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We present results for a lattice model of polymers where the type of � sheet formation can be controlled by
different types of hydrogen bonds depending on the relative orientation of close segments of the polymer.
Tuning these different interaction strengths leads to low-temperature structures with different types of orien-
tational order. We perform simulations of this model and so present the phase diagram, ascertaining the nature
of the phases and the order of the transitions between these phases.
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I. INTRODUCTION

The transition of a flexible macromolecular chain from a
random-coil conformation to a globular compact form, called
coil-globule transition, has been a subject of extensive theo-
retical and experimental studies �1�. Generally, polymers in a
good solvent are modeled by random walks with short-range
repulsion �excluded volume�. Polymers undergoing a coil-
globule transition are then modeled by adding an additional
short-range attraction. This short-range attraction is both due
to an affinity between monomers and solvent molecules, af-
fecting the solvability of a polymer, and also due to intramo-
lecular interactions between different monomers, for ex-
ample due to van der Waals forces. The canonical lattice
model �2,3� for this transition is given by interacting self-
avoiding walks, in which self-avoiding random walks on a
lattice are weighted according to the number of nearest-
neighbor contacts �nonconsecutively visited nearest-neighbor
lattice sites�.

In biological systems, e.g., proteins, the question of focus
is usually the ground state of a polymer with a specified
composition rather than the thermodynamic phase transitions
of polymers in solution. Here, the most relevant contribution
to monomer-monomer interactions is due to hydrogen bonds.
These hydrogen bonds can only form if neighboring seg-
ments are aligned in certain ways, resulting in an interaction
that is strongly dependent on the relative orientation of seg-
ments. This type of interaction plays a leading role in the
formation of secondary protein structures such as � helices
and � sheets �4�. Recent work �5–8� has focused on the
variety of different protein structures that can be designed
when using various types of hydrogenlike bonding in con-
junction with other types of interactions for finite length
polymers.

In this paper, we consider the thermodynamic phase struc-
ture of a lattice polymer model with competing types of hy-
drogenlike bonding, rather than the complicated ground
states of short-length configurations.

In �9�, Bascle et al. introduced a lattice model of polymers
interacting via hydrogen bonds, in which hydrogen bonds
were mimicked by an interaction between two nearest-
neighbor lattice sites which belong to two straight segments
of the polymer. This was treated in the context of Hamil-
tonian walks in a mean-field approach, and they predicted a
first-order transition between an anisotropic ordered phase
and a molten phase. Later, Foster and Seno introduced this
type of interaction to a model of self-avoiding walks �10�.
They analyzed it using transfer-matrix techniques in two di-
mensions, where a first-order transition between a folded
polymer crystal and a swollen coil was found. Subsequently,
a variant of this model was introduced by Buzano and Pretti
�11�, where the interaction is defined between parallel
nearest-neighbor bonds, independent of the straightness re-
quired in �9�, arguing that these should better take into ac-
count the contribution of fluctuating bonds, which may be
formed even in relatively disordered configurations. The au-
thors studied this interacting-bond model and the one intro-
duced by Foster and Seno on the square and simple cubic
lattice using the Bethe approximation. They found a first-
order transition in the Foster-Seno model in two and three
dimensions, confirming and extending results in �10�. In con-
trast to this, they found two transitions in the interacting-
bond model, a second-order � transition from a swollen coil
to a collapsed molten globule and then a first-order transition
to a folded polymer crystal. In a later paper �12�, they intro-
duced a competing isotropic interaction and studied its effect
in three dimensions using the Bethe approximation. They
found a phase diagram with three different phases �swollen
coil, collapsed molten globule, folded polymer crystal�, simi-
lar to that of collapsing semistiff polymers �13�.

In this work we generalize the Foster-Seno model to dis-
tinguish between nearest-neighbor contacts of parallel and
orthogonal straight segments �see Fig. 1� and assign interac-
tions of different strengths to these two types of contacts,
investigating it with Monte Carlo simulations using the Flat-
PERM algorithm �14�. We begin by simulating the Foster-
Seno model and confirm the theoretical picture presented
above �10,12�. We then consider our extended model �in
three dimensions�. We find evidence for two differently
structured folded phases, depending on whether the parallel
or orthogonal interactions dominate. The transition between
the swollen coil and each of the two collapsed ordered crys-
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tals is first-order. We investigate the structure of these two
low-temperature phases. For strong parallel interactions long
segments of the polymer align, whereas for strong orthogo-
nal interactions the polymer forms alternating orthogonally
layered � sheets.

II. MODEL AND SIMULATIONS

A polymer is modeled as an n-step self-avoiding walk on
the simple cubic lattice with interactions −�p and −�o for
nearest-neighbor contacts between parallel and orthogonal
straight segments of the walk, as shown in Fig. 1. Here, a
segment is defined as a site along with the two adjoining
bonds visited by the walk, and we say that a segment is
straight if these two bonds are aligned. The restriction of this
model to �o=�p is the simple generalization of the Foster-
Seno model, which was originally defined on a square lattice,
to three dimensions.

The total energy for a polymer configuration �n with
n+1 monomers �occupied lattice sites� is given by

En��n� = − mp��n��p − mo��n��o �1�

depending on the number of nonconsecutive parallel and or-
thogonal straight nearest-neighbor segments mp and mo, re-
spectively, along the polymer. For convenience, we define

�p = ��p and �o = ��o, �2�

where �=1/kBT for temperature T and Boltzmann constant
kB. The partition function is given by

Zn��p,�o� = �
mp,mo

Cn,mp,mo
e�pmp+�omo �3�

with Cn,mp,mo
being the density of states. We have simulated

this model using the FlatPERM algorithm �14�. The power of
this algorithm is the ability to sample the density of states
uniformly with respect to a chosen parametrization, so that
the whole parameter range is accessible from one simulation.
In practice, we have also performed multiple independent
simulations to further reduce errors. The natural parameters
for this problem are mp and mo, and the algorithm directly
estimates the density of states Cn,mp,mo

for all n�nmax for
some fixed nmax and all possible values of mp and mo. Ca-
nonical averages are performed with respect to this density
of states. As we need to store the full density of states, we
only perform simulations up to a maximal length of
nmax=128, due to a memory requirement growing as n3. To
reduce the error, we have taken averages of ten independent
runs each. Each run has taken approximately 3 months on a
2.8-GHz PC to complete.

Fixing one of the parameters �p and �o reduces the size
the histogram, and enables us to perform simulations of
larger systems, as the memory requirement now grows as n2.
Fixing �o, say, the algorithm directly estimates a partially
summed density of states

Ĉn,mp
��o� = �

mo

Cn,mp,mo
e�omo. �4�

In this way, we can simulate lengths up to nmax=1024 at
fixed �o. In a similar fashion, we also consider the diagonal
�p=�o=�, which is equivalent to considering the partially
summed density of states

C̃n,m = �
mo+mp=m

Cn,mp,mo
. �5�

To reduce the error for our runs up to n=1024, we have
taken averages of ten independent runs each. Each run has
taken approximately 2 months on a 2.8-GHz PC to complete.

III. RESULTS

Before presenting the findings for our model, we briefly
discuss the results of simulations of the Foster-Seno model in
two dimensions. We find a first-order transition between a
swollen coil and ordered collapsed phase in agreement with
Foster and Seno �10�. Figure 2 shows the internal density
distribution at �=�c=1.04, where the specific heat is maxi-
mal. This distribution is clearly bimodal, and finite-size scal-
ing supports the conclusion that the transition is first-order.
Our estimate of �c=1.04 is close to the value 1.00�2� ob-
tained by Foster and Seno �10� from transfer matrix calcula-
tions. The low temperature phase is an ordered �-sheet type
phase.

For the three-dimensional model, we have explored the
full two-variable phase space ��p ,�o� by using a two-

(a)

(b)

FIG. 1. �Color online� The two types of nearest-neighbor con-
tacts between two straight segments of the polymer: orthogonal
segments �a� with interaction −�o, and parallel segments �b� with
interaction −�p. In two dimensions, only parallel interactions are
possible.
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parameter FlatPERM simulation of the model for lengths up
to 128. We performed ten independent simulations to ensure
convergence and understand the size of the statistical error in
our results. As in previous work �15,16�, we found the use of
the largest eigenvalue of the matrix of second derivatives of
the free energy with respect to the parameters �p and �o
most advantageous to show the fluctuations in a unified man-
ner. Figure 3 displays a density plot of the size of fluctua-
tions for 0��p, �o�2. It suggests the presence of three
thermodynamic phases separated by three phase transition
lines meeting at a single point. For small values of �p and
�o, we expect the model to be in the excluded volume uni-
versality class of swollen polymers, since at �p=�o=0 the
model reduces to the simple self-avoiding walk. The ques-
tion arises as to the nature of the phases for large �p with �o
fixed and for large �o with �p small, and the type of transi-
tions between each of the phases.

We find evidence for a strong collapse phase transition
when increasing �p for fixed �o�1.38. Corrections to scal-
ing at lengths n�128 make it difficult to identify the nature
of the transition. The location of the transition seems inde-
pendent of the value of �o and is located at �p�1.25 for
length n=128; this is taken from the location of the peak of
the fluctuations. Since our data indicate that this transition
occurs for �o�1.38 at �p�1.25, it follows that the diagonal

line �o=�p crosses this transition line. Configurations in the
collapsed phase are rich in parallel contacts; we shall discuss
further details of the collapsed phase below.

The situation changes significantly for �o	1.38. When
we start from the swollen phase at fixed �o
1.38 and in-
crease �p we see evidence for a strong phase transition to a
different collapsed phase, in which orthogonal contacts are
expected to play an important role. Further increase of �p
leads to another strong transition to the parallel-contact rich
phase. We investigate the transition between the swollen coil
and the orthogonal-contact rich phase by considering the line
�p=1.0. Figure 4 shows a bimodal internal energy distribu-
tion at the maximum of the fluctuations in mo for length
n=128, indicating the presence of a first-order transition.

Combining the evidence above, we conjecture the phase
diagram shown in Fig. 5, having three phases and three
transition lines that meet at a triple point located at
��p

t ,�o
t ���1.25,1.38� for length n=128. By considering the

location of this point for different lengths n, we conclude that
its estimate is affected by strong finite-size corrections to
scaling.

To further elucidate the nature of the phase transitions and
the structure of the low-temperature phases, we perform
simulations for larger system sizes for the two lines �o=0
and �o=�p, using one-parameter FlatPERM simulations for
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FIG. 2. �Color online� Internal energy density distributions for
the two-dimensional Foster-Seno model at the value of � for which
the fluctuations are maximal, length 1024.
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FIG. 3. �Color online� This is a density plot of the logarithm of
the largest eigenvalue of the matrix of second derivatives of the free
energy with respect to �p and �o at n=128. The lighter the shade,
the larger the value.
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FIG. 4. �Color online� A plot of the internal energy distribution
in mo at �p=1.0 for length n=128 at values of �o for which the
fluctuations in mo are maximal.
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FIG. 5. �Color online� This figure represents our conjectured
schematic phase diagram. The phase boundaries are marked by
solid �black� lines. The dashed diagonal �blue� and horizontal �red�
lines denote the lines along which we have performed one-
parameter simulations.
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lengths up to n=1024, averaged over ten independent simu-
lations each. We begin by considering �o=0. The peak of the
specific heat occurs at �p=0.996 for n=1024, which we note
is shifted away from the value at length n=128 and reflects
the presence of strong corrections to scaling. The distribution
of mp at this point is shown in Fig. 6; we observe a clear
bimodal distribution with well-separated peaks and which
ranges over fourteen orders of magnitude, convincingly sup-
porting the conclusion of a first-order phase transition. Simi-
larly, along the line �=�o=�p we find a single peak of the
specific heat, located at �p=0.998 for n=1024. The distribu-
tion of m=mo+mp at this point displays the same character-
istics as the transition on the line �o=0 described above. Our
investigations of the transition between the two collapsed
phases were not conclusive, as it is difficult to do simulations
at very low temperatures. While we expect there to be a
first-order phase transition between the two collapsed phase
we were unable to verify this.

To delineate the nature of the two collapsed phases, we
have randomly sampled typical configurations for each: two
of these are shown in Fig. 7. In each case we have used
�p
0, where parallel contacts are attractive. For large �p,
we have a parallel contact rich phase, and typical configura-
tions have lines of monomers arranged in parallel. In Fig. 7,
there is a typical configuration for ��p=1.8, �o=1.0�, which
demonstrates these parallel � lines. For large �o, orthogonal
contacts play an important role. A typical configuration for
��p=1.3, �o=1.9� consists of parallel lines arranged in �
sheets, which are layered orthogonally. The entropy of the
phase consisting out of orthogonal � sheets is lower than the
entropy of the phase consisting out of collection of parallel
lines, which explains why the collapse-collapse transition
line is shifted away from the diagonal. Clearly the formation
of � sheets is dependent on �p being positive �attractive
parallel� interactions.

In conclusion, we have demonstrated the intriguing pos-
sibility of obtaining � sheet formations in polymers which
interact in two different ways. Depending on the modeling of
the interactions we distinguish � sheets that align parallel or
orthogonal to each other, which leads to two different phases.
There remains an interesting theoretical question as to the
behavior of the system when the parallel interactions are re-
pulsive but the orthogonal interactions are highly attractive.
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FIG. 6. �Color online� Internal energy density distributions of
mp at �o=0 and �p=0.996 for length 1024.
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FIG. 7. �Color online� Typical configurations for the two differ-
ent collapsed phases, sampled at �a� ��p=1.3, �o=1.9� and at
�b� ��p=1.8, �o=1.0�.
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