partition function is then given by

Zn(βhb, βnh, βss) =
∑

mhb,mnh,ms

Cn,mhb,mnh,mss e
βhbmhb+βnhmnh+βssmss (2.2)

with Cn,mhb,mnh,mss the density of states. Canonical averages are calculated with respect to this density of states.
Our results are for the following models:

• the semi-flexible interacting hydrogen-bonding model (semi-flexible IHBmodel) where βnh = 0,
• the semi-flexible interacting non-hydrogen-bonding model (semi-flexible INH model) where βhb = 0,
• and the semi-flexible interacting self-avoiding walk model (semi-flexible ISAW model) where βhb = βnh.

We remind the reader that the semi-flexible ISAW model on the simple cubic lattice has previously been studied by
Bastolla and Grassberger [6].
We compare our results to those concerning the previously studied [14] model where different energies are assigned to

hydrogen-bond contacts and non-hydrogen-bond contacts, though not to stiffness sites, namely

• the Interacting hydrogen-bonding — Interacting non-hydrogen-bonding model (IHB–INH model) where βss = 0.

All the simulations in this paper use a Monte Carlo technique, known as FlatPERM [15], which is well suited to the study
of self-avoiding walks on the simple cubic and square lattices with interactions. This technique allows for the estimation of
quantities at all values of an interaction parameter by the estimation of the appropriate ‘density of states’: e.g. from Eq. (2.2)
the estimation of Cn,mhb,mnh,mss would allow the calculation of canonical averages for any value of the parameters βhb, βnh
and βss. On the other hand, each new parameter increases the computational cost by at least a factor of n (being the range
of the variable — e.g. mhb when including βhb). Therefore, so as to obtain data for reasonable length walks it is necessary to
restrict simulations to one or two interaction parameters.

3. Semi-flexible IHBmodel (βnh = 0)

The semi-flexible IHBmodel has interactions of the hydrogen-bonding type parameterised by βhb and a stiffness energy
parameterised by βss. That is, we have Z IHBn (βhb, βss) = Zn(βhb, 0, βss). We have simulated the semi-flexible IHBmodel on the
square and simple cubic lattice, estimating an appropriate density of states Cn,mhb,mss , so that averages can be performed for
all values of the parametersβhb andβss. We have estimated 〈mhb〉 and 〈mss〉, which are directly related to the internal energy,
and the variances in these averages which are related to the specific heat of the model. These ‘two parameter’ simulations
were completed up to n = 128 steps.
Let us start by considering the square lattice data. As has been previously found [12,13] at βss = 0, we find that for

any fixed value of βss there is strongly growing peak in the variance of mhb at a single value of βhb. This is indicative of a
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Fig. 5. Distribution of internal energy for the square lattice semi-flexible IHB model at the estimated transition point β(c)hb (βss; n) when βss = 0.5 (left),
and βss = −0.5 (right), using n = 128 and n = 64.

Fig. 6. Plot of the finite size phase boundary for the semi-flexible IHBmodel on the square lattice (left). The plane of the parameters of the semi-flexible
IHB model in the more general three parameter space: the two phases are denoted by a dark (red) shading for the crystalline phase and a mid-density
(green) shading for the extended swollen polymer phase (right).

phase transition at some position β(c)hb (βss) and as the normalised peak of the variance is growing close to linearly with n
irrespective of βss it is indicative of a first order phase transition. To confirm this we considered the distribution ofmhb at the
finite-size transition pointβ(c)hb (βss; n). In Fig. 5we show this distribution atβ

(c)
hb (0.5; 128),β

(c)
hb (0.5; 64) andβ

(c)
hb (−0.5; 128),

β
(c)
hb (−0.5; 64). The deepening bimodal distributions reinforce our conclusion that the transition is first order regardless
of βss.
By considering the scaling of the end-to-end distance and the anisotropy parameter (see Ref. [14]) we have verified that

for βhb << β
(c)
hb (βss, n) the extended phase exists while for βhb � β

(c)
hb (βss, n) the anisotropic crystal phase is observed.

In Fig. 6 a plot of β(c)hb (βss; 128) is given in the two-dimensional space of βhb, and βss. Next to that in Fig. 6 the same curve
is plotted in the three-dimensional space of βhb, βnh and βss.
The results for the cubic lattice are completely analogous and the finite size phase diagram is given in Fig. 7.
On both lattices we therefore have found that the addition of positive stiffness to the interacting hydrogen-like

bond model leaves the single phase transition from a swollen phase at high temperatures to a crystalline phase at low
temperatures unchanged.When favouring bends, so that εss and βss are negative, then when any transition occurs it is again
of a similar type as the fully-flexible model. However, there is a range of λ = εss/εhb such that no transition occurs. This is
relative easy to understand: hydrogen bonds only occur between two stiffness sites which are suppressed by large negative
values of εss. Let us focus on the square lattice. On the square lattice for λ = εss/εhb < −1 no phase transition occurs on
lowering the temperature. At zero temperatures the ground state for λ < −1 is a walk consisting only of bends with energy
zero (this state should have a positive entropy). For −1 < λ the ground state is one with long folds (β-like sheets) and a
bulk energy −n(εhb + εss) which is negative so long as εhb > −εss. This state has zero entropy. The difference in entropy
accounts for the apparent shift of the asymptote of the phase boundary from βhb = −βss to βhb = −βss + c in Fig. 6.

4. Semi-flexible ISAW (βnh = βhb)

The semi-flexible ISAW model has interactions of the hydrogen-bonding type parameterised by βhb = βis and also
of the non-hydrogen-bonding type of equal strength parameterised by βnh = βis. The model also has a stiffness energy
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Fig. 7. Plot of the finite size phase boundary for the semi-flexible IHBmodel on the cubic lattice.

Fig. 8. Plot of the finite size phase boundary for the semi-flexible ISAW model on the square lattice (left). The plane of the parameters of the semi-flexible
ISAW model in themore general three parameter space: the three phases are denoted by a light (blue) shading for the globular phase, amid-density (green)
shading for the extended swollen polymer phase and a dark (red) shading for the crystalline phase (right).

parameterised by the independent parameter βss. That is, we have Z ISAWn (βis, βss) = Zn(βis, βis, βss). For the semi-flexible
ISAW model we focus our attention on the square lattice which has not previously been investigated. On the square lattice,
we performed simulations for n = 128 for two parameters βis and βss as well as for the one parameter βss for constant
βis = 0.7 for lengths up to n = 512. The line βis = 0.7 was chosen so as to focus on the transition between two collapsed
phases: the collapsed-globule and the crystal.
Let us begin with the two parameter simulations. By considering the maximum eigenvalue of the matrix of fluctuations

ofmis andmss we have mapped out a finite sized phase boundary, see Fig. 8.
The boundaries clearly divide the phase space into three phases. Once again, by considering the scaling of various

quantities such as the end-to-end distance at fixed points deep within each suspected phase we are satisfied that the
three phases are the same as in the IHB–INH model [14] on the square lattice: a swollen phase with ν = 3/4, and two
collapsed phaseswhere ν = 1/2. In one phase the typical configurations are clearly anisotropic, looking like foldedβ-sheets,
indicating that it is a crystalline phase. Hence the phase structure and phase diagram is similar to the three-dimensional
case. We have attempted to locate the triple point which seems to around (βss, βis) = (2.0, 0.3). However using different
methods has resulted in quite different estimates so we do not propose any error estimate on these values.
For convenience and comparison the corresponding finite size phase boundary diagrams for the IHB–INH model studied

by Krawczyk et al. [14] are given in Fig. 9.
Since the extended-globule θ transition has been well studied we have focussed on the two other transitions: extended-

crystal and globule-crystal. Both these transitions are first order on the cubic lattice [6]. In the IHB–INH model [14] the
extended-crystal was also first order on both the square and cubic lattice. So, first let us consider this transition in the semi-
flexible ISAW model on the square lattice. By considering the scaling of the fluctuations inmss and the distribution ofmss we
confirm that the first order nature of this transition. Fig. 10 demonstrates that the data is consistent with first order scaling
at the transition point of the swollen to crystal phases. In Fig. 11 the maximum of fluctuations for the transition between
the globule and crystalline phases for the semi-flexible and IHB–INH models are plotted together. The semi-flexible data are
taken from several one parameter runs with βis = 0.7 at lengths up to n = 512 and the IHB–INH data from simulations at
βnh = 1.0 at lengths up to 256. While the data still has some corrections to scaling present the divergence of the peak of
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Fig. 9. Plot of the finite size phase boundary for the fully-flexible IHB–INH model on the square lattice (left). The plane of the parameters of the semi-
flexible INH model in the more general three parameter space: the three phases are denoted by a light (blue) shading for the globular phase, a mid-density
(green) shading for the extended swollen polymer phase and a dark (red) shading for the crystalline phase (right).

Fig. 10. Plots of the fluctuations per monomer divided by N in the number of ISAW contacts (mis) at βss = 2.0 for 2d with the horizontal axis scaled as
((βis − β

(c)
is )N). We have used β

(c)
is = 0.27. Shown are lengths 64, 128 and 256.

Fig. 11. Themaximumof fluctuations for the transition between the globule and crystalline phases for twomodels: semi-flexible ISAW (a) and the IHB–INH
(b) models. (The first curve (a) is shifted to show them next to each other.)

the fluctuations seem to be controlled by the same value of exponent. Ignoring corrections to scaling on the length range
128–256 would give us an estimate of the exponent controlling this divergence for the IHB–INH and semi-flexible ISAW
models respectively, of 0.41(2) and 0.43(2).
However, by being conservative with taking into account the corrections to scaling for the largest lengths we have

estimated the exponent to be 0.4(2). Now, this exponent is expected to be αφ where α is the specific heat exponent of
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Fig. 12. Plot of the finite size phase boundary for the semi-flexible INH model on the square lattice (left). The plane of the parameters of the semi-flexible
INHmodel in themore general three parameter space: the two phases are denoted by a light (blue) shading for the globular phase and amid-density(green)
shading for the extended swollen polymer phase (right).

the thermodynamic limit transition and φ is the crossover exponent. Additionally it is usually expected that 2 − α = 1/φ
so we have α = 0.6(2) and φ = 0.7(1).

5. Semi-flexible INH model (βhb = 0)

The semi-flexible INH model has interactions of the non-hydrogen-bonding type parameterised by βnh and a stiffness
energy parameterised by βss. That is, we have Z INHn (βnh, βss) = Zn(0, βhb, βss).
Given that we have investigated the effect of stiffness on the IHB model and previously [14] considered the IHB–INH

model [14] it was desirable to consider the effect of stiffness on the INH model for completeness.
When βss = 0 the INH model behaves exactly as the ISAW with a single collapse transition from the extended phase

at high temperatures to the globular collapsed phase at low temperatures. While it is more difficult to detect the θ point
in two dimensions since the specific heat exponent α < 0 it signature can still be seen in the specific heat data. We have
determined a finite size phase boundary β(c)nh (βss; n = 128) that can be seen in Fig. 12. We immediately see that while the
INH model behaves similarly to the ISAW model the addition of stiffness does not produce the same effect. At most, one
phase transition is found for any positive or negative stiffness energy.
On both lattices, we therefore have found that the addition of negative stiffness (effectively encouraging bends) to the

interacting non-hydrogen-bond model leaves the single phase transition from a swollen phase at high temperatures to a
globular phase at low temperatures unchanged. This can be simply understood by noting that most of the non-hydrogen-
bond contacts occur between bends in thewalk anyway. The transition temperature goes to zero as the stiffness energy goes
to negative infinity.
When favouring straight segments, so that εss and βss are positive, then when any transition occurs it is again of a similar

type as the fully-flexible model (that is θ-point-like). However, at least for λ = εss/εnh large enough no phase transition
occurs on lowering the temperature.
A similar argument to the one in Section 3 seems to hold: non-hydrogen-bond contacts do not occur between stiffness

sites which are favoured by large positive values of εss. We note that the zero temperature states are pathological and there
exist zero temperature phases transitions (rod-coil and rod-globule). Nevertheless it seems that the change in the zero-
temperature state on varying the parameters still accords with the position of the finite temperature swollen-globule phase
boundary. At zero temperatures the ground state for λ > 2 is a walk consisting only of straight segments with energy−nεss.
For 0 < λ < 2 the ground state consists of long zig-zag paths with each ‘zig’ and each ‘zag’ being made up of two steps (in
this way each straight segment is always adjacent to two bends) next to each other which have one non-hydrogen bond per
step and one stiffness parameter per two steps: the energy of this state is−nεhb − n

2εss. These two states cross energies at
λ = 2: this seems to explain the asymptote of the phase boundary in Fig. 12 for large positive εss.

6. Conclusions

Wehave investigated the effect of increasing stiffness and also enhancing bends on the latticemodel of hydrogen-bonded
polymers.Wehave found that in both cases if there is a phase transition it is unchanged from the fully-flexiblemodel: namely
a first order phase transitions occurs in both two and three dimensions.We also argue that if bending is sufficiently enhanced
no phase transition occurs at all. This is in contrast to the effect of adding stiffness to the canonical model of self-interacting
polymers where adding stiffness results in three phases: a high temperature excluded-volume dominated ‘‘swollen’’ phase,
a liquid-like globule phase and an anisotropic solid-like polymer crystal phase.We have investigated this semi-flexible ISAW
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Fig. 13. The phase boundaries found in the full three-dimensional phase space. We conjecture that only three phases occur in this larger space. we have
illustrated the phases in the planes βhb = 0 and βss = 0 in the quadrant where all the energies are positive: the three phases are denoted by a light (blue)
shading for the globular phase, a mid-density (green) shading for the extended swollen polymer phase and a dark (red) shading for the crystalline phase.

problem in two dimensions and shown that these three phases exist as they had previously been shown to exist in three
dimensions. We have investigated the globule-crystal transition on the square lattice more closely and found that unlike
three dimensions where it is first order but like another recently studied model, extending the hydrogen bonding model by
the addition of non-hydrogen bond interactions, the transition is second order with specific heat exponent α = 0.6(2). We
point out that these results are still derived from relatively short chains where large corrections to scaling are still apparent.
Putting together all the information at hand it is likely that in the three-dimensional phase space of hydrogen-bond,

non-hydrogen-bond nearest neighbour interactions and stiffness only the three phases already studied occur. In Fig. 13 all
the phase boundaries found when the energies are all positive are illustrated. One can the infer that for βhb and βnh small no
matter what the value of βss the extended phase exists. Also, one can infer that for large βnh the globular phase exists and
for large βnh the crystal phase exists. In this way, the partial results in the literature can now be understood.

Acknowledgements

Financial support from the Australian Research Council via its support for the Centre of Excellence for Mathematics and
Statistics of Complex Systems is gratefully acknowledged by the authors.

References

[1] P. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1971.
[2] P.-G. de Gennes, Scaling Concept in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.
[3] C. Vanderzande, Lattice Models of Polymers, Cambridge University Press, Cambridge, UK, 1998.
[4] J. des Cloizeaux, G. Janninck, Polymers in Solutions: Their Modelling and Structure, Oxford University Press, Oxford, UK, 1990.
[5] T. Prellberg, A.L. Owczarek, J. Phys. A: Math. Gen. 27 (1994) 1811.
[6] U. Bastolla, P. Grassberger, J. Stat. Phys. 89 (1997) 1061.
[7] T. Vogel, M. Bachmann, W. Janke, Phys. Rev. E 76 (2007) 061803.
[8] J.P.K Doye, R.P. Sear, D. Frenkel, J. Chem. Phys. 108 (1997) 2134.
[9] J.L. Jacobsen, J. Kondev, Phys. Rev. Lett. 92 (2004) 210601.
[10] L. Pauling, R.B. Corey, PNAS 37 (1951) 235, 251, 272, 729.
[11] J. Bascle, T. Garel, H. Orland, J. Phys. II France 3 (1993) 245.
[12] D.P. Foster, F. Seno, J. Phys. A: Math. Gen. 34 (2001) 9939.
[13] J. Krawczyk, A.L. Owczarek, T. Prellberg, A. Rechnitzer, Phys. Rev. E 76 (2007) 51904.
[14] J. Krawczyk, A.L. Owczarek, T. Prellberg, J. Stat. Mech. (2007) P09016.
[15] T. Prellberg, J. Krawczyk, Phys. Rev. Lett. 92 (2004) 120602.


	Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers
	Introduction
	Definitions
	Semi-flexible IHB model ( βnh = 0 )
	Semi-flexible ISAW ( βnh = βhb )
	Semi-flexible INH model ( βhb = 0 )
	Conclusions
	Acknowledgements
	References


