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where By, is the 2nth Bell number. Moreover, the numbers u, of restricted 2-covers on [n]
and v, of restricted, proper 2-covers on [n] and I, of line graphs all have growth

—n,—1/2 1 1
Uy ~ Uy ~ Iy ~ B2 "n exp| — Eiog(Zn/logn) .
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1. Introduction

A 2-cover of [n] := {1, 2, ... n} is a multiset of subsets {S1, S, ..., Sn}, Si € [n], (possibly with S; = S; for some i # j),
such that for each d € [n] the number of jsuch that d € S; is exactly 2. A 2-cover is called proper if S; # S; whenever i # j.
A 2-cover is called restricted if the intersection of any 2 of the S; contains at most one element. These definitions have been
taken from [4]. Note that a proper 2-cover {Sy, ..., Sp} is a set.

The line graph L(G) of a simple graph G is the graph whose vertex set is the edge set of G and such that two vertices are
adjacent in L(G) if and only if the corresponding edges of G have a common vertex.

Let s, be the number of 2-covers of [n]; let t, be the number of proper 2-covers of [n]; let u, be the number of restricted
2-covers of [n]; let v, be the number of restricted, proper 2-covers of [n]; and let I, be the number of line graphs onn labelled
vertices. Let B, be the nth Bell number. Given sequences a, and b,, we write a, ~ b, to mean lim,_, o @y /by = 1.

Theorem 1. The number of 2-covers and the number of proper 2-covers have asymptotic growth
-n 1 _a [logn
Sp ~ by ~ Byy27" exp =5 log(2n/logn) | = Ba,2 By (1)
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while the number of restricted 2-covers, restricted, proper 2-covers and line graphs all have asymptotic growth
1 2
Uy ™~ Uy ~ by ~ Bop27"n" Y2 exp (__ [5 log(2n/ log n)] ) . (2)

We note that the expression in the exponential in (2) is the square of the expression in the exponential in (). A heuristic
explanation was suggested by an anonymous referee. In counting 2-covers, the problem is nearly equivalent to that of
counting partitions of [2n] such that i and n + i are in different parts for each i € [n]. For a uniformly chosen random
partition, the probability that i and n - i are in the same part is By,..1/Bay = tog(2n/ log n)/2n. (This is shown rigorously
in the proof of Lemma 3.) One might expect, therefore, that the number of i's in a uniform random partition such that{ and
n + 1 are in the same part is asymptotically a Poisson distributed random variable with mean i = log(2n/logn)/2 and that
the probability that there are no such i is about e ™ = /log n/(2n}. For the class of problems where multiple edges are not
allowed, one can translate the question again into one about random partitions of [2n]: what is the probability that i and j
are in the same part, and 1 -+ i and n + j are in the same part: this is Ba,—a/Ban = p*/n”.

One expects the number of pairs (i, j) with either (a)i and j in the same part, and n 4 and n 4+ j in the same part, or (d)i
and n+j in the same part, and n + i and j in the same part, should be asymptotically Poisson with mean w?. The probability
that there are no such pairs should therefore be about e~#" and indeed we see an e~#* termin {2},

The main term By, 2" in {1} and (2) can be roughly explained as follows. Take 2n halfedges {1, 2, ..., 2n}, partition them
into blocks, and form n edges {j, j + n} forj € {1, 2, ..., n}, making sure j and j 4+ n go into different blocks for all j to avoid
loops.

We make some initial observations regarding 2-covers, special graphs and orbits in Section 2. In particular, Section 2.3
connects our work to orbits of oligomorphic permutation groups and is not used in the rest of the paper. We use a
probabilistic method to prove (1) in Section 3. A pair of technical lemmas are proven in Section 3.1, {1) is proven for s,
in Section 3.2 and it is proven for t, in Section 3.3. We prove (2) in Section 4.

In both probabilistic and generating function proofs we will make use of Lambert’s W-function W(t), which is a
sofution to

w()eW =¢ (3)
and which has asymptotics (see (3.10) of {7])

loglogt 1
Wt = logt — loglogt + ~o—2- 4 o ast = 0. 4)
logt logt
For each 2-cover {S, ..., Sm} of [n] we define an associated m x n incidence matrix M with entries given by
1 ifjesy
Mij = {0 ifj & ..

Note that M has exactly 2 ones in each column and that the ordering of the rows is arbitrary. A 2-cover is proper if and only if
M has no repeated rows. A 2-cover is restricted if and only if M has no repeated columns. Therefore, Theorem 1 is equivalent
to the asymptotic enumeration of certain 0-1 matrices. The general methods of this paper were used for the asymptotic
enumeration of other 0-1 matrices called incidence matrices in [2.3].

2. 2-covers, line graphs and orbits

In this section we establish correspondences between 2-covers, line graphs and orbits of certain permutation groups.

2.1. 2-covers and graphs
We define a special multigraph to be a multigraph with no isolated vertices or loops. Our first result is:

Proposition 1. There is a bijection between 2-covers on [n] and special multigraphs having unlabelled vertices and n labelled
edges, such that

e proper 2-covers correspond to multigraphs having no connected component of size 2;
o restricted 2-covers correspond to simple graphs.
Proof. Let Sy, ..., Snm) be a 2-cover of [n]. Construct a graph G as follows:

¢ the vertex set is [m};
o foreachi € [n], there is an edge ¢; joining vertices j and k, where §; and 5 are the two sets of the 2-cover containing i.

The graph G is a multigraph (that is, repeated edges are permitted), but it has no isolated vertices and no loops.
Conversely, given a multigraph without isolated vertices or loops, we can recover a 2-cover: number the edgese;, ..., e,
and let S; be the set of indices j for which the ith vertex lies on edge ;. Thus we have the first part of the proposition.
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The second part comes from observing that a “repeated set” in a 2-cover corresponds to a pair of vertices lying on the
same edges, while a pair of elements lying in two different sets correspond to a pair of edges incident to the same two
vertices. H

2.2, Generating function identities for 2-covers

Recall that s,, £, u, and v, denote the numbers of 2-covers, proper 2-covers, restricted 2-covers, and restricted proper
2-covers respectively. Using Proposition 1 in this subsection we will find relationships between these quantities and derive
corresponding generating function identities.

Proposition 2. Ler S(n, k) denote the Stirling numbers of the second kind, that is, the number of set partitions of [n] into exactly
k non-empty subsets. Then,

n
se= Y SO Ry
kx=1

n
Iy = ZS(”’ Iy vy,
k=1

i

w3

k=0

Proof. We prove these for the corresponding special multigraphs.

Any special multigraph with edges e, .. ., e, can be described by giving a partition of [n] into, say, k parts, together with
a special simple graph with k labelled edges; simply replace the ith edge of the simple graph by the ith set of edges of the
partition (where the edges are ordered lexicographically, say). This is clearly a bijection. Moreover, the simple graph has no
connected components of size 2 if and only if the same holds for the multigraph. This proves the first two equations.

Given a special simple graph, there is a distinguished subset of [n] (of size n — k, say) consisting of isolated edges; the
remaining graph has no components of size 2. Again, the correspondence is bijective. So the third equation holds. ™

Proposition 2 can be reformulated in terms of exponential generating functions. Let 5(x) = 2"20 syx"/n!, with similar
definitions for the others. The proof of Proposition 3 is omitted.

Proposition 3.
Sy =0 -1
T(x) =V(e*-1)
Ux) = Vixye'.

It follows from Proposition 3 that ${x) = T(x)}B{(x), where B(x) = e 1 js the exponential generating function for the
Bell numbers, This is easily proved directly.

2.3. Unrestricted 2-covers and orbits

A permutation group G acting on an infinite set §2 is oligomorphic if it has only finitely many orbits on the set of n-tuples
of distinct elements of {2 (equivalently, on the set of all n-tuples). We denote the numbers of these orbits by £, (G) and FJ(C)
respectively.

By [6]. if G is oligomorphic and primitive (that is, preserves no non-trivial equivalence relation on £2), then F, (G) =
¢"n!/p(n), where ¢ > 1is an absolute constant and p(n) is a polynomial. There is some interest in groups G with the growth
of F,(G) close to this bound. One example is the permutation group Sgé] induced by the infinite symmetric group on the set
of 2-element subsets of its domain.

Proposition 4. F, (SCLZ)}) = U, and F; (Séﬁ’) = Sp.

Iroof. Simply observe that an n-tuple of distinct 2-sets is the edge set of a special simple graph with n labelled edges, while
an arbitrary n-tuple of 2-sets is the edge set of a special multigraph with n labelled edges. =

We note that the relation
n
FXG) =) S(n, F(G)
k=1

gives an alternative proof of the first equation in Proposition 2. We do not know of a similar interpretation of the other two
parameters.
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2.4. Generating function identities for line graphs

The relationship between line graphs and restricted 2-covers is essentially contained in Proposition 1 by considering the
simple graph corresponding to a restricted 2-cover and lecting labelled edges map to the labelled vertices of a line graph.
This map to line graphs is one-to-one excepting cases contained in resuits of Whitney and Sabidussi.

Let LX) = 3 ..o laX"/nl. We now prove:

Proposition 5.

3 4 5 i 156
L(X) - e—-x /31-6x" /4157 /51 15x /G!U(X).

Proof. According to Whitney’s Theorem [5], an isomorphism between line graphs L(G,) and L(Gz) of connected graphs
is induced by an isomorphism from G to Gy, except in one case: the line graphs of the triangle Ky and the star K 3
are isomorphic. Moreover, Sabidussi [10] has shown that if G is a connected graph with at least three vertices, then the
automorphism groups of G and L(G) are isomorphic if G is not Ky, K, with an edge deleted or K4 with two adjacent edges
deleted, which we shall denote by K and K7, respectively.

Now the connected components of tine graphs which are triangles contribute a factor e /3 to the exponential generating
function £(x) for line graphs on {n]; that is, L(x) = e*/3W'(x), where W'(x) is the e.g.f. for line graphs with no such
components. Similarly, componeats which are triangtes or stars contribute a factor (@2 to the e.g.f. for special simple

graphs with n edges, leading to an overall multiplication by a factor of e X/
Next, while Ky has 54 as an automorphism group and therefore admits 6!/4! = 30 different edge labellings. the order of
the automorphism group of L(Ks) is 2 - 4! and therefore L(I,) admits 15 different vertex labellings. Similarly to the above,

this leads to a correction by a factor of e~ 15¥ /8!,

Similar arguments hold for K and K, leading to factors e~ 15¢/5 and e~/ correspondingly.
Propaosition 5 now follows by Whitney's Theorem, Sabidussi's result, and Proposition 3. H

3. Unrestricted 2-covers: A probabilistic approach

In this section we prove (1) of Theorem 1 by using a probabilistic construction.

3.1. Technical results

We proceed with the following definitions and lemma. Let T, be the set of proper 2-covers on [r]. Let 4, be the set of
set partitions of [2n]. Let E,,, C 8, be the subset of set partitions of (2n] such that j and j + n are contained in different

blocks for each j € [n]. Define the function ¥ from a subset S of [2n] to a subset of [n] by ¥(5) = {j:j € Sorj+n e S},

Let £5., C 4, be the subset of set partitions of [2n] with blocks (S, . .., S} such that v(5;,) # ¥r(S;,) for each iy # ix. Let
Cy = Eyn N Ez,y. Let ¢ be the function on 4, given by

Sty s Saly = (WD, o P S}

Lemma 1. ¢ maps C, onto Ty and |¢p~'@)] = 2" foralla € T,

Proof. Fix {S1, ..., 5} € Co. Eachj & [n] appears in exactly two blocks of ¢{{S1, . . ., Sw}) because of the definition of E ,
and the blocks of {S1, . .., Su} are unique because of the definition of Ez , s0 ¢({S1, ..., 5m}) € Ta.
Leta = {Sy,...,Su} € T,.Foreachj & [n] there are two ways of assigning j, j + n to the appearances of j in a (think of

a fixed ordering of the blocks of a to see this). The choices made for every j € [n] determine an assignment. Clearly, every
element of ¢~ '(a) must be of the form x (a) for some assignment x. There are 2" assignments. We also write x (5;) for the
block S; corresponding to S; in x (a).

We claim that each assignment y (a) gives a unique element of C,. To see this, first note that j and j -+ n are clearly in
different blocks of x (a), so x (@) € Ey . Secondly, ¢ o x is the identity map on T,. Therefore, x{(a) € Ez, because ais a
proper 2-cover. Moreover, x1(a;) # x2(a2) for all a;, a; € T, such that a; # a; and for all assignments x; and xa, which
gives ¢~ (a;) N ¢~ (@) = &

We next prove that if y, and x, are two assignments such that x; (@) = x2(a), then x; = x.. To see this, let

U = {j € [n]: x1 and x; differ for j}.

without loss of generality, assume thatj € Sy and j € Sy. Then, eitherj € x;(Sp) andj € xa(Sp orj+n € x1(5) and
j+n € x2(52). It follows that x1(S1) = x2(S;). Therefore, ¢ o x1(51) = ¢ © x»(Sa2) or Sy == 5, violating the assumption that
a is proper. We conclude that U = @ and that x,; = x». This implies that o~ '@ =2". m
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Next we generalize Lemma 1 to {possibly) improper covers. Let U, denote the set of 2-covers of [n}.

Lemma 2. ¢ maps Eq,, onto Uy,. Let a = {5y, Sa, ..., S} be a 2-cover of [n). Let M be the setof 1 € [m] such that there does
notexistanyj € [m]\ {i}, 5 = §;. Let

m— | M|
)
be the number of pairs {i, j} such that §; = §;. Then
I~ @] = 2"

Proof. Clearly ¢ maps E, , onto U,. Let & = [n}\ [Uiew Si}. Then {5; : | € M} is a proper cover of & and Lemma 1 implies
that

o (4Si e whE =2
For each pair ;,, $;, such thatiy # i; and §;; = S;,, it must be true that ¢ ~1(S;) consists of two sets S; and §, such that for
eachj e S;, eitherj e §, andj+n & §, orj+n € 5, andj € 3;,. The number of unordered sets Si,, Sy, is 2%1~". Therefore,
67t @) = 2 T2 =2,

where the product is over pairs iy, ip such that f; % h and §;, =5;,. o

3.2. Asymptotic enumeration of proper 2-covers

From Lemma 1 we conclude that |} == 2", s0

C
ty = 2”‘[(:‘"] = 2~'ll_ﬂ[32n (5)
BZn
where By, is the 2nth Bell number.
We will now prove:

Lemma 3.
[Ey.pl [ogn
By, 2n (6)
and
2
Eanl _ o flo'nY -
BZR n

Proof. To prove (6), choose an element of 4, uniformly at random and let X be the number of j & [n] for whichjandj +n
are in the same block. We have

Eval

PX =0)= (8)
BZI’!
we have X = Y}, I; where ; is the indicator random variable so that j and j + n are in the same block. The rth falling
moment of X is
EX)y =XX—-1--- X -1+1)
=Y Bk, - ly)
where the sum is over (ji, . .., jr) with no repetitions, To find E(l; I}, - - - ;) we take [2n] \ {1, J2, . .- ,Jr} and form a set
partition. We then add ji to the block containing ji + n for each k € [r]. This process is uniquely reversible, Therefore,
W Bar
E(X)r . ( )r 2 :'
BZn
We apply the formula in Corollary 13, page 18, of [1] to obtain
20 CE(X), 2 (=1) (), By
ﬂ)(xzo):z(__l), ( )l — ( ) ( )r 2 !. {9)
s r! = 1 By
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To analyze (9) we use the expansion of the Bell numbers {7,9]
w2w? + 7w+ 10)
24(1 + w)?
2wt 4 12w + 29w? + 40w + 36
3 w2w* + 12w° + 29w~ 4+ 40w + )eﬁzw + 0@,
48(1 + w)®
where w = W) is given by (3) and (4), from which we obtain (using Maple)

log B log B, = rw-{—rw ! -+ ! +0 r’w
8 Un—r g by — on w+} (w+ 1)2 n2 -

In particular,

Bns logn
By 1

1
fog By = e*(w —w+ 1) — Elog(l +w)—~1

so there exists a constant € > 0 such that
By < (Clogm” _
By (),
Moreover,

log B log By == rv~|~w ! + ! + 0 ry
g Ban—r g bay = an \v+1 (U+ 1)2 ?12

5 r*logn
= —rlogn-+rc, + rd, + 0 e ,

where v = W{(2n) has the expansion

logl log2 1
vmlognm—loglogn+log2+'ogOgn E~g—+o(——),

logn B logn logn
where
¢, = logn v
n =108 v 4n{v + 1)2
log1l log 2 1
= loglogn —log2 — glo8n A gl +0 (~——
logn logn logn
and where
1
4y =0 () .
n
Using (10} we estimate
Z (ﬁ])'.ﬂE(X),- - (n)rBZH—r
il - f'!Bz,,
r=log¥n r>logi?n
(Clog2m)
- ]
r=log3? n T
_ c ~ciogan (C log 2n)
=@t > e —
r'>log3f'2 n ’
= 0{1).

Forr < log*? n, we have

"By

. log® n
=n"ex o ridy 40
Bon n p (I‘C; +rody + n2

2
(n), = n" exp (o (fm)) ,
n

and

(10)

{11)
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hence
3 log” n
EQ), =explre, +rod,+0 ) .
Therefore,
EX -1 log® n
S OB (o))
0=r<logd? r 0=r=log??n r f
- log” n
— uelfn (‘i + d”rz + O( g ))
r! n?
0=r<log/2n
-1 -1
— (=1) e g d, Z (—1) afen
r! r!
O=<r<logd/?n 0=rslog?n
log® n e
+o( g ) = (12)
n 0<r<log3/? n
We proceed to approximate the terms in (12). First, we find that
(=D" . @ gl
Te'_exp(u—e )+O Z =y
0=r<iog3?n tog2/? ner<n
logn loglogn log2 1
=exp| — g T g 08 g 0 +o(n V%
2 logn logn logn
log n
~ | z’g}:"‘ (13)
We estimate
V. —1)F -
d, (1) rzercn — dn ( ; !ercn o+ ( ?l 1e""
0<r=logda 2<r<log3/? p r—2t 1=r<log¥?n (r— D
— dn eZC,, (""1)r e(rm2)c,, +e€” ("""'1)' e(rmllc‘u
Y — 1
2<r<log2 n (r—2) 1<r<logdn (r— !
@rn
= dy | exp (—e™ + 2¢,) + exp (—e“ +¢,) + 0 g2 Z —
tog¥ 2 n<r<n r
= o(n~ Y. (14)
Finally, we have
log”n et log®ny
0( nz) 2. ",:TSO( )€
05r'_<_log3/2 n
= o(n~ %), (15)

Together, (8),{9) and (11)-(15) prove (6).

To show (7), let Y be the number of pairs S;, S; in an partition in 4, chosen uniformly at random for which ¥ (5;) = W (S;).
For such S;, §; of size |S;| = |S;{ = k, the probability that they are present in the random partition is B(2n — 2k)/B(2n). The
total number of pairs ;. 5; of size k is bounded by (:) 2% (the number of ways of choosing a subset J of size k from [n] times
a bound on the number of ways of choosing two subsets Sy, S of [2n] of size k such that eitherj € Sy andj+n € 5; or
i-+neSandj € S, forallj e J). Therefore, using (10) we get

. |EZ.n|
BZn
< EY

1 =PY > 0)
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il

[A

) k Ban-2¢
BZn

K‘

=1
i

1A

(2max

n(me(2C? log? 2m*

By (2myak!

login
. .
Lemma 3 and (5} along with

|Cni < |El,u§
BZn BZn

a—
i

=1

(&
( ) k(Cloan)z'<
(

Il
o

and
I_g_r_!_l - 1E1,nt - (8211 - |EZ,11!)
Ban N By,

prove (1) for t,,.

3.3. Asymptotic enumeration of 2-covers

In this subsection we prove (1) for s,. Recall that U, denotes the set of 2-covers of [n]. Each element of £ , is mapped to
a unique a € U, by ¢. Givenw = {51,52, ..., S} € 4y, let Z(w) be the number of pairs {i;, iz} such that ¥ (S ) = ¥ (S;y).
Note that in the case w € E; , we have Z(w) = p with p defined with respect to a = ¢ (w) in the statement of Lemima 2.
DefineD,, forp € {0, 1,...,n} tobe
Dy p = {weEq:Z(w) = p}.
Note that Dy, = C,. By Lemma 2,

1

Uy, = ZID,G.:1E2~,]+'O

p=0
n
= |Gal27" 4 Y 1Dpl2?
p==1
BZn p=1 Ban

We have shown in the previous section that G, /By, ~ /logn/2n. Observe thatz 1 |Ppni2? /Bon < Zp JP(Z = )27,

where Z was defined in the last paragraph and « is chosen uniformly at random flom 5,, In light of these observations, to
prove (1) for s, it suffices to prove that

_ logn
ZIP(Z = p)2" = o( - ) (16)

The quantity P(Z > p) is equal to the probability that the randomly chosen element of 4§, contains at least p disjoint
pairs of equal sets, therefore,

n Bon-23s
PZ > p) < ( ) N
::‘13221 52_] $1,520 cv e S R — 2080 By
Let o be defined by & == Y7, 5;. We can assume o < n. From (10) we have

N n il n (C log n)za
PEzp) = ZZZ (sl,sz,...,sp,nwa) (2n)z2,

s1=153= spe=l

i (m, (Clogm?*
ZZ}; [Isi! @mae

A
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Observing that

My (o « L g
@m0, Q2n—0)e ~ 2M)e —
we have
1 /Clogn\’
ezo <<7§:;05|Z nsi! ( n )
Yo sima i

3 2’—: 0° (C2 log? n)(F
ol n

n n
D PZ=p)2" < ) BZ = p)2°
pazl p=l

< 2": i 20 6° (C2 logzn)‘T

Therefore,

!
pucte il n

_Zzzf’p (Czlogzn 7
B = o! h
Lo p? (2CCogtn\’
— o! n
2(64«1)“ 2C2log?n\°
— ! n
| 2
0(og n)
n
lo
=o( _g_n),
2n

The last estimate proves (16). ™

i~
g

IA

4. Restricted 2-covers and line graphs: An analytic approach

Our proof of (2) will use generating function analysis. Let @, », be the number of restricted, proper 2-covers on [n] with
m blocks. The generating function for restricted, proper 2-covers

oo 2n

A(x,y) ZZ On.m n i
=0 m=1
equals
Acx,y)zexp( y———)}j—cwx)('" (17)
m=0

see page 203 of [4]. A brief proof of {17} is that (1 + x)( ) is the generating function for labelled graphs on m vertices and
SO Y o L = (1 + x)( 2) is the exponential generating function of labelled graphs. Now, the factor exp (—y — Xy /2) forbids
isolated vertices and isolated edges.

Therefore,

Vi) = A(x, 1) == e Z%(l +x){2) e (18)
m==0 )
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and

=0 k=20
o m2n 19 1 k m

= nle”! Z — (——) m“z"( (2) ) +o(1). (19)
Let ml S KD 2 n—k

A
—~—
~ =
S’
AN
B o
S’
=

=
b
o~
~ =
—
+

k=0
<oy (M
pro k
1 RN
= 2" ( +2m ) — 0(2“""). (20)
we will make use of the asymptotic analysis of the Bell numbers in Examnple 5.4 of {8], which uses the identity
00 ml’l
B, = e”! e
”Z:;D m!
Let mg be the nearest integer {o ﬁ%}ﬁ where W is defined by (3). (Here the choice of my is slightly different from that in {8],
but the analysis giving (21) and (22) below remains valid.) In [8] it is proved that
m2n m2n
Y — =0 =%/nexp(—(logn)’) (21)
yemen m! mof
lmwmo—i-z-:/ﬁ logn
and that
mzn m(2}n+1 2
Sl 1+ 0{(logn)bn~1/? 22
];m;” mi m()! 2n -+ Mo ( + (( o8 ) )) ( )
lmmmgutg"\-ﬁilogn
~ eBy. (23}

It follows from (20) and (21) that

m? X n! 1\ o (’;‘) ~ m B 3
2 ET%E (_5) " (nmk) - O(Eg{‘/ﬁz exp (—(logn) ))

1=m=n
o (logny®
= 0| B2 " exp (M 5 )) . (24)

|m—mgl=+/nlogn

We have
mon 1 k m 2n m
m Z”( 1) —2:1((2)) Z m -2 ((2))
Z “f_“Ym — —m ! + A, (25)
1=m=n m! k=0 k! 2 n—k 1<men m! L
im—mg|</nlogn im—img| <1 logn
where
A Z mZn 1 n! ( ])kmuzn( (l;l) )
ol m! Lt k! 2 n—k
|m—mgl</Mlogn
is bounded by
k
2n 1 | (m)
m n n
Al < o _m—-2n 2
a5 whEe (D)

[m—mg|</nlogn

() x e (9,

1=ms=nr

tm-mg < /i tog n
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One may show that uniformly for m in the range [m — nmg| < Jnlogn

" 2
m*Zﬂ ((2)) nl = 2—" exp (..___n— —_ n—) (] -+ O (f?ul/2 IOgG n)) f

n Mo m%
hence,
log®n n n
14| mo( £ )2“"exp (—wu - —5) Bon. (26)
n My My

The main term of (25} is
2n

m* o 7 — n n? m
Z Mmzn!((Z))xz exp(——%—-—i)(wo(a)) Z —

. m! n ny ”
=m=n 1=m=n
lm—mg|</nlogn jm-migl</nlogn
2
n n
= eBy,2 " exp (——— - —2) (1 +o(1))
1 —-(.l log{2n/ logn))2
w gl @ VY 14 o0(1 27
2n znﬁ ( ( )) ( )

where we have used the asymptotic expansion {4) and the definition of mq at the last step. Now (19}, {24}, (26) and (27)
prove {2) for v,. .

In the previous argument the result would have been the same if the e~%2 in (18) were replaced by 1 because in the
Taylor expansion of e™*/2 the constant term 1 corresponds to the main term of (25 and the higher order terms contribute
to A, which is negligible, The arguments for restricted partitions and line graphs are similar, starting from the identities
obtained from Proposition 5 and (18)

U =e'y. B:—r“ +x)(2)e¥?

m=0

and
21 ) 3 4 5 6
ool MY xf2-x3 16—x1 14—x7 1810 148
Lixy=e EU—!(1+X) 2 /e .
=l

In each case only the contribution of the constant term of the Taylor expansion of the exponential is 1 and the remaining
terms contribute to a quantity like A which is asymptotically insignificant. M
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