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Abstract
Models of directed paths have been used extensively in the scientific literature
to model linear polymers. In this paper, we examine a directed path model
of a linear polymer in a confining geometry (a wedge). We are particularly
interested in cn, the number of directed lattice paths of length n steps which
take steps in the North–East and South–East directions and are confined in the
wedge Y = ±X/p, where p is an integer. We examine the case p = 2 in
detail and show that the generating function satisfies a functional equation with
quartic kernel. We give a formal solution by using the kernel method, show
that this model is not D-finite and determine asymptotics to leading order for
cn. In particular, the number of paths of length n in the wedge Y = ±X/2 is
given by

cn = [0.67874 . . .] × 2n + (4/33/4)n+o(n)

where the constant 0.67874 . . . can be determined to arbitrary accuracy with
little computational effort.

PACS numbers: 05.50.+q, 02.10.Ab, 05.40.Fb, 82.35.−x
Mathematics Subject Classification: 82B41, 82B20, 82A05, 82A41, 82A69

1. Introduction

Lattice paths and lattice walks (such as the self-avoiding walk or undirected lattice trails) have
long been used as models of conformational entropy in linear polymers [10, 11]. Perhaps
the most famous of these models is the self-avoiding walk [17, 23]. The most fundamental
quantity in this model is wn, the number of self-avoiding walks of length n steps from the
origin in the hyper-cubic lattice. It is known that wn = µn+o(n), where µ is the growth constant
of the self-avoiding walk, and that the limit limn→∞ w

1/n
n = µ exists [13]. The self-avoiding
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Figure 1. (a) A directed path in the wedge formed by the Y-axis and the line Y = rX. (b) A
partially directed path in the wedge formed by the Y-axis and the line Y = rX. (c) A partially
directed path in a wedge formed by a line Y = rX and the X-axis.

walk is a non-Markovian model, and it is generally very difficult to extract its properties by
rigorous, or even numerical, means.

Directed paths, in particular models in two dimensions, are generally recurrent models
which can often be solved exactly by a renewal type argument. A particular example is the
Dyck path which renews itself each time it visits the line Y = X in the square lattice. This
property relies on a translational invariance in the model, which can be used directly to solve
for the generating function as a root of a quadratic polynomial (see, for example, [9]). This
general observation holds for other models, including a model of directed paths above the line
Y = 2X [12] and partially directed lattice paths including bar-graph paths [4, 5, 26–28] and
other related models such as Motzkin paths [6].

Confining a lattice path to a wedge in the square lattice introduces complexities which
often makes the model harder to solve. These models are directed versions of the self-
avoiding walk confined in a wedge [14], which in turn is a model of a linear polymer in a
confined geometry. A Dyck path is a simple model of a directed path confined in a wedge.
In figure 1(a), a more generic directed path in a wedge formed by the Y-axis and the line
Y = rX is illustrated (where r � 0). This model can be solved exactly for r ∈ {0, 1, 2, 3}, but
no explicit solutions are known for other values of r although the radius of convergence of the
generating function is known explicitly for all r � 0 (see, for example, [7, 8, 16, 18, 20, 21]).

Generally models of the type in figure 1(a) pose challenging combinatorial questions. If
the line Y = rX has a rational slope, then the generating function is a root of a polynomial (it
is algebraic), and a recurrence can be determined by a renewal type argument; the path renews
itself each time it visits the line Y = rX. More generally r is irrational, and in these models
there is no translational invariances along the line Y = rX and a recurrence for the number of
paths seems out of the question. For more on these models see, for example, [1, 7, 8].

The model in figure 1(a) can be generalized by considering a partially directed path above
the line Y = rX as illustrated in figure 1(b). A functional equation for the generating function
of these model has been written down for some values of r [19], but generally these models
pose significant mathematical problems.

A third variant of these models is illustrated in figure 1(c). In this case, a partially
directed path is confined in the wedge formed by the X-axis and the line Y = rX. A model
of this type was proposed and solved in the case that r = 1 in [22]. Models of this type are
of directed or partially directed paths interacting with two boundaries. Generalized random
walks confined in the quarter plane are similarly examples of models of paths in confining
geometries interacting with two boundaries [2, 24, 25].
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Figure 2. A fully directed path in the square lattice, starting at the origin, and giving steps in the
North–East and South–East directions.

Figure 3. A directed path from the vertex (2, 0) in a symmetric wedge formed by the lines
Y = ±X/2.

In this paper, we generalize models of fully directed paths from the origin to a model
of paths in a wedge. Consider the directed path in figure 2 in the square lattice which takes
steps only in the North–East and South–East directions. The most fundamental quantity in
this model is cn, the number of paths from the origin of length n steps. Obviously, in this
model cn = 2n. This path can be put into a wedge generally as illustrated in figure 3. This
is a symmetric wedge (about the X-axis), and is an alternative and more challenging model
compared to the cases illustrated in figure 1(a) since the path interacts with two boundaries.

We are primarily interested in a model of directed paths starting from the vertex (2, 0) and
confined in the wedge formed by the lines Y = ±X/2. We determine functional equations
for the generating function using the kernel method [25], and in particular a variant of this
method developed in [3, 22] (the iterated kernel method).

The most fundamental quantity in our model is cn, the number of paths of length n steps
and confined in the wedge formed by Y = ±X/2 and starting from the vertex with coordinates
(2, 0). We will solve for the generating function of cn, and our solution will be an alternating
series of compositions of a root of a quartic polynomial. This will allow us to determine cn to
high accuracy: in particular, we show that asymptotically,

cn = [0.678 74 . . .] × 2n + (4/33/4)n+o(n) (1)

where the constant 0.67874 can be determined to hundreds of significant digits with minimal
computational effort.

In section 2, we define our models and determine functional equations for the generating
function. In addition, note that limn→∞ c

1/n
n = 2, solve for the generating function using
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the kernel method and examine the properties of the roots of the kernel. These results allow
us to compute the constant in equation (1) in section 3 by examining the singularities in the
generating function. In particular, we show that cn is to leading order proportional to 2n; that
is, its increase with n is exponential without a power-law correction. This is in contrast with
the number of self-avoiding walks of length n, which is thought to increase to leading order
as An−γ µn, where γ is the entropic exponent and µ is the growth constant (A is a constant).
We conclude the paper with some final comments in section 4.

2. Directed paths in a wedge

Let IL be the square lattice of points with integer coordinates in the plane. A directed path in
this lattice is a path that takes only North–East (NE) and South–East (SE) steps. If the path
consists of n steps (or edges), then there are 2n such paths. One such path is illustrated in
figure 2. Let XY be the usual Cartesian coordinate system in figure 2, with the origin at the
first vertex of the path. Then the edges in the directed path each have length

√
2.

The directed path in figure 2 is unconstrained by the boundaries of the wedge Y = ±X.
This model becomes more interesting if the path is constrained by a narrower wedge
Y = ±X/p, where p � 1 is, in the first instance, an integer. Define the 1/p-wedge Vp

by

Vp = {(x, y) ∈ IL|where −x/p � y � x/p}. (2)

Then Vp is the subset of IL in the first and fourth quadrants bounded by Y = ±X/p. In figure 3,
a directed path confined in the wedge Vp is drawn where p = 2. This path has its first vertex
at the point with coordinates (2, 0). Generally, directed paths in the wedge Y = ±X/p will
have their first vertices at (p, 0).

2.1. Directed paths in the wedge formed by Y = ±X/2

In this section, we determine a functional equation for the generating function G2 of directed
paths giving NE and SE steps from the vertex (2, 0) in the wedge V2. Proceed by introducing
the edge generating variable t and define

G2(a, b) =
∑

n,u,v�0

c(2)
n (u, v)aubvtn (3)

where c(2)
n (u, v) is the number of directed paths in the wedge V2 from the vertex (2, 0) of

length n and with the final vertex a vertical distance u from Y = �X/2� and a vertical distance
v from Y = −�X/2�.

Observe that the unit of vertical distance is determined by the fact that the squares in
figure 3 have diagonal length 2. For example, a NE step will increase the Y-coordinate of the
endpoint by 1, and the distance between the endpoint and Y = �X/2� may either decrease by
1 if the initial X-coordinate is even, or remain unchanged otherwise.

Consider the examples in figure 4. The vertical distances are measured to the step-
functions Y = ±�X/2�, and in these examples the vertical distances are u = 11 and v = 7
(figure 4(a)) and u = 13 and v = 7 (figure 4(b)).

We are fundamentally interested in c(2)
n = ∑

u,v�0 c(2)
n (u, v) = G2(1, 1), the number

of paths of length n in the wedge V2. The generating variables a and b are introduced to
account for the vertical distance of the endpoint from the wedge boundaries and to enable us
to determine G2(1, 1).

The examples of paths in figure 4 show that the enumeration of these paths is affected by a
parity effect since only the endpoints of paths of length 2 + 4n can touch the lines Y = ±X/2,
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Figure 4. A symmetric wedge formed by the lines Y = ±X/2. The path in (b) is obtained by
adding a South–East stop to the path in (a).

Figure 5. Determining g0(a, b). Each path generated by g0(a, b) is either the single vertex at
(2, 0) generated by ab, or it is generated by appending a NE-edge onto a path of odd length (this
gives the term (tab)(b/a)g1(a, b)), or it is generated by appending a SE-edge onto a path of odd
length (giving the term (tab)(a/b)g1(a, b)). Lastly, paths which step outside the wedge must be
subtracted: (tab)(b/a)g1(0, b) if the path steps over the line Y = X/2 and (tab)(a/b)g1(a, 0) if
the path steps over the line Y = −X/2.

and that paths of odd length are always at least a distance of 1 removed from the step-functions
Y = ±�X/2�.

Let g0(a, b) be the generating function of paths of even length, and let g1(a, b) be the
generating function of paths of odd length. Then

G2(a, b) = g0(a, b) + g1(a, b). (4)

Thus, by determining g0(a, b) and g1(a, b), we can determine G2(a, b).
Functional equations for g0(a, b) and g1(a, b) can be obtained by arguing as in figures 5

and 6. The basic idea is to create paths counted by g1(a, b) by appending an edge to paths
of even length counted by g0(a, b), and to create paths counted by g0(a, b) by appending an
edge to paths counted by g1(a, b). The resulting set of coupled functional equations is

g0(a, b) = ab + t (a/b + b/a)g1(a, b) − t (a/b)g1(a, 0) − t (b/a)g1(0, b),

g1(a, b) = t (a2 + b2)g0(a, b) − ta2g0(a, 0) − tb2g0(0, b).
(5)

These equations can be iterated to enumerate the directed paths. The numbers for even length
paths are given in table 1.
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Figure 6. Determining g1(a, b). Each path generated by g1(a, b) is obtained by appending a NE-
edge or SE-edge onto a path of even length. In this case, the vertical distance to the wedge does
not increase by a full step, and thus no new factors of a or b are included, apart from accounting
for stepping closer to the top boundary if a NE-edge is added, or stepping closer to the bottom
boundary if a SE-edge is added. This generates the term t (a/b + b/a)g0(a, b) as indicated above.
Lastly, paths which step outside the wedge must be subtracted: t (b/a)g0(0, b) if the path steps
over the line Y = X/2 and t (a/b)g0(a, 0) if the path steps over the line Y = −X/2.

Table 1. The number of directed paths in V2.

n cn n cn

0 1 42 2 985 401 474 160
2 4 44 11 941 093 593 120
4 12 46 47 764 374 372 480
6 48 48 191 053 247 884 320
8 180 50 764 212 991 537 280

10 720 52 3 056 816 328 436 200
12 2 820 54 12 227 265 313 744 800
14 11 280 56 48 908 759 609 676 540
16 44 760 58 195 635 038 438 706 160
18 179 040 60 782 537 580 134 560 920
20 713 760 62 3 130 150 320 538 243 680
22 2 855 040 64 12 520 579 171 583 415 840
24 11 403 060 66 50 082 316 686 333 663 360
26 45 612 240 68 200 329 075 631 136 029 040
28 182 321 460 70 801 316 302 524 544 116 160
30 729 285 840 72 3 205 263 549 296 411 867 340
32 2 916 160 800 74 12 821 054 197 185 647 469 360
34 11 664 643 200 76 51 284 202 287 042 290 859 820
36 46 650 808 680 78 205 136 809 148 169 163 439 280
38 186 603 234 720 80 820 547 109 423 871 153 955 280
40 746 350 368 540 82 3 282 188 437 695 484 615 821 120

The number of digits in the cn in table 1 increases linearly with n, which suggests that cn

grows exponentially. It is in fact possible to prove explicitly that cn increases proportionally to
2n, using the techniques in [14]. In addition, since cncm � cn+m (concatenate a path of length
m with a path of length n by translating the first until its first vertex coincides with the last
vertex of the second to see this), cn is a super-multiplicative function of n, and thus the limit

lim
n→∞ c1/n

n (6)
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exists [15] and is equal to 2. Thus, there is a function of n,C0 = eo(n), such that

cn = C02n + o(2n). (7)

Examination of the data in table 1 shows that cn/2n approaches a constant. Assuming that
C0 is a constant, one may estimate it numerically. Dividing cn by 2n and looking at n up to
n = 82 gives C0 to five digits, namely

C0 = 0.678 74 . . . (8)

We proceed next by computing C0 by solving equations (5) by iteration, and by examining
the singularities in g0(a, b).

2.2. Solving equations (5)

In this section, we use the iterated kernel method (see [3, 22]) to find an expression for the
generating function g0(a, b). Simplify the equations by introducing K = t (a/b + b/a) and
L = t (a2 + b2), and also note that g0(a, 0) = g0(0, a), and that g1(a, 0) = g1(0, a).

Since paths of odd length generated by g1(a, b) cannot intersect the boundaries of the
wedge, they will be weighted by a factor ab. Hence, one expects g1(a, 0) = g1(0, b) = 0.
Ignoring this last observation for the moment gives the functional equations in slightly
simplified form:

g0(a, b) = ab + Kg1(a, b) − t (a/b)g1(a, 0) − t (b/a)g1(b, 0), (9)

g1(a, b) = Lg0(a, b) − ta2g0(a, 0) − tb2g0(b, 0). (10)

Substitute these equations into one another, and write them in kernel form. This gives

(1 − KL)g0(a, b)

= ab − ta2Kg0(a, 0) − tb2Kg0(b, 0) − t (a/b)g1(a, 0) − t (b/a)g1(b, 0), (11)

(1 − KL)g1(a, b)

= Lab − ta2g0(a, 0) − tb2g0(b, 0) − t (a/b)Lg1(a, 0) − t (b/a)Lg1(b, 0). (12)

We identify the kernel (1−KL) in these equations. Generally, we say that functional equations
are in kernelized form if the generating function and its coefficients have been collected on
the left-hand side, while all other terms and boundary terms are on the right-hand side. The
kernel (1 − KL) may be simplified, and then the quartic polynomial (in a and b)

t2(a2 + b2)2 − ab (13)

appears as a factor.
To proceed with, consider this to be a quartic in b with a and t as two parameters. To

solve the original functional equations, one must determine the roots of this quartic. Closer
examination shows that the four roots of the quartic have the following properties: The first
real root is β0(a), which is a power-series in t:

β0(a) = a3t2 + 2a7t6 + 9a11t10 + 52a15t14 + · · · (14)

The second real root is β1(a), which is singular at t = 0:

β1(a) = a1/3

t2/3
− 2a5/3t2/3

3
− 28a13/3t10/3

81
+ · · · (15)
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while the two remaining roots are a complex conjugate pair:

β±(a) = −a1/3(1 ∓ i
√

3)

2t2/3
+

a5/3t2/3(1 ± i
√

3)

3
− a3t2

3
+ · · · (16)

which are also singular at t = 0.
Substituting b = β0(a) ≡ β0 into the kernelized equations into (11) and (12) produces a

system of two linear equations in g0(a, 0), g0(b, 0), g1(a, 0) and g1(b, 0),

K
(
ta2g0(a, 0) + tβ2

0g0(β0, 0)
)

+ (t (a/β0)g1(a, 0) + t (β0/a)g1(β0, 0)) = aβ0, (17)(
ta2g0(a, 0) + tβ2

0g0(b, 0)
)

+ L(t (a/β0)g1(a, 0) + t (β0/a)g1(β0, 0)) = Laβ0, (18)

which may be simplified to give

ta2g0(a, 0) + tβ2
0g0(β0, 0) = Laβ0, (19)

t (a/β0)g1(a, 0) + t (β0/a)g1(β0, 0) = 0. (20)

It follows from the second of these equations that

g1(β0(a), 0) = − a2

β2
0

g1(a, 0) (21)

and since this generating function cannot be negative, the conclusion is that

g1(a, 0) = 0 (22)

identically, as claimed above. The first solution above gives

g0(a, 0) = L(a, β0)β0

ta
− β2

0

a2
g0(β0, 0). (23)

Proceed by defining β(n)(a) = (β0 ◦ β0 ◦ . . . ◦ β0) (a) to be the composition of β0n-times
with itself. Define β(0)(a) = a, then the last equation may be written as

g0(β
(n−1), 0) = L

(
β

(n−1)
0 , β

(n)
0

)
β

(n)
0

tβ
(n−1)
0

−
(

β
(n)
0

β(n−1)

)2

g0(β
(n), 0). (24)

This may be iterated to obtain a formal solution for g0(a, 0) = g0
(
β

(0)
0 , 0

)
:

g0(a, 0) = 1

ta2

∞∑
n=0

(−1)nL
(
β

(n)
0

)
β

(n)
0 β

(n+1)
0 . (25)

Thus, one may solve for the generating function g0(a, b) from the kernelized equations in (11)
and (12):

g0(a, b) = ab − tK(a2g0(a, 0) + b2g0(b, 0))

1 − KL
(26)

and the radius of convergence is given by the dominant root of the quartic in equation (13),
provided that g0(a, 0) does not have singularities at the same points.
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2.3. More on the roots of t2(a2 + b2)2 − ab

One may check that

β0(a) = [2t2a3]
∞∑

n=0

(
4n + 1

n

)
(at)4n

3n + 2
(27)

as given in equation (14). The radius of convergence of this series is the solution of
|at |4 = 33/44.

Closer examination also shows that β0(a) counts directed paths with first step in the
SE-direction, above the line Y = −X/2 and with last vertex in the line Y = −X/2. The root
β1 is the inverse function of β0: direct calculation shows that β0 ◦ β1(a) = β1 ◦ β0(a) = a.

The roots β+ and β− are not independent, and one may verify that

β+

(
ix3

8

)
= −β−

(−ix3

8

)
= − ix

2t2/3
+

it2/3x5

48
+

it2x9

1536
+

7it10/3x13

165888
+ · · · . (28)

Solving for the roots of the quartic is equivalent to solving the nonlinear system

r2 = (a2 + b2), (29)

t2r4 = ab (30)

for a and b. There are four solutions, two given by the pairs (a1(r), b1(r)) and (−a1(r),

−b1(r)), where

a1(r) =
√

2r3t2√
1 +

√
1 − 4t4r4

= r
√

1 − √
1 − 4t4r4

√
2

, (31)

b1(r) = r
√

1 +
√

1 − 4t4r4

√
2

=
√

2r3t2√
1 − √

1 − 4t4r4
, (32)

and two more given by the pairs (b1(r), a1(r)) and (−b1(r),−a1(r)) (where we interchanged
a1 and b1). An expression for r2 is given below in equation (35). One may check as well that

a1(r) = t2r3

(
1 + t4r4

∞∑
n=0

(
4n + 3

2n

)
(tr)4n

(2n + 1)4n+1/2

)
(33)

b1(r) = r

(
1 − t4r4

∞∑
n=0

(
4n + 1

2n

)
(tr)4n

(2n + 2)4n

)
. (34)

The roots of the quartic may be found by inverting a1 to obtain ra(a) so that ra◦a1 = a1◦ra

is the identity map. Then β0(a) = b1 ◦ ra . Inverting b1 to obtain rb(b) gives a second root
by the composition β1 = a1 ◦ rb. In particular, this means for example that β0 ◦ β1 =
b1 ◦ (ra ◦ a1) ◦ rb = b1 ◦ rb = identity since a−1

1 = ra and b−1
1 = rb. This proves the

observation above that β0 ◦ β1 = β1 ◦ β0 is the identity map. In other words, the composition
of the two real roots of the quartic is the identity.

The other two roots of the quartic are given by the compositions b1 ◦ rb and a1 ◦ ra .
Unfortunately, while explicit expressions for ra and rb can be obtained, they are rather lengthy;
both r2

a and r2
b are roots of the quartic t4x4 − c2x + c4 where c = a for ra and c = b for rb.

This may be examined by iteration to determine the first few terms in r2
a . Comparison of the

results to the online encyclopedia of integers [29] shows that

r2
a (a) = a2

∞∑
n=0

(
4n

n

)
(at)4n

3n + 1
. (35)
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The second root of t4x4 − c2x + c4 proposes the ‘unphysical’ series starting with (a/t2)2/3 +
O(a2) for r2

a (a). The series expression for r2
a (a) may finally be substituted into b1(r) to obtain

an expression for the root β0(a) of the quartic:

β0(a) =
ra(a)

√
1 +

√
1 − 4t4r4

a (a)
√

2
. (36)

Remarkably, this evaluates to equation (27) and compositions of this with itself will eventually
lead to the expression for g0(a, 0) in equation (25).

In addition, having determined β0(a), one may consider the composition of a1(r) and
ra(a), which is

ra(a)

√
1 − √

1 − 4t4r4
a (a)

√
2

= a, (37)

and which must be the identity map. In other words, by appealing to equation (30) it follows
that:

a · β0(a) = t2ra(a)4, (38)

and from equation (27) one concludes that the identity[ ∞∑
n=0

(
4n

n

)
(at)4n

3n + 1

]2

= 2
∞∑

n=0

(
4n + 1

n

)
(at)4n

3n + 2
(39)

should be closely related to the combinatorial properties of directed paths in the wedge V2.

3. Determining C0

In this section, we examine the generating function g0(a, b) in equation (26) with a = b = 1.
Singularities in this generating function arise from several possible sources. In the first
instance, there are simple poles at the zeros of the kernel (1 − KL) in the denominator. These
are located at t = ±1/2. In order to determine the constant C0, we examine the residue of
g0(1, 1)/tn+1 at t = ±1/2.

Put a = 1 and t = 1/2 in β0(a). Compositions of β0(a) with itself at this point are

β
(0)
0 (1) = 1

β
(1)
0 (1) = 2.955 977 425 220 847 7098 . . . × 10−1

β
(2)
0 (1) = 6.463 362 544 384 777 7820 . . . × 10−3

β
(3)
0 (1) = 6.750 183 207 315 027 8963 . . . × 10−8

β
(4)
0 (1) = 7.689 297 945 739 216 5146 . . . × 10−23

β
(5)
0 (1) = 1.136 580 175 293 716 2161 . . . × 10−67

β
(6)
0 (1) = 3.670 626 862 567 744 0729 . . . × 10−202

where explicitly

β
(1)
0 (1) = β0(1) = 5 − √

33

12
(19 + 3

√
33)2/3 +

√
33 − 1

12
(19 + 3

√
33)1/3 − 1

3
,

and the other terms are more complicated expressions involving nested radicals which do not
simplify to manageable expressions.

Generally, we observe that β(n)
0 (1) = αn at t = 1/2, and one may check that αn+1 ≈ α3

n

/
4.

For example, α3
3

/
4 = 7.689 297 941 . . . × 10−23 ≈ α4. This observation follows from the
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expansion β0(a) = a3t2 + O(a7t6) so that compositions of β0 at t = 1/2 and a = 1 quickly
converge to zero. In other words, the recurrence xn+1 = β0(xn)|t=1/2 is a fixed point iteration of
order 3. This fast convergence allows the accurate numerical estimation of β

(n)
0 (1) at t = 1/2.

At a = b = 1 the expression of g0(1, 1) in terms of g0(1, 0) and g0(0, 1) is given by

g0(1, 1) = 1 − 2t2(g0(1, 0) + g0(0, 1))

1 − 4t2
, (40)

where

g0(1, 0) = g0(0, 1) =
∞∑

n=0

(−1)nL
(
β

(n)
0

)
β

(n)
0 β

(n+1)
0 ,

and where L(a) = a2 +β2
0 . Numerical evaluation of the residue at t = 1/2 using the calculated

values of β(n)(1) above gives the leading order behaviour of the number of paths of length n

cn = 2n−1 × 0.678 740 530 798 109 457 417 2327 . . . + parity term + · · ·
where the seven values of β

(n)
0 (1) listed above produce C0 accurately up to at least O(10−401)

or 400 digits if each is calculated to at least this accuracy by using equations (38) or (27) or by
explicitly using the closed-form expression for β0(a) and computing it to high accuracy using
a symbolic computations package such as Maple.

To determine the parity effects, we determine the residue at the pole located at t = −1/2
by repeating the analysis above. Put a = 1 and t = −1/2 in β0(a). Compositions of β0(a)

with itself at this point give the identical values obtained above for t = 1/2. Thus, we conclude
that

cn = 2n−1(1 + (−1)n) × (0.678 740 530 798 109 457 417 2327 . . .) + · · · .
This is not an unexpected result since g0(1, 1) should only enumerate even length paths; we
note that c2n+1 = 0 in the generating function g0(1, 1). This result verifies the numerical
estimate for C0 from the data in table 1 in equations (1) and (8). Since n is even, the two
contributions to cn, arising from different poles in g0(1, 1), may be combined to give

cn = 2n × (0.678 740 530 798 109 457 417 2327 . . .) + · · ·
for even values of n. This verifies the leading term in the asymptotics claimed in equation (1)
for even values of n. We address odd values of n near the end of this section.

Contributions to cn also arise from singularities in the numerator in equation (26). In
particular, there are branch points and possibly other singularities in g0(1, 0) and g0(0, 1), and
these are due to branch points in β0.

The radius of convergence of β0 can be determined when a = 1 by examining
equations (35) and (38) with a = 1. In particular, r1(1) in equation (35) is convergent
for all |t | � 33/4/4; in fact, evaluation shows directly that r1(1) is convergent for |t | = 33/4/4.
Since 33/4/4 > 1/2, this proves that the simple poles at t = ±1/2 are within the radius of
convergence of β0(1).

Further examination of β0(a) using a symbolic computations program (Maple 9) shows
a complicated expression of nested radicals which explicitly contains factors of the form√

81 − 768a4t4. This shows that there are branch points at at = 33/4ω/4 where ω is a fourth
root of unity. There may be more branch points on the circle at = 33/4/4, but we did not
verify this, and this will not play a crucial role in what follows.

Next, we consider the compositions of β0 in the alternating sum definition of g0(1, 0).
Since r1(t) is a positive term power series it follows by the triangle inequality in equation (35)
that for (complex) t such that |t | � 33/4/4,

|r2
1 (1)| �

∞∑
n=0

(
4n

n

)
(33/4/4)4n

3n + 1
= 4

3
. (41)
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Thus, by equation (38)

|β0(1)| � [33/4/4]2(16/9) = 1√
3
, if |t | � 33/4/4. (42)

Since β0(a) is a power series with positive coefficients in both a and t, |β0(a)| � |β0(1)|
for any |t | � 33/4/4 and |a| � 1, and by the triangle inequality, β0(a) is a maximum when
t = 33/4/4 for a fixed value of a. Thus, for fixed values of |a| � 1, β0(a) is a maximum on
the closed disk |t | � 33/4/4 when t = 33/4/4.

The above shows that for t = 33/4/4, |β0(a)| � 1/
√

3 for |a| � 1. Moreover, it follows
from equation (27) that |β0(a)| � |a|/√3 for |a| � 1 when t = 33/4/4. In other words,

|β0(β0(1))| � |33/4/4
√

3(
√

3 · 33/4/4)| = 1√
3

2 . (43)

It follows inductively that∣∣β(n)
0 (1)

∣∣ � 1√
3

n . (44)

Since the branch points in β
(n)
0 (1) will occur at values of t that

∣∣β(n−1)
0 (1)

∣∣ = 33/4/4, and∣∣β(n−1)
0 (1)

∣∣ � 1/
√

3
n−1

< 33/4/4 at a = 1 and for n > 2, this implies that the branch points
in β(n)(1) for n > 1 lie outside the circle with radius |t | = 33/4/4, and contributions of these
branch points to cn are dominated by the contributions to cn which is a result of the branch
points in β0(1) itself.

In particular, since the radius of convergence of β0(a) is determined by |at | = 33/4/4 and∣∣β(n−1)
0 (1)

∣∣ � 1/
√

3
n−1

, it follows that the radius of convergence of β
(n)
0 (1) in the t-plane is on

or outside the circle with radius |t | = 33/4
√

3
n−1

/4, for n > 2. Thus, the generating function
g0(a, 0) has infinitely many singularities in the t-plane for a = 1, and by remark 1 following
proposition 9 in [3], g0(1, 0) cannot be holonomic (or D-finite). Thus, g0(1, 1), the generating
function of even length directed paths in the wedge formed by Y = ±X/2, is not holonomic.

The bound in equation (44) also proves that g0(1, 0) is an absolutely convergent series on
the open disk with radius |t | = 3

√
3 which includes the simple poles of g0(1, 1) at t = ±1

and the branch points on the circle |t | = 33/4/4 in its interior. In other words, the asymptotic
behaviour of cn is given by

cn = 2n × (0.678 740 530 798 109 457 417 2327 . . .) + corrections. (45)

The corrections are due to the branch points in β0(1) and they grow at the exponential rate
(4/33/4)n+o(n). Since 4/33/4 ≈ 1.75 < 2, the effects of the correction terms will disappear
fast with increasing n, and cn/2n will approach 0.678 740 530 798 109 457 417 2327 . . . at
an exponential rate with increasing (and even) n. This verifies the sub-leading term in
equation (1).

We next turn our attention to odd values of n. Since g1(a, 0) = g1(0, b) = 0 (see
equation (22)), it follows from equation (9) that g0(a, b) = ab + Kg1(a, b) with K =
t (a/b + b/a). In terms of cn this implies that c2n = 2c2n−1. In other words, the asymptotic
expression for cn for odd values of n is obtained by adding a factor of one half to the expression
for cn in equation (45), and so this expression, with the claimed sub-leading correction, gives
the asymptotics for both even and odd values of n. This verifies equation (1) for both even
and odd values of n.

4. Narrower wedges

It is possible to consider this problem in the narrower wedge Vp where a and b measure vertical
distances to the functions Y = ±�X/p� and where the path starts at the vertex with coordinates
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(p, 0). In this case the paths are counted by a generating function Gp(a, b) = ∑p−1
i=0 gi(a, b),

where gi(a, b) generates paths of length imodp and satisfies a set of coupled functional-
differential equations:

g0 = ab + t (a/b + b/a)gp−1,

g1 = t (a2 + b2)g0 − ta2g0(a, 0) − tb2g0(0, b), (46)

g2 = t (a/b + b/a)g1 − ta

[
∂g1

∂b

]
b=0

− tb

[
∂g1

∂a

]
a=0

g3 = t (a/b + b/a)g2 − ta

[
∂g2

∂b

]
b=0

− tb

[
∂g2

∂a

]
a=0

. . . = . . .

gp−1 = t (a/b + b/a)gp−2 − ta

[
∂gp−2

∂b

]
b=0

− tb

[
∂gp−2

∂a

]
a=0

. (47)

Putting p = 2 in the above recovers the functional equations in equation (5), if the fact that
g1(a, 0) = g1(0, b) = 0 is used.

Put a = b = 1, write G = ∑p−1
i=0 gi and rewrite the boundary terms �g0(a, 0) = 0,

�g1(a, 0) = g1(a, 0) and �gi(a, 0) = [
∂gi

∂b

]
b=0 for i = 2, 3, . . . , p − 1 and similarly for

�gi(0, b). Summing the above functional equations then gives

G = 1 + 2tG −
p−1∑
i=0

(�gi(1, 0) + �gi(0, 1)) . (48)

The boundary terms
∑p−1

i=0 (�gi(1, 0) + �gi(0, 1)) represent the generating function of paths
starting at the point (p, 0) and ending within one step of the lines Y = ±X/p. Such paths of
length 2pn must contain almost (within a constant) (p + 1)n North–East steps. The number
of these paths grows at the exponential rate λ2p = ((2p)2p/(p − 1)p−1(p + 1)p+1)n. Hence
the generating function of these paths is convergent inside the circle of radius 1/λ. One can
show that this is strictly greater than 1/2, thus all the boundary generating functions �gi(1, 0)

and �gi(0, 1) of paths ending near the boundary of the wedge are convergent on the disk with
radius strictly greater than 1/2.

Thus, rearranging equation (48) to get

G = 1 − ∑p−1
i=0 (�gi(1, 0) + �gi(0, 1))

1 − 2t
(49)

the dominant singularity in G is at t = 1/2 and is a simple pole. The sub-dominant singularities
give terms growing to exponential order λn+o(n) where

λ = ((2p/(p − 1)(p−1)/2p(p + 1)(p+1)/2p)n). (50)

In other words,

c(p)
n = Ap2n + λn+o(n). (51)

Putting p = 2 produces the leading order term and the order of the next term obtained in
equation (45).

5. Conclusions

The main results in this paper are given by equations (1) and (26). We have shown that the
model of fully directed paths in the wedge V2 with starting vertex (2, 0) in figure 3 can be
solved formally using the iterated kernel method. This model is the second in a sequence
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of models in the wedge Vp with starting vertices (p, 0), for p ∈ {1, 2, 3, . . .}. Functional
equations for p > 2 are given in section 2.4 (when p = 1 the model is trivial, and cn = 2n).
We proved that the number of fully directed paths of length n in V2 increases exponentially at
the rate C02n, plus sub-dominant terms which are also exponentials. In addition, we showed
that C0 (the coefficient of the leading order term) can be determined easily to high accuracy.

In the more general wedge Vp it may be shown (using the techniques in [14]) that the
number of paths of length n is c

(p)
n = C

(p)

0 2n + lesser terms. In this event C
(p)

0 is known for
p = 1

(
C

(1)
0 = 1

)
and to high accuracy for p = 2

(
C

(2)
0 = 0.678 740 . . .

)
. No estimates exist

for other values of p, but one should be able to determine these by examining the kernel of the
functional equation for the models with p � 3.

The ‘physical’ root β0(a) of the quartic kernel (see equation (27)) counts directed paths
from (2, 0) (see figure 3) above the line Y = −X/2 and with last vertex in the line Y = −X/2.
By reversing the horizontal direction, this is also equal to the number of paths from the origin
above the line Y = X/2 and with last vertex in the line Y = X/2. The generating function
in equation (25) is an alternating series of products of compositions of β0(a), suggesting that
that g0(a, 0) is ‘constructed’ by an inclusion–exclusion process of directed paths above the
lines Y = −X/2 and Y = X/2.

These observations suggest that a combinatorial explanation for the generating function
g0(a, b) in equation (26) might be possible in terms of paths ‘bouncing off’ the boundaries of
the wedge V2; this is similar to an observation made for partially directed paths confined to a
wedge [22]. While we have not been able to find such an explanation, we note that this poses
an interesting open question. An explicit explanation along these lines might give clues about
the nature of the generating function of models in more general wedges, including the models
of directed paths in the wedges Vp for p > 2 formed by the lines Y = ±X/p, and also in
the half-wedges formed by the X-axis and the lines Y = X/p. Such models in half-wedges
(or even models in more general asymmetric wedges) will be more difficult to solve, since the
symmetric nature of V2 played a key role in writing down equation (26) and then determining
C0 by examining the singularities in equation (40).

Finally, our models in the wedge Vp map to the well-known problem of random walks
with given step-sets in the quarter plane (the first quadrant). These have been studied, for
example, in [2, 3, 24]. The models in this paper correspond to models with starting vertex
(p, p) and step set {(1 − p, p + 1), (p + 1, 1 − p)}. For p = 2, this produces the generalized
knight’s walk model with step set (−1, 3) and (3,−1) [22]. The corresponding functional
equation (in the quarter plane) for the generating function in this model has kernel

K(a, b) = ab − (a4 + b4) (52)

as opposed to our equation (13). Analysing the functional equation by examining the roots
of this quartic is equivalent to the manipulations in section 2.3. Indeed, the (physical) root of
this kernel is given by

β ′
0(a) =

∞∑
m=0

(
4m

m

)
a4m−1

3m + 1
, (53)

and its relation to the roots of the kernel in equation (13) is given in equations (35) and (39),
with t = 1.

The knight’s walk problem itself (with step set {(−1, 2), (2,−1)} and starting vertex
(1, 1)) was studied in [3], where it was shown that its generating function is not holonomic (or
D-finite). This model corresponds to the choice p = 3 (but with starting vertex (2, 0)—observe
that starting vertex (3, 0) gives a model which has the same generating function).
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In general, for arbitrary and rational values of p, the wedge problem maps to a class of
quarter plane models. Unfortunately, there appears to be no inherent (mathematical) advantage
in formulating the models in either a wedge or a quarter plane version, though parity effects
may simplify in one or the other. Kernels of the functional equations in these models will be
polynomials of high degree which makes these models difficult to solve explicitly in either
formulation. We note that the models of paths in wedges with an irrational value of p are well
defined, but they have no natural counterpart in the quarter plane.
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