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Self-Avoiding Random Walk with Multiple Site Weightings and Restrictions

J. Krawczyk,1,* T. Prellberg,2,† A. L. Owczarek,1,‡ and A. Rechnitzer1,x

1Department of Mathematics and Statistics, The University of Melbourne, 3010, Australia
2School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom

(Received 17 March 2006; published 22 June 2006)
0031-9007=
We introduce a new class of models for polymer collapse, given by random walks on regular lattices
which are weighted according to multiple site visits. A Boltzmann weight !l is assigned to each �l�
1�-fold visited lattice site, and self-avoidance is incorporated by restricting to a maximal number K of
visits to any site via setting !l � 0 for l � K. In this Letter we study this model on the square and simple
cubic lattices for the case K � 3. Moreover, we consider a variant of this model, in which we forbid
immediate self-reversal of the random walk. We perform simulations for random walks up to n � 1024
steps using FLATPERM, a flat histogram stochastic growth algorithm. We find evidence that the existence of
a collapse transition depends sensitively on the details of the model and has an unexpected dependence on
dimension.
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Introduction.—The transition of a flexible macromolec-
ular chain from a random-coil conformation to a globular
compact form, called the coil-globule transition, has been a
subject of extensive theoretical and experimental studies
[1]. Generally, polymers in a good solvent are modeled by
random walks with short-range repulsion (excluded vol-
ume). Polymers undergoing a coil-globule transition are
then modeled by adding an additional short-range attrac-
tion. The canonical lattice model [2,3] for this transition is
given by interacting self-avoiding walks (ISAWs), in
which self-avoiding random walks on a lattice are
weighted according to the number of nearest-neighbor
contacts.

From the point of view of continuum models, the draw-
back of an ISAW is that it contains two different kind of
interactions (on-site and nearest-neighbor). In this Letter,
we introduce a different class of lattice models for polymer
collapse, which has only on-site interactions. This is in
spirit similar to the Domb-Joyce model [4], in which a
random walk is weighted according to the number of
multiple visits of lattice sites.

It has generally been accepted that a model of a polymer
in a good solvent based on static random-walk configura-
tions with either a finite site repulsion, as in the Domb-
Joyce model, or an infinite site (and/or bond) repulsion, as
in the self-avoiding walk or trail models, agree and are
accurate for universal features, in both discrete and con-
tinuum models. Furthermore, it is generally assumed that
the addition of short-range attraction, say between nearest-
neighbor sites on a lattice, should describe the coil-globule
transition. The collapsed globule is a liquidlike bubble and
the transition is expected to be second-order [5] in all
dimensions with an upper critical dimension of three. If
some stiffness is added to the system the collapsed globule
can be frozen and the transition is expected to be first order
[6], at least in three dimensions; how this depends on the
dimension is not known.
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However, an investigation of our new class of models
reveals that not only the strength of the coil-globule tran-
sition, but also its very existence, depends sensitively on
details of the model.

The class of models and the algorithm.—We consider
n-step random walks � � � ~�0; ~�1; . . . ; ~�n� on a lattice. The
number of visits to each site ~x induces a density �� on the
lattice sites ~x via

 ��� ~x� �
Xn

i�0

� ~�i; ~x
: (1)

Interpreting the density � � �� as a field induced by a
particular random-walk configuration �, we denote the
energy of the field as E���. In the Domb-Joyce model,
the energy functional is given by

 EDJ��� � a
X

~x

�� ~x� � b
X

~x

�2� ~x�: (2)

The first term in this expression is simply related to the
length n of the random walk, as

 

X

~x

�� ~x� � n� 1; (3)

so that a is related to a chemical potential. For b � 0 we
have a pure random walk, while for b < 0 the model is
weakly self-avoiding. The case b > 0 leads to an extremely
collapsed phase, which is dominated by configurations
occupying a few lattice sites with very high density.
Thus, while this model is capable of modelling the swollen
polymer regime, further terms in the energy functional
need to be taken into consideration to model ‘‘realistic’’
polymer collapse.

Generalizing Eq. (2), we write the energy for a given
configuration � as
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FIG. 1 (color online). Example of a 12-step walk on the square
lattice with self-reversal allowed (RA). A filled circle [light gray
(green online)] denotes the presence of a single monomer; filled
squares [dark gray (blue online)], two; and empty squares
(white), three monomers. The numbers denote the sequence of
monomers.
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 E��� � E���� �
X

~x

f��� ~x��: (4)

In Eq. (2), f�t� is simply the quadratic polynomial f�t� �
at� bt2, and any particular choice of f�t� gives an alter-
native to the Domb-Joyce model.

Restricting to a maximal number K of visits to any site
incorporates self-avoidance. Choosing K � 1 gives self-
avoiding walks, and forK > 1 we obtain a model withK �
1 parameters. To be precise, we choose f to be given by
f�0� � f�1� � 0,

 f�2� � "1; f�3� � "2; . . . ; f�K� � "K�1;

(5)

and f�t� � 1 for t > K. Thus, each l-fold visited site
contributes "l�1 to the energy of a configuration.

The canonical partition function is given by

 Zn��� �
X

j�j�n�1

e��E���; (6)

where the sum extends over all random-walk configura-
tions with n steps, i.e., n� 1 sites. Writing

 ~" � �"1; . . . ; "K�1� and ~m � �m1; . . . ; mK�1� (7)

where ml denotes the number of sites which are occupied
by l� 1 monomers, the energy can be written as

 E� ~m� �
XK�1

i�1

"imi � ~" 	 ~m: (8)

This enables us to write the partition function Eq. (6) as

 Zn��� �
X

~m

Cn; ~me
��E� ~m� �

X

~m

Cn; ~me
~�	 ~m (9)

where Cn; ~m denotes the density of states, and ~� �
��1; . . . ; �K�1� are generalized temperature parameters,
given by �l � ��"l. In other words, �l� 1�-fold visited
sites carry a Boltzmann weight !l � e�l , with!0 � 1 and
!l � 0 for l � K.

The density of states is estimated directly by the
FLATPERM algorithm (see below for a description). Any
averaged quantity Q over the set of parameters ~m for a
given length n is calculated by

 hQin� ~�� �

P
~m Qn; ~mCn; ~me

~�	 ~m

P
~m Cn; ~me

~�	 ~m
: (10)

For our simulations, we restrict ourselves toK � 3, i.e., we
only allow twofold and threefold visits to any site, so that
we have two free parameters �1 and �2.

We consider two variants of the model which differ in
the underlying set of random walks used. For the first
variant, we include all simple random-walk configurations,
whereas for the second variant, we only include simple
random walks without immediate self-reversal. For this
reason, we call the first variant RA for ‘‘reversal allowed’’,
24060
and the second variant RF for ‘‘reversal forbidden’’.
Clearly, RF configurations form a subset of RA configura-
tions. An example of a configuration of the RA model is
shown in Fig. 1 for the case of a square lattice. We shall
consider both models in two dimensions on the square
lattice and in three dimensions on the simple cubic lattice,
so that we have a total of four models, which we denote by
RA2, RA3, RF2, and RF3.

We have simulated these four models using the
FLATPERM algorithm [7]. The power of this algorithm is
the ability to sample the density of states uniformly with
respect to a chosen parametrization, so that the whole
parameter range is accessible from one simulation.

The natural parameters for this problem are m1 and m2.
The algorithm directly estimates the density of states
Cn;m1;m2

for all n 
 nmax and any value of m1 and m2.
From this, we can then calculate all interesting quantities
using Eq. (10). As we need to store the full density of
states, we only perform simulations up to a maximal length
of nmax � 256.

Fixing one of the parameters �1 and �2 reduces the size
the histogram, and enables us to perform simulations of
larger systems. Fixing �2, say, the algorithm directly esti-
mates a partially summed density of states

 

�C n;m1
��2� �

X

m2

Cn;m1;m2
e�2m2 : (11)

In this way, we can simulate lengths up to nmax � 1024 at
specifically chosen parameters �1 or �2. Any averaged
quantity hQin is now calculated by using a suitably modi-
fied version of relation (10).

Results.—For all four models we find SAW behavior in
the case of repulsion (i.e. �1, �2 < 0). Here, singly visited
sites dominate, and the polymer is swollen, as is clearly
evident from the scaling of the mean-squared end-to-end
distance.
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FIG. 2 (color online). Model RF3 with two different phase
transitions. On varying �2 at fixed negative �1, there is one type
of transition (possibly first order), and on varying �1 at fixed
negative �2, there is another. The dot represents the point at
which the type of transition changes.
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FIG. 3 (color online). Fluctuations in m2 at �1 � �1:0 (top)
and in m1 at �2 � �1:0 (bottom) for model RF3.
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FIG. 4 (color online). Distribution of m2 at �2 � �1:0 near
the phase transition for model RF3 at n � 1024.
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When �2 � 0� �1, doubly visited sites should domi-
nate, and when �1 � 0� �2, triply visited sites should
dominate. Our simulations confirm this, as well.

We now turn to the question of phase transitions between
these regimes. Naively one would expect to find coil-
globule transitions from the swollen phase to the collapsed
region. Moreover, for �1, �2 � 0, there is competition
between doubly visited and triply visited sites, along with
the possibility of a further transition.

We have investigated this scenario in detail for all four
models.

Model RF3.—For random walks with forbidden reversal
on the simple cubic lattice (RF3), we find clear evidence of
two different phase transitions, leading to the phase dia-
gram sketched in Fig. 2. We cannot precisely locate the
point where the two phase transition lines meet; however, it
is likely that this point is located in the first quadrant.

We have analyzed these two phase transitions from
simulations at �1 � �1:0 and �2 � �1:0, respectively.
Figure 3 shows fluctuations in m1 along �2 � �1:0 and
fluctuations in m2 along �1 � �1:0. In both cases, there is
a buildup of fluctuations as the system size increases. The
transition at fixed �2 � �1:0 is stronger than the transition
at fixed �1 � �1:0. While the latter transition is second
order, the former appears to be first order. It may be the
case that the latter transition is of the same type as ISAW
collapse in three dimensions. The first-order character of
the former transition is supported by the fact that the
distribution of m2 near the transition shows a weak bimo-
dality; see Fig. 4. An investigation of the scaling behavior
24060
of the mean-squared end-to-end distance supports these
conclusions.

There is no indication of any collapse-collapse transition
in the first quadrant joining up with the point at which the
type of the collapse transition changes.
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FIG. 5 (color online). Fluctuations in m2 at �1 � �1:0 (top)
and in m1 at �2 � �1:0 (bottom) for model RA2, showing
convergence to smooth thermodynamic functions.
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Model RA2.—We now consider random walks with
allowed reversal on the square lattice (RA2), since it
provides the largest contrast with RF3. Surprisingly, for
RA2, we do not find any indication of a phase transition,
but merely a smooth crossover. Figure 5 shows fluctuations
in m1 along �2 � �1:0 and fluctuations in m2 along �1 �
�1:0. In both cases, there is a smooth crossover, and no
buildup of fluctuations as the system size increases. There
could, of course, still be a weak transition. However, an
investigation of the scaling behavior of the mean-squared
end-to-end distance supports the conclusion of no transi-
tions. At the three points ��1; �2� � ��1:0;�1:0�,
��1:0; 1:0�, and �1:0;�1:0�, we find clear evidence for
self-avoiding walk scaling behavior. We conclude that
RA2 is in the self-avoiding walk universality class for all
values of �1 and �2.
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So it would seem that changing the dimension and
allowing for reversals has removed the phase transition
altogether. This is unexpected.

Models RA3/RF2.—Our analysis of the two remaining
models shows that these in some way interpolate between
RF3 and RA2. Random walks with allowed reversal on the
simple cubic lattice (RA3) and random walks with forbid-
den reversal on the square lattice (RF2) show behavior
similar to each other.

For negative values of �1, we find a transition from a
swollen to a collapsed phase upon increasing �2. However,
for negative values of �2, we cannot decide whether there
exists a very weak phase transition (the specific heat ex-
ponent � may be negative) or a simple crossover. An
analysis of the mean-squared end-to-end distance scaling
is inconclusive.

Conclusion.—In conclusion, we have introduced and
simulated various new models of polymer collapse in two
and three dimensions. We have found evidence that the
type and very existence of the transition depends crucially
on subtle aspects of the underlying lattice model, in par-
ticular, on whether the random walk contains immediate
reversals or not. There is also a greater dependence on
dimension than one might expect. There is clearly need for
further work to be done to understand these intriguing
results. If backed up, these results will surely challenge
the current theoretical framework of our understanding of
polymer collapse.
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