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Abstract

The collapse transition of an isolated polymer has been modelled by many different approaches, including lattice models

based on self-avoiding walks and self-avoiding trails. In two dimensions, previous simulations of kinetic growth trails,

which map to a particular temperature of interacting self-avoiding trails, showed markedly different behaviour for what

was argued to be the collapse transition than that which has been verified for models based of self-avoiding walks. On the

other hand, it has been argued that kinetic growth trails represent a special simulation that does not give the correct picture

of the standard equilibrium model. In this work we simulate the standard equilibrium interacting self-avoiding trail model

on the square lattice up to lengths over 2,000,000 steps and show that the results of the kinetic growth simulations are, in

fact, entirely in accord with standard simulations of the temperature dependent model. In this way we verify that the

collapse transition of interacting self-avoiding walks and trails are indeed in different universality classes in two

dimensions.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past 25 years various lattice models of a single self-interacting polymer chain have been analysed in
both two and three dimensions (and beyond). These include various types of self-interacting self-avoiding
walk, self-interacting trails [1] (lattice paths that can intersect at a lattice vertex but not along a lattice edge)
and self-interacting random (fully self-intersecting) walk models. The fundamental physical phase transition
[2] that these models are compared to is that of the collapse of single polymer in a poor solvent as the
temperature is lowered. The question that arises when considering the bulk of these studies is how robust is
the universality class of the collapse transition. The standard theory [3–5] of the collapse transition is based on
the n! 0 limit of the magnetic tricritical f4

� f6 OðnÞ field theory and related Edwards model with two and
three body forces [6,7], which predicts an upper critical dimension of three with subtle scaling behaviour in
that dimension. As an analysis of these theories is not exact in two dimensions, lattice models form the basis of
our knowledge. Analyses of both two- and three-dimensional self-interacting trails [8,9] indicate that they are
e front matter r 2006 Elsevier B.V. All rights reserved.
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in a different universality class to that of self-interacting self-avoiding walks in those respective dimensions.
There is no clear understanding of why this is the case if true. A complication of this scenario occurs because
the numerically most extensive work on trails [8,9], and that which draws the conclusion of separate
universality classes, uses so-called ‘‘kinetic growth’’ simulations, or ‘‘smart kinetic trails’’, to study the collapse
point of self-interacting trails. These simulations are of trails produced in such a way that one argues they
form a distribution of self-interacting trails at one particular temperature. One then further argues from the
numerical evidence that this temperature is precisely the collapse temperature. Now, it was claimed [10] that
the collapse transition associated with ‘‘smart kinetic trails’’ is first-order. Clear evidence was produced in [10]
to demonstrate that there was first order transition in three dimensions on the diamond lattice. On the other
hand, no evidence of this could be found in two dimensions.

The explanation of this relates to the vanishing of renormalized three-body interactions in the smart kinetic
trails. It was further suggested in Ref. [10] that studying the smart kinetic trails was misleading when
considering the full equilibrium self-interacting trail model.

To try to see if these arguments hold in two dimensions we have simulated self-avoiding trails over a range
of temperatures near the collapse point. The collapse temperature is indeed the point onto which the smart
kinetic trails map, and we compare these with our earlier results concerning two-dimensional trail collapse
based on the smart kinetic trail simulations.

2. The model

The model of self-interacting trails (ISAT) on the square lattice is defined as follows. Consider all different
bond-avoiding paths jN of length N that can be formed on the square lattice with one end fixed at a particular
site (the set ON ). Associate an energy �e with each doubly-visited site. For each configuration jN count the
number mðjNÞ of doubly-visited sites of the lattice and give that configuration a Boltzmann weight om, where
o ¼ expðbeÞ. The partition function of the ISAT model is then given by

ZN ðoÞ ¼
X

jN2ON

omðjN Þ. (2.1)

The reduced and normalized internal energy

UN ¼
1

N
hmi (2.2)

and reduced and normalized specific heat

CN ¼
1

N
ðhm2i � hmi2Þ (2.3)

are defined in the usual way.
It was argued in Refs. [11,12] that the smart kinetic growth trails simulates at a specific Boltzmann weight

o ¼ oc � 3 and it was later argued [8] that oc is indeed the collapse value of the Boltzmann weight.
Let us assume that the phase transition occurring at oc is critical and furthermore that the specific heat

diverges at the transition (all previous work supports this second proposition). Now we define the exponent a
from the divergence of the thermodynamic limit specific heat as usual as

cðoÞ ¼ lim
N!1

CN�joc � oj�a. (2.4)

Let us return to finite N scaling and consider the peak in the specific heat near oc. Let the peak be located at
oc;N and define the width of the transition Do by the difference in the omega values at the half-heights (that is,
the values of o that give values of CN as CN ðoc;NÞ=2). The crossover exponent is defined by

Do�
a

Nf , (2.5)

where a is a constant, and, in turn, gives us a scaling variable ðo� ocÞN
f on which to scale for data collapse.

The standard scaling theory [13] predicts that the crossover exponent f is related to the specific heat exponent
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a via the scaling relation

2� a ¼ 1=f (2.6)

and that the shift of the peak from its thermodynamic limit value is also governed by f, that is

joc � oc;N j�
b

Nf , (2.7)

where b is a constant. Moreover, the peak value of the finite size specific heat should then behave as Ref. [13]

CN ðoc;NÞ�dNaf, (2.8)

where d is a constant. Using all of the above one can obtain local estimates of the exponents a and f from this
form, and these can be independently verified by studying the width and the shift of the transition via the
specific heat peak.

A further independent test is to study the internal energy as it is predicted to scale as

UNðoc;N Þ�U1ðocÞ � eN ða�1Þf, (2.9)

where U1 is the thermodynamic limit internal energy and e is a constant. Usually this would be more difficult
to analyse as U1ðocÞ is unknown but for this model we can argue that U1 ¼ 0:4 as follows from a kinetic
growth argument.

Consider an N-step loop which occupies M lattice sites. The number of contacts is given by the number m of
doubly visited sites, and we have m ¼ N �M. Any site of this loop could have been the starting point, and in
order for a site to be visited twice, the loop must not have been closed at the first return visit. The probability
of not closing upon the first return is 2=3, so that for large loops m=M ! 2=3, from whence it follows that
m=N ! 2=5.

In our previous work [8] we estimated

f ¼ 0:88þ0:07�0:05 (2.10)

and so a � 0:86. This is equivalent to the value of af � 0:76 for the exponent describing the divergence of the
specific heat peak. We note that the established values for self-interacting self-avoiding walks in two
dimensions [14], that is, f ¼ 3=7 and a ¼ �1=3, imply that the specific heat does not diverge! On the other
hand, if there was a first order transition a ¼ f ¼ 1.

3. Results

We have used the now standard PERM algorithm [15] to simulate ISAT at various fixed temperatures
around oc ¼ 3 for trail lengths from 215 ¼ 32768 (denoted as 32K) in factors of 4 up to 221 ¼ 2097152
(denoted as 2048K). We chose the range of temperatures by first simulating at o ¼ 3 and then reweighting the
obtained histogram to give an estimate of the location of the specific heat peak oc;N . We then repeated the
simulation at oc;N . The multi-histogram method [16] was then used to give data throughout the transition
region. The simulations at o ¼ 3 gave almost identical results to those additionally using the peak data. The
quantities of interest such as Do and oc;N were re-estimated.

We attempted to scale all the data using a consistent set of exponents. The best fit for the specific heat data
was obtained for

af ¼ 0:6_6 so a ¼ 0:80 and f ¼ 0:8_3, (3.1)

while for the internal energy data the best fit used

f ¼ 0:85 so a � 0:82 and af ¼ 0:7. (3.2)

Clearly there is an error of at least 0.025 in these estimates and the statistical spread confirmed an error of
about 0.03. We have used the scaling relation (2.6) for consistency. The first figures show the scaling of various
quantities using those exponent assumptions. In Fig. 1 the scaled difference of the internal energy to its
thermodynamic value ðU1 �UNÞN

ð1�aÞf and scaled specific heat CNN�af are plotted against the scaling
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Fig. 1. Scaled internal energy gap ðU1 �UN ÞN
ð1�aÞf and specific heat CN N�af versus scaled ðo� ocÞN

f for lengths 32, 128, 512, and

2048K, comparing the individual data points with the results from the multi-histogram method.
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variable ðo� ocÞN
f. These demonstrate consistency in three ways: between the specific heat, the internal

energy and the horizontal scaling variable all at once.
We have estimated the crossover exponent independently via both the shift ðoc;N � ocÞ and the width Do of

the transition. Fig. 2 shows plots of the appropriate scaling combinations for these two quantities against N

using the estimate f ¼ 0:84 (in between our previous estimates), being the best value using these plots.
Finally, in Fig. 3 we demonstrate the convergence of the scaling by plotting scaling combinations that

should be constant in the absence of corrections-to-scaling. These give us confidence in the results from the
other figures.

We therefore conclude that our new simulations away from the ‘‘smart kinetic growth point’’ are in
agreement with the exponent estimates of the smart kinetic growth simulations with perhaps slightly smaller
values of f and a as previous central estimates. We now estimate

a ¼ 0:81ð3Þ and f ¼ 0:84ð3Þ. (3.3)



ARTICLE IN PRESS

0.0

20.0

40.0

60.0

80.0

100.0

1000 10000 100000 1e+06 1e+07

(ω
c,

N
−ω

c)
N

φ  
bo

tto
m

, ∆
ω

N
φ  

to
p

N

Fig. 2. Scaling of the transition: shift and width of the collapse region. Shown are the scaling combinations Nfðoc;N � ocÞ and NfDo
versus N. We have that oc ¼ 3 and have used the estimate of f ¼ 0:84.
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Fig. 3. Scaling of the transition: height of the specific heat peak. Shown are the scaling combinations CN ðoc;N � ocÞ
2N and CNDo2N

versus N. We have that oc ¼ 3.
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4. Conclusion

We have simulated self-interacting self-avoiding trails on the square lattice up to lengths of 2,097,152 for a
range of temperatures around the collapse transition temperature. We conclude that the results are in good
agreement with earlier simulations based on smart kinetic trails. They demonstrate a phase transition which is
neither of the type displayed by self-interacting self-avoiding walks nor is it first order, although it is very
strong, as predicted by an analysis of the smart kinetic growth trails.
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