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Abstract. We provide the exact generating function for semi-flexible and super-
flexible interacting partially directed walks and also analyse the solution in detail.
We demonstrate that while fully flexible walks have a collapse transition that is
second order and obeys tricritical scaling, once positive stiffness is introduced
the collapse transition becomes first order. This confirms a recent conjecture
based on numerical results. We note that the addition of a force along the line
of the directness of the walk, in either case, does not affect the order of the
transition. In the opposite case where stiffness is discouraged by the energy
potential introduced, which we denote the super-flexible case, the transition also
changes, though more subtly, with the crossover exponent remaining unmoved
from the neutral case but the entropic exponents changing.
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1. Introduction

The collapse transition of an isolated polymer has continued to attract both theoretical
and experimental attention. The canonical lattice model of single polymer collapse has
been the self-avoiding walk with the addition of attractive potentials between non-bonded
nearest-neighbour sites of the walk. This is known as the interacting self-avoiding walk
(ISAW). This model has yielded many important theoretical aspects of the physical
problem though it is not exactly solved in the sense that the generating function of
partition functions has not been explicitly calculated, in two or three dimensions. An
exactly solved version of the model does exist, however, when the restriction of partial
directness is imposed on the configurations of the self-avoiding walk in two dimensions.
The model has been shown to display a tricritical-like collapse transition [1] as is predicted
for the unrestricted model, though with different exponents.

The interacting partially directed self-avoiding walk (IPDSAW) model, and a closely
related semi-continuous variant, on the square lattice were studied extensively in the early
1990s [2]–[5], [1, 6]. It was noticed that this problem is in a family of related problems
including lattice models of vesicles [7, 8] whose solution can be written in terms of q-Bessel
functions: moreover, direct correspondences occur between various models. Importantly,
key work associated with the asymptotic analysis of the functions that arise in this class of
problems was also completed [9]. Taken together these works completely solve and analyse
the generating function, and free energy, of the IPDSAW model. In particular, the location
of the collapse transition was found by Binder et al [2], while the exact generating function
was found by Brak et al [3] in terms of q-Bessel functions. The tricritical nature of the
collapse transition was elucidated by Owczarek et al [1], and the full asymptotics of the
generating function can be deduced from the work of Prellberg [9].

The addition of a stiffness parameter to mimic the effect of persistence length [10]
and a stretching parameter to model the pulling of a polymer by an external force has
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more recently been studied in the context of the ISAW model [11]. While a parameter
called a pulling force was not explicitly mentioned in the work on the IPDSAW it was
implicitly part of the set up of the model, as we shall see below, since the horizontal
and vertical steps of the walk were given separate fugacities. It was shown [1, 9]
that differentiating the horizontal and vertical fugacities does not affect the nature
of the collapse transition. Separate analysis of the IPDSAW model with the force
interpretation being explicit confirms this [12]. On the other hand, the addition of a
stiffness parameter so that the polymer is now semi-flexible was not included in the
original definition of the model. The IPDSAW has recently been reconsidered by Zhou
et al [13]. They used an approximation scheme and Monte Carlo data to analyse this
model. From this they conjectured that positive stiffness changes the order of the
collapse transition to first order. The three-dimensional semi-stiff ISAW model was
studied by Bastolla and Grassberger [10] some time ago, and they showed that the
collapse transition does indeed become first order, though only for a finite amount of
applied stiffness. That is, small stiffness parameter values do not change the nature of
the collapse transition. A related model shows similar behaviour [14]. In this paper
we solve exactly the IPDSAW with stiffness parameter, which we shall now refer to as
the variably flexible interacting partially directed walk (VFIPDSAW), and analyse the
model in the full parameter space. We show that not only does the collapse transition
become first order when the stiffness parameter is positive (semi-flexible case) but it is also
modified, though still tricritical, when the stiffness parameter is negative (super-flexible
case).

1.1. The model

Consider a square lattice and a self-avoiding walk that has one end fixed at the origin on
that lattice. Now restrict the configurations considered to self-avoiding walks such that
starting at the origin only steps in the (1, 0), (0, 1) and (0,−1) directions are permitted:
such a walk is known as a partially directed self-avoiding walk (PDSAW). For convenience,
we consider walks that have at least one horizontal step. Let the total number of steps
in the walk be L and the number of horizontal steps be N . Hence, we have L ≥ N ≥ 1.
An example configuration along with the associated variables of our model are illustrated
in figure 1. We begin by recalling the definition of the IPDSAW model and then add the
‘stiffness parameter’, the addition of which defines our model.

IPDSAW. To define the IPDSAW model we add various energies to properties of this walk
and hence Boltzmann weights to the walk. Firstly, any two occupied sites of the walk
not adjacent in the walk though adjacent on the lattice are denoted ‘nearest-neighbour
contacts’: see figure 1. An energy −J is added for each such contact. We define a
Boltzmann weight ω = eβJ associated with these contacts, where β = 1/kBT and T is the
absolute temperature. An external horizontal force f pulling at the other end of the walk
adds a Boltzmann weight pN and p = eβfa0 , with a0 being the length of a lattice bond.
The partition function ZIPDSAW

L (ω, p) of the IPDSAW model is

ZIPDSAW
L (ω, p) =

∑

PDSAW of length L

ωmpN , (1.1)
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x ω

y

stiffness parameter sites

nearest-neighbour “contact”

σ

Figure 1. An example of a partially directed walk of length L = 21 and
horizontal length N = 8 (the bold black path) with the four parameters x
associated with horizontal steps, y associated with vertical steps, ω associated
with nearest-neighbour ‘contacts’ (shown as (red) intertwined curves) and the
stiffness parameter σ associated with the sites (highlighted in grey (green))
between two consecutive horizontal steps. The weight of the configuration shown
is x8y13ω6σ2.

where m is the number of nearest-neighbour contacts in the PDSAW. The generating
function

ĜIPDSAW(z, ω, p) =

∞∑

L=1

ZIPDSAW
L (ω, p)zL , (1.2)

so z can be considered as fugacity for the steps of the walk and the generating function a
‘generalized partition function’ [1]. In previous work [1] an alternate generating function
GIPDSAW(x, y, ω) was considered, where instead of a force parameter p, horizontal steps
were weighted with a fugacity x, while vertical steps were given a fugacity y: see figure 1.
Hence we have

ĜIPDSAW(z, ω, p) = GIPDSAW(pz, z, ω). (1.3)

Clearly considering a separate horizontal fugacity is equivalent to considering a horizontal
pulling force at the level of generating functions.

VFIPDSAW. To define the VFIPDSAW we now add an energy −Δ to each site between
consecutive horizontal steps of the walk: see figure 1. Note that for Δ > 0 consecutive
horizontal steps are favoured and so this is the positive stiffness, or semi-flexible, regime,
while for Δ < 0 consecutive horizontal steps are discouraged so this is the negative
stiffness, or super-flexible regime. If � is the number of such ‘stiffness’ sites in a particular
IPDSAW then such a configuration is associated with an additional Boltzmann factor σ�,
where σ = eβΔ. That is, each configuration has weight ωmpNσ�. Note that one could
have equivalently chosen to weight every bend, or change of direction of the walk, with a
weight b, say. That is, each configuration has weight ωmpNbk. However, since the number
of such bends k is related to the number of horizontal straight segments, �, assuming for
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convenience at least one vertical step in the walk, as

� =
(2N − k − 1)

2
, (1.4)

then substituting σ = 1/b2 and setting p to pb2 gives the same weight for each configuration
(barring an overall factor of b).

The partition function for VFIPDSAW is defined as

ZVFIPDSAW
L (ω, p, σ) =

∑

PDSAW of length L

ωmpNσ�, (1.5)

while the generating function, analogously to the fully flexible case above,
GVFIPDSAW(x, y, ω, σ), is given as

GVFIPDSAW(pz, z, ω, σ) =
∞∑

L=1

ZVFIPDSAW
L (ω, p, σ)zL. (1.6)

Clearly one can recover the fully flexible case by setting σ = 1:

GIPDSAW(pz, z, ω) = GVFIPDSAW(pz, z, ω, 1). (1.7)

Setup. As we consider the VFIPDSAW model, from now on we shall drop the superscript
VFIPDSAW. The singularity structure of the generating function as a function of z
determines the free energy. The reduced free energy is defined as

κ(ω, p, σ) = − lim
L→∞

1

L
log [ZL(ω, p, σ)] (1.8)

and is given by

κ(ω, p, σ) = log zs(ω, p, σ), (1.9)

where zs(ω, p, σ) is the closest singularity (on the positive real axis) of the generating
function G(pz, z, ω, σ) in the variable z to the origin. Note also that

ZL(ω, p, σ) = [zL]G(pz, z, ω, σ) =
1

2
πi

∮
G(pz, z, ω, σ)

dz

zL+1
. (1.10)

In order to find the generating function it is advantageous to rewrite it in the following
way. We can describe the PDSAW configurations in a natural way through the length ri

of vertical segments between two horizontal steps, measured in the positive y-direction.
Each PDSAW begins with a vertical segment of height r1 followed by an horizontal step.
Thus, we associate to each configuration an N -tuple (r1, r2, . . . , rN) corresponding to a

configuration of total length L =
∑N

i=1 |ri|+ N . The energy due to the nearest-neighbour
contacts for each of these configurations is then

−J u(r1, r2, . . . , rN), (1.11)

where

u(r1, r2, . . . , rN) =

N−1∑

i=1

min(|ri|, |ri+1|)Θ(−riri+1) , (1.12)
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where Θ(r) is the Heaviside step function:

Θ(r) =

⎧
⎪⎨

⎪⎩

0 r < 0,

1/2 r = 0,

1 r > 0.

(1.13)

The number of ‘stiffness sites’ � is then given by the number of times ri = 0 for any
1 < i ≤ N .

We get the generating function by summing over all possible lengths as

G(x, y, ω, σ) =

∞∑

L=1

L∑

N=1

xN
∑

|r1|+|r2|+···+|rN |=L−N

yL−Nωu(r1,r2,...,rN )σ�, (1.14)

that is,

G(x, y, ω, σ) =
∞∑

N=1

xN
∞∑

M=0

yM
∑

|r1|+|r2|+···+|rN |=M

ωu(r1,r2,...,rN )σ�. (1.15)

2. Exact solution of the generating function

In order to derive an expression for G(x, y, ω, σ), consider the generalized partition
functions Gr = Gr(x, y, ω, σ) for walks that start with a vertical segment of height r,
so that

G(x, y, ω, σ) =
∑

r∈Z

Gr. (2.1)

Then we can concatenate these walks to get a recursion relation for Gr as follows:

Gr = xy|r|
{

1 + σδr,0G0 +
∑

s∈Z\{0}

ωu(r,s)Gs

}
. (2.2)

It follows that

G0 = x {1 + (σ − 1)G0 + G} , (2.3)

so that

G0 = xu {1 + G} , (2.4)

where

u =
1

1 − x(σ − 1)
. (2.5)

Using the symmetry Gr = G−r and then restricting to r ≥ 0, we can further simplify to

Gr = xyr

{
1 + σδr,0G0 +

∞∑

s=1

(1 + ωmin(r,s))Gs

}
, (2.6)

which will be the starting point of our investigation. Since r = 0 is now special we will
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need to consider r = 1 separately also:

G1 = xy

{
1 + G0 + (1 + ω)

∞∑

s=1

Gs

}
. (2.7)

Now using
∞∑

s=1

Gs = 1
2
(G − G0) (2.8)

gives

G1 = xy

{
1 +

(1 − ω)

2
G0 +

(1 + ω)

2
G

}
. (2.9)

Now using equation (2.4) we obtain

G1 = xy

{
(1 − ω)

2
+

(
(1 + ω)

2
+

(1 − ω)

2
xu

)
(1 + G)

}
. (2.10)

Hence the ratio G1/G0 can be written in terms of 1 + G. By solving for (1 + G) one
finds

1 + G =
(1 − ω)

2

[
uG1

yG0
−

(
(1 + ω)

2
+

(1 − ω)

2
xu

)]−1

. (2.11)

We will now derive a homogeneous second-order difference equation which we can solve
using the same ansatz used previously [1]. Using the scaling behaviour of the solutions,
we can eliminate one of the two linearly independent solutions. We then write the general
solution of (2.6) as an expression involving the quotient of two q-hypergeometric functions.

Taking differences in (2.6), we first eliminate the inhomogeneous term,

Gr+1 − yGr = δr,0xy(1 − σ)G0 + xqr+1

(
1 − 1

ω

) ∞∑

s=r+1

Gs. (2.12)

Here, we introduced for convenience the new variable q = yω. Upon taking differences a
second time, we are left with

(Gr+2 − yGr+1) − q(Gr+1 − yGr) = −δr,0qxy(1 − σ)G0 − xqr+2

(
1 − 1

ω

)
Gr+1. (2.13)

We now solve this equation for r ≥ 1 and subsequently solve for r = 0. In the case of no
interaction (ω = 1), the right-hand side of this equation is zero (for r ≥ 1) and we have
a simple homogeneous difference equation with constant coefficients. Its characteristic
polynomial P (λ) is

P (λ) = (λ − y)(λ − q) (2.14)

and the solution is given by Gr = A1y
r + A2q

r.
This motivates the ansatz [15]

Gr = λr

∞∑

n=0

qnrcn, (2.15)
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with cn = cn(x, q, ω) independent of r ≥ 1, which inserted into (2.13) gives

P (λ)c0 +

∞∑

n=1

qnr

(
P (λqn)cn + xq

(
1 − 1

ω

)
λqncn−1

)
= 0. (2.16)

This equation is solved by

P (λ) = 0, i.e. λ1 = y and λ2 = q, (2.17)

and, choosing c0 = 1,

cn =
n∏

m=1

−xq(1 − 1/ω)λqm

P (λqm)
=

(−xω(1 − 1/ω)λ)n q(
n
2)

(λω; q)n(λ; q)n
. (2.18)

Here we have used the standard notation

(x; q)n =

n∏

m=1

(1 − xqm−1). (2.19)

Defining

H(y, q, t) =
∞∑

n=0

q(
n
2)(−t)n

(y; q)n(q; q)n

, (2.20)

we now can write the general solution of (2.13), for r ≥ 1, as

Gr = A1y
rH

(
y, q, x

(
1 − 1

ω

)
q1+r

)
+ A2q

rH

(
qω, q, xω

(
1 − 1

ω

)
q1+r

)
. (2.21)

We remark that the function H is directly related to a basic hypergeometric function [16]

H(y, q, t) = 1φ1(0, y; q, t), (2.22)

which can be seen to be a limiting function of 2φ1 and that is the q-deformation of
the more familiar hypergeometric function 2F1. Analogously, the function H can be
understood (apart from some normalizing factors and seen by taking the limit q → 1) as
a q-generalization of Bessel functions. One can easily verify that H(y, q, t) satisfies the
following recurrence:

qH(y, q, t) + (tq − (y + q))H(y, q, qt) + yH(y, q, q2t) = 0. (2.23)

Returning to the analysis we see that, for |q| < 1, H(y, q, tqr) is uniformly bounded
in r, so that we can write

|Gr| ≤ const (qr + yr). (2.24)

This we insert into (2.6) and, assuming 0 < ω2y < 1 < ω, we get

|Gr| ≤ const yr

(
1 +

r−1∑

s=0

(ωq)s + ωr

∞∑

s=r

qs

)
(2.25)

≤ const yr(1 + (ωq)r) ≤ const yr. (2.26)
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As H(y, q, tqr) → 1 for r → ∞, we see that in fact A2 = 0. The reason for this is that
we obtained the homogeneous difference equation (2.13) by taking differences from (2.6),
thus introducing additional solutions.

We now note that the ratios Gr+1/Gr contain no unknown constants. In fact, defining

H(y, q, t) =
H(y, q, qt)

H(y, q, t)
, (2.27)

we find
Gr+1

yGr

= H
(

y, q, x

(
1 − 1

ω

)
q1+r

)
for r ≥ 1. (2.28)

Note in passing that successive ratios are related via the following recurrence for H(y, q, t)
derived from equation (2.23),

H(y, q, t) = q [y + q − tq − yH(y, q, qt)]−1 . (2.29)

In fact, the ratio G1/G0 is given by a very similar expression. For r = 0, the
recursion (2.13) can be rewritten as

(G2 − yG1) − q
(
G1 −

y

u
G0

)
= −xq2

(
1 − 1

ω

)
G1, (2.30)

from whence one can conclude that
uG1

yG0
= H

(
y, q, x

(
1 − 1

ω

)
q

)
. (2.31)

Inserting this ratio into equation (2.11) and substituting q = yω, we have

1 + G =
(1 − ω)

2

[
H(y, yω, x(ω − 1)y) −

(
(1 + ω)

2
+

(1 − ω)

2
xu

)]−1

. (2.32)

We note immediately that the stiffness parameter σ only enters (via u) in one term of this
expression. For σ = 1 (i.e. u = 1), this is exactly equation (4.27) in [1].

Our final expression for the solution of the generating function for the variably flexible
interacting partially directed walk in the variables z, ω, p, σ is therefore

1 + G =
(1 − ω)

2

[
H(z, zω, pz2(ω − 1)) −

(
(1 + ω)

2
+

(1 − ω)

2

pz

1 − pz(σ − 1)

)]−1

. (2.33)

As we will see below, the case q = 1 is important. From (2.29) it follows that H(y, 1, t)
is the root of a quadratic equation, and so

H(y, 1, t) =
1

2y

[
1 + y − t −

√
(1 + y − t)2 − 4y

]
, (2.34)

where the branch has been chosen such that H(y, 1, t) = 1 + O(t). There is an algebraic
singularity at (1+ t− y)2 = 4y and the solution is real-valued as long as (1+ t− y)2 ≥ 4y.

One can therefore solve for the generating function along the curve yω = 1 as

1 + G =
(1 − ω)

2

[
H

(
1

ω
, 1, x

(
1 − 1

ω

))
−

(
(1 + ω)

2
+

(1 − ω)

2
xu

)]−1

, (2.35)

which is now algebraic.
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3. Analysis of the phase diagram

3.1. General considerations

One can immediately observe that the generating function G has singularities at the
singularities of H(y, yω, x(ω−1)y) and when the denominator is zero, that is, at solutions
ωc(x, y, u) of

H(y, yω, x(ω − 1)y) =

(
(1 + ω)

2
+

(1 − ω)

2
xu

)
. (3.1)

There is an essential singularity of H(y, yω, x(1 − ω)y) when yω = 1. On the other
hand, when the denominator is zero, G has a pole, and the locus ωc(x, y, u) of this pole
depends analytically on the parameters as long as yω < 1. If there is no zero of the
denominator for yω < 1, then the closest singularity is given by the essential singularity
of H(y, yω, x(1−ω)y) at yω = 1 where the generating function converges. On this curve,
we obtain from (2.35) that there is an algebraic singularity at

ωa(x) =

(
1 + x

1 − x

)2

(3.2)

and for u > 1 a simple pole at

ωp(x, u) =
(1 + ux)(1 + 2x − ux)

(1 − ux)(1 − 2x + ux)
. (3.3)

These singularities coincide when u = 1, at which value the nature of the algebraic
singularity changes. Note that for u < 1 the pole disappears.

As stated above, for any fixed ω the generating function as a function of y either has
a pole given by the solution of ω = ωc(x, y, u) or has a singularity on the curve y = 1/ω.
Therefore, for u ≤ 1, ωc(x, y, u) meets the algebraic singularity ωa(x) as the curve yω = 1
is approached, whereas for u > 1, ωc(x, y, u) meets the pole ωp(x, u) as the curve yω = 1
is approached. To investigate the behaviour of G near the curve yω = 1 more closely, we
need the asymptotic behaviour of H(y, q, t) as q → 1. Away from the algebraic singularity,
i.e. for (1+ t−y)2 > 4y, we can use (2.29) to derive an asymptotic expansion in ε = 1− q,

H(y, 1 − ε, t) ∼
∞∑

n=0

H(n)(y, t)εn (3.4)

with the first terms given by H(0)(y, t) = H(y, 1, t) and

H(1)(y, t) =
H(0)(y, t)

yH(0)(y, t)2 − 1

[
1 + ytH(0)(y, t)

∂

∂t
H(0)(y, t) + (t − 1)H(0)(y, t)

]
(3.5)

= − 1

2y

(
1 +

y + t − 1√
(1 + y − t)2 − 4y

+
2yt

(1 + y − t)2 − 4y

)
. (3.6)

Close to the algebraic singularity at q = 1, the singularity structure is significantly more
complicated, but has been thoroughly elucidated in [9]. Using lemma 4.3 from [9], a
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Figure 2. The graph of f(z) = −Ai′(z)/Ai(z). The function f has a simple pole
at z = −2.3381 . . ., a zero at z = −1.0187 . . ., and is asymptotic to

√
z for large

z, which is plotted for comparison.

result completely analogous to theorem 5.3 in [9] can be obtained for H(x, q, t), i.e. an
asymptotic expansion in q = 1 − ε uniformly valid for all values of t and x, which reads

H(y, 1 − ε, t) =
1

2y

[
1 + y − t −

(
− Ai′(αε−2/3)

α1/2ε−1/3Ai(αε−2/3)

) √
(1 + y − t)2 − 4y

]

× (1 + O(ε)). (3.7)

Note that for ε → 0 the expression multiplying the square root in (3.7) tends to 1 as is
necessary. Here, α = α(y, t) is a function of y and t which is known exactly [9]. While the
precise form of α is rather cumbersome, it simplifies considerably near the critical point,
and we find

α(y, t) ∼
(

4

1 − (t − y)2

)4/3
(1 + y − t)2 − 4y

4
(3.8)

for small (1 + y − t)2 − 4y. This implies that here

H(y, 1 − ε, t) ∼ 1

2y

[
1 + y − t + ε1/3 Ai′(αε−2/3)

Ai(αε−2/3)

(1 − (t − y)2)2/3

21/3

]
. (3.9)

The behaviour of this expression is determined by the function f(z) = −Ai′(z)/Ai(z),
the graph of which is shown in figure 2. The large-z asymptotics allows for matching for
ε → 0 and positive α. For negative α, the argument of f is negative. As f(z) has a simple
pole at z = −2.3381 . . ., for any fixed α < 0 we have a pole at a finite value of ε. As α
tends to zero, the locus of this pole scales as ε2/3.
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3.2. Fully flexible case (Δ = 0)

This case is the one considered in our earlier work [1]. Here u = 1, and the simple pole
at ωc(x, y, 1) approaches an algebraic singularity at ωt = ((1 + x)/(1 − x))2 > 1, at which
the generating function diverges. In particular, we find

1 + G ∼
(
− Ai′(αε−2/3)

α1/2ε−1/3Ai(αε−2/3)

)−1
ω − 1√

(1 + ω + x(1 − ω))2 − 4ω
(3.10)

as ε = 1 − yω → 0, with α = α(1/ω, x(1− 1/ω)) given by (3.8). Near the transition, α is
small and we can write

1 + G ∼ −Aε−1/3 Ai(αε−2/3)

Ai′(αε−2/3)
, (3.11)

with A = (ω − 1)/[ω2 − (x(ω − 1) − 1)2]2/3(2ω)1/3. For ω = ωt, α = 0 and G diverges as
ε−1/3. For ω > ωt, α > 0 and G tends to a finite value given by (2.35). For ω < ωt, α < 0
and G has a simple pole at αε2/3 ≈ −1.0187 . . .. We accordingly have a second-order
phase transition characterized by

γu = 1
2

γt = 1
3

φ = 2
3
, (3.12)

with the exponents as defined by Owczarek et al [1].
Changing to the variables z, ω, p, σ this can be formulated as follows. This is the case

σ = 1, and there is a curve of simple poles given by ωc(pz, z, 1) approaching the curve
ωz = 1 at ωt given by ωt = ((p + ωt)/(p − ωt))

2. For p = 1, the solution is ωt = 3.3829 . . ..
Near the transition (3.10) holds with the appropriate substitution x = pz and y = z.
While the location ωc(pz, z, 1) of the poles, as well as ωt, changes as a function of p, the
character of the phase transition does not.

3.3. Super-flexible case (Δ < 0)

Now u < 1, and the simple pole at ωc(x, y, u) approaches an algebraic singularity at
ωt = ((1 + x)/(1 − x))2 > 1, at which the generating function converges. In particular,
we find

1 + G ∼ ω − 1

x(ω − 1)(1 − u) +
(
− Ai′(αε−2/3)

α1/2ε−1/3Ai(αε−2/3)

)√
(1 + ω + x(1 − ω))2 − 4ω

(3.13)

as ε = 1 − yω → 0, with α = α(1/ω, x(1− 1/ω)) given by (3.8). Near the transition, α is
small and we can write

1 + G ∼ 1

x(1 − u) − A−1ε1/3 Ai′(αε−2/3)

Ai(αε−2/3)

, (3.14)

with A as above. For ω = ωt, α = 0 and G converges with the singular part scaling
as ε1/3. For ω > ωt, α > 0 and G tends to a finite value given by (2.35). For
ω < ωt, α < 0 and G has a simple pole at some value of ε where −Ai′(z)/Ai(z) < 0,
i.e. −2.3381 . . . < αε2/3 < −1.0187 . . .. We now find a second-order phase transition with

γu = −1
2

γt = −1
3

φ = 2
3
. (3.15)

As u → 1, we recover the fully flexible case discussed above.
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Changing to the variables z, ω, p, σ this can be formulated as follows. This is the case
σ < 1, and there is a curve of simple poles given by ωc(pz, z, (1−pz(σ−1))−1) approaching
the curve ωz = 1 at ωt given by ωt = ((p + ωt)/(p − ωt))

2. This transition point therefore
is independent of the value of σ, and is identical to the one obtained in the fully flexible
case. Near the transition, (3.13) holds with the appropriate substitution x = pz, y = z,
and u = 1/(1− pz(σ − 1)). While the location ωc(pz, z, (1− pz(σ − 1))−1) of the poles, as
well as ωt, changes as a function of p, the character of the phase transition does not.

3.4. Semi-flexible case (Δ > 0)

Now u > 1, and the simple pole at ωc(x, y, u) approaches a simple pole at ωt =
(1+ux)(1+2x−ux)
(1−ux)(1−2x+ux)

> 1. In particular, we find near the transition that

1 + G ∼ ω − 1

x(ω − 1)(1 − u) +
√

(1 + ω + x(1 − ω))2 − 4ω − 2εH(1)(1/ω, x(ω − 1)1/ω)

(3.16)

as ε = 1 − yω → 0, with H(1) given by (3.5). Note that x(ω − 1)(1 − u) +√
(1 + ω + x(1 − ω))2 − 4ω is asymptotically linear in ω − ωt and is negative for ω < ωt.

Note further that H(1) < 0. For ω > ωt, G tends to a finite value as ε → 0. This expression
diverges with a simple pole as ω approaches ωt. Similarly, for ω = ωt, G diverges as ε−1.
For ω < ωt, G has a simple pole at

ε =
x(ω − 1)(1 − u) +

√
(1 + ω + x(1 − ω))2 − 4ω

2H(1)(1/ω, x(ω − 1)1/ω)
. (3.17)

We accordingly find a first-order phase transition with

γu = 1 γt = 1 φ = 1. (3.18)

As u → 1, H(1) diverges, and the character of the phase transition changes as characterized
above.

Changing to the variables z, ω, p, σ this can be formulated as follows. This is the case
σ > 1, and there is a curve of simple poles given by ωc(pz, z, (1−pz(σ−1))−1) approaching
the curve ωz = 1 at ωt given by

ωt =
(2(1 − σ)p2 + (2 − σ)ωtp + ω2

t )((2 − σ)p + ωt)

(2(σ − 1)p2 − ωtpσ + ω2
t )(ωt − pσ)

. (3.19)

While this is quite cumbersome in general, some special values have simple solutions. For
example, at p = 1 and σ = 2 we find ωt = 2+

√
2 = 3.4142 . . .. Near the transition, (3.16)

holds with the appropriate substitution x = pz, y = z, and u = 1/(1− pz(σ − 1)). While
the location ωc(pz, z, (1 − pz(σ − 1))−1) of the poles, as well as ωt, changes as a function
of p, the character of the phase transition does not.

4. Conclusion

We have analysed the exact solution of a two-dimensional lattice model of a single polymer
in solution containing parameters that vary the intra-polymer attraction, the amount of
horizontal stretching force applied and the amount of stiffness. The restriction of partial
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directness is required to ensure solvability. We find that a tricritical collapse transition
takes place for no stiffness or negative stiffness, and that this is unaffected by a horizontal
force. The entropic exponents are different in the negative stiffness regime from those in
the zero stiffness regime. On the other hand, when the polymer becomes semi-stiff the
collapse transition immediately becomes first order.

Acknowledgments

Financial support from the Australian Research Council via its support for the Centre of
Excellence for Mathematics and Statistics of Complex Systems is gratefully acknowledged
by the authors.

References

[1] Owczarek A L, Prellberg T and Brak R, 1993 J. Stat. Phys. 72 737
[2] Binder P M, Owczarek A L, Veal A R and Yeomans J M, 1990 J. Phys. A: Math. Gen. 23 L975
[3] Brak R, Guttmann A J and Whittington S G, 1992 J. Phys. A: Math. Gen. 25 2437
[4] Prellberg T, Owczarek A L, Brak R and Guttmann A J, 1993 Phys. Rev. E 48 2386
[5] Owczarek A L, 1993 J. Phys. A: Math. Gen. 26 L647
[6] Owczarek A L and Prellberg T, 1994 Physica A 205 203
[7] Brak R, Owczarek A L and Prellberg T, 1994 J. Stat. Phys. 76 1101
[8] Prellberg T and Brak R, 1995 J. Stat. Phys. 78 701
[9] Prellberg T, 1995 J. Phys. A: Math. Gen. 28 1289

[10] Bastolla U and Grassberger P, 1997 J. Stat. Phys. 97 1061
[11] Grassberger P and Hsu H, 2002 Phys. Rev. E 65 031807
[12] Rosa A, Marenduzzo D, Maritan A and Seno F, 2003 Phys. Rev. E 67 041802
[13] Zhou H, Zhou J, Ou-Yang Z-C and Kumar S, 2006 Phys. Rev. Lett. 97 158302
[14] Krawczyk J, Owczarek A L, Prellberg T and Rechnitzer A, 2007 J. Stat. Mech. P09016
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