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Abstract. – An infinite hierarchy of layering transitions exists for model polymers in solu-
tion under poor solvent or low temperatures and near an attractive surface. A flat histogram
stochastic growth algorithm known as FlatPERM has been used on a self- and surface inter-
acting self-avoiding walk model for lengths up to 256. The associated phases exist as stable
equilibria for large though not infinite length polymers and break the conjectured Surface At-
tached Globule phase into a series of phases where a polymer exists in specified layer close
to a surface. We provide a scaling theory for these phases and the first-order transitions be-
tween them.

With the advent of sophisticated experimental techniques [1], such as optical tweezers, to
probe the behaviour of single polymer molecules and the explosion of interest in the physics
of biomolecules such as DNA, there is a new focus on the study of dilute solutions of long
chain molecules. It is therefore appropriate to ask whether the thermodynamic behaviour of
such long chain molecules is well understood over a wide range of solvent types, temperatures
and surface conditions. Even if one considers a fairly simple lattice model consisting of a
self-avoiding walk on a cubic lattice with nearest-neighbour self-interactions in a half-space
with the addition of surface attraction, the phase diagram has not been fully explored. In
this letter we examine the whole phase diagram highlighting a surprising new phenomenon.
In particular, we demonstrate new features for large but finite polymer lengths involving the
existence of a series of layering transitions at low temperatures.

Separately, the self-attraction of different parts of the same polymer and the attraction to a
surface mediate the two most fundamental phase transitions in the study of isolated polymers
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in solution: collapse and adsorption. Without a surface, an isolated polymer undergoes a
collapse or coil-globule transition [2] from a high-temperature (good solvent) state, where in
the infinite length limit the polymer behaves as a fractal with dimension df = 1/ν, where
ν ≈ 0.5874(2) (known as the extended phase) to a low-temperature state (collapsed) where
the polymer behaves as a dense liquid drop (hence a three-dimensional globule). In between
these states is the well-known θ-point. Alternately, a polymer in the presence of a sticky wall
will bind (adsorb) onto the surface as the temperature is lowered [3,4]. At high temperatures
only a finite number of monomers lie in the surface (desorbed) regardless of length even if
the polymer is tethered onto the surface, while at low temperatures a finite fraction of the
monomers will be adsorbed onto the surface in the large length limit and the polymer behaves
in a two-dimensional fashion (with a smaller fractal dimension of 4/3). Much theoretical and
experimental work has gone into elucidating these transitions. The situation when both of
these effects are at work simultaneously and hence compete has received attention in the past
decade [5–8]. In three dimensions, four phases were initially proposed: Desorbed-Extended
(DE), Desorbed-Collapsed (DC), Adsorbed-Extended (AE) and Adsorbed-Collapsed (AC)
phases. In the AC phase, the polymer is absorbed onto the surface and behaves as a two-
dimensional liquid drop. Recently, a new low-temperature (surface) phase named Surface-
Attached Globule (SAG) [9,10] has been conjectured from short exact enumeration studies and
the analysis of directed walk models [11]. In this phase the polymer would behave as a three-
dimensional globule but stay relatively close to the surface. In fact the claim is that there is not
a bulk phase transition between DC and SAG (if SAG exists) in that the free energy of SAG
and DC are the same. However, the number of surface monomers would scale as n2/3, where
n is the number of monomers, rather than the n0 as normally occurs in the desorbed state [3].

To explore the phase diagram it is natural to conduct Monte Carlo simulations. However,
the scale of the endeavour becomes clear for even small system sizes (polymer lengths) because
one is required to scan the entire two-energy parameter space of self-attraction and surface
attraction. Even if once fixes one of the parameters, the study of the properties of the model
as the other parameter is varied usually requires many simulations. Fortunately, a recently
developed algorithm [12], FlatPERM, is able to collect the necessary data in a single simu-
lation. The power of this approach cannot be underestimated. We have utilised FlatPERM
to simulate a self-avoiding walk model of a polymer with both self-attraction and surface
attraction that allows us to calculate quantities of interest at essentially any values of the
energies. This was done with one very long simulation run for polymer lengths up to length
nmax = 128 and also in multiple shorter CPU time runs, up to polymer length nmax = 256.
We used a Beowulf cluster to run these multiple simulations simultaneously with different
random number “seeds”. This allowed us to gain some estimate of statistical errors.

The model [6] considered is a self-avoiding walk in a three-dimensional cubic lattice in
a half-space interacting via a nearest-nearest energy of attraction εb per monomer-monomer
contact. The self-avoiding walk is attached at one end to the boundary of the half-space with
surface energy per monomer of εs for visits to the interface. The total energy of a configuration
ϕn of length n is given by

En(ϕn) = −mb(ϕn)εb − ms(ϕn)εs (1)

and depends on the number of non-consecutive nearest-neighbour pairs (contacts) along the
walk mb and the number of visits to the planar surface ms. For convenience, we define
βb = εb/kBT and βs = εs/kBT for temperature T and Boltzmann constant kB . The partition
function is given by Zn(βb, βs) =

∑
mb,ms

Cn,mb,ms
eβbmb+βsms with Cn,mb,ms

being the den-
sity of states. It is this density of states that is estimated directly by the FlatPERM simulation.
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(a) (b)

Fig. 1 – Plots of the logarithm of the largest eigenvalue of the matrix of second derivatives of the free
energy with respect to βb and βs for a range of bulk and surface energies. The lighter the shade the
larger the value. The first figure shows the range of energies previously considered, and a schematic
phase diagram consistent with Vrbová and Whittington. The white circle denotes the multicritical
point. The second shows an extended range which clearly shows a new phenomenon (see main text).
These plots were produced from our n ≤ 128 long simulation run, using the n = 128 length data.

Our algorithm grows a walk monomer-by-monomer starting on the surface. We obtain data
for each value of n up to nmax, and all permissible values of mb and ms. The growth is chosen
to produce approximately equal numbers of samples for each tuple of (n,mb,ms). The equal
number of samples is maintained by pruning and enrichment [12]. For each configuration we
have also calculated the average height above the surface. Instead of relying on the traditional
specific heat we have instead calculated, for a range of values of βb and βs, the matrix of second
derivatives of log(Zn(βb, βs)) with respect to βb and βs and from that calculated the two eigen-
values of this matrix. This gives a clear picture of the phase diagram and allows for the accu-
rate determination of the multicritical point [13] that exists in the phase diagram (see fig. 1(a)).

We begin our discussion by showing a plot obtained from one run of the FlatPERM
algorithm for nmax = 128 in the region of parameter space that has been investigated in
previous works, namely 0 ≤ βb ≤ 1.4 and 0 ≤ βs ≤ 1.6 (see fig. 1(a)). The phase boundaries
seen by Vrbová and Whittington [7] are clearly visible with four phases in existence. For small
βb and βs, the polymer is in a desorbed and expanded phase (DE). For larger βs adsorption
occurs into the AE phase while for larger βb a collapse transition occurs into a phase described
as the DC by Vrbová and Whittington [7] and either SAG or DC by Singh, Giri and Kumar [9].
We see little evidence for two phases in this region but given that the SAG/DC phase boundary
is not a bulk phase transition this is not totally surprising!

The power of the FlatPERM method is that it allows us to explore regions of parameter
space usually unavailable to canonical approaches and so we can consider a much wider range
of βb and βs. Of course, the price paid is that the polymer lengths attainable are restricted
due to both computer memory required and time needed to produce the samples. In fig. 1(b)
we consider 0 ≤ βb ≤ 5.0 and 0 ≤ βs ≤ 5.0.

To understand what is going on, let us consider the mean density of surface contacts
〈ms〉/n (coverage) as a function of βs at fixed βb = 4.0 for various values of n up to nmax = 256
(fig. 2). For small βs the coverage is a slowly varying function of βs and stays that way as n
increases. For βs larger than approximately βb the coverage converges to a plateau of 1. So
for βs > βb essentially all the monomers are in the surface and the polymer should behave in
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Fig. 2 – A plot of the mean density of visits 〈ms〉/n vs. βs at βb = 4.0 for lengths 64, 91, 128, 181, 256
(left to right) with statistical error estimated as shown.

a two-dimensional fashion. The transition to the maximum coverage regime (fully adsorbed)
is quite sharp and reflects a first-order phase transition in the thermodynamic limit: we shall
confirm this inference below. The new phenomenon concerns intermediate values of βs, where
other plateaus form at around a coverage of 1/2 and, for larger n, also at 1/3. The transition
from one plateau to another moves towards βb as n increases and also becomes sharp. We can
interpret these intermediate “phases” as situations where the polymer is distributed roughly
equally amongst a number of layers. For example, when the coverage is 1/2 the polymer exists
equally on the surface and in the layer one unit above the surface. As n increases more and
more layer phases appear where the polymer exists in the first � layers above the substrate.

To confirm this picture, let us consider the mean height of monomers above the surface
〈h〉 in fig. 3 for the same value of βb = 4.0. Assuming a uniform density across layers, the
mean number of layers that the polymer subtends, 〈�〉 = 2〈h〉 + 1, can be deduced. We have
also estimated the end-point position and the maximum height of the polymer, and the data
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Fig. 3 – A plot of the average height of the polymer per monomer 〈h〉/n (right axis) vs. βs at βb = 4.0
for lengths 64, 91, 128, 181, 256 (left to right) with statistical error estimated as shown. On the left
vertical axis the corresponding average layer number 〈�〉 (assuming uniform density).
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agrees very well with this assumption. The average height can be seen to decrease as βs is
increased in a series of plateaux corresponding to the plateaux of coverage. For the range of
βs where the coverage is approximately 1/2, the average height is almost exactly 0.5 and the
maximum height of a monomer is 1 (two layers). Hence the average number of layers is 2,
just as our hypothesis predicts.

To explain the phenomenon of the layering seen above let us examine the zero-temperature
situation. For positive self-attraction and surface attraction, the polymer will take on some
compact configuration touching the boundary. Consider a Hamiltonian (fully compact) con-
figuration of fixed height � tethered to the surface. In particular, consider a rectangular
parallelepiped with square cross-section parallel to the surface of side length w. Hence we
have n = �w2 and the total energy E� (ignoring contributions from edges and corners) for a
�-layer configuration is

E�(εb, εs) ∼ −2εbn + (εb − εs)
n

�
+ 2εb

√
�n . (2)

This equation appears in a slightly different form in [10]. The energy can be minimised for
fixed n when

�3/2 =
(

1 − εs

εb

)
n1/2. (3)

Since the system can only have integer values of �, a particular integer value of � ≥ 2 will
be stable for a range of εs of size O(1/

√
n). The AC phase, using this argument, which is

given by � = 1, is stable for εs ≥ εb and for some values of εs ≤ εb given by relation (3).
As εs is increased at fixed εb the system’s energy is minimised by smaller values of �. At a
fixed value of εs the differences between the energies of (� + 1)-layers and �-layers scale as
(εs − εb)n�−1(� + 1)−1. It can be argued that non-uniform layers are not stable (consider the
total surface area of a block of smaller width on top of an �-layer system) so that the system
jumps from (� + 1)-layers to �-layers at some value of εs. Hence we deduce that when the
system swaps from (� + 1)-layers to �-layers there will be a jump in the internal energy. We
expect that this will be rounded by entropic effects at finite temperatures.

Relation (3) based on the zero-temperature energy argument predicts that the transitions
coalesce at βs = βb as n tends to ∞. For finite temperatures, the position of the transition need
not be exactly βb. Let us denote the infinite n limit transition as occurring at βs = βa

s . The
thermodynamic limit will realise a sharp bulk first-order phase transition at βs = βa

s . At finite
polymer lengths each of the layering transitions are rounded versions of the zero-temperature
jumps in the internal energy. Hence the layering transitions should be rounded first-order–
type transition with specific heat that grows linearly with system size and a transition width
that is O(1/n). Note that, since the layer phases are stable for segments of the βs line of
the order of 1/

√
n and the transitions take place in a region of βs of the order of 1/n, the

transitions become sharper as n increases. Finally, if we consider sitting at fixed value of βs

close to βb and increase the polymer length, we should see a set of layering transitions between
phases of layer � and � + 1 with � ∼ n1/3.

We have tested the conclusions of the above argument. At βb = 4.0, we have estimated
the position of the thermodynamic limit transition to the AC phase (i.e. 1-layer phase) to be
βa

s ≈ 4.4(1) by extrapolating the peaks of the fluctuations in the number of surface contacts
for the strongest transition (i.e. from 2-layers to 1-layer) against 1/

√
n. Figure 4 shows a

scaling plot of the logarithm of the fluctuations per monomer divided by n in the number
of surface contacts against (βa

s − βs)
√

n. (For convenience, we use the logarithm to display
the needed scale.) The range includes the peaks from the 1-layer to 2-layers transition, the
2-layers to 3-layers transition and the 3-layers to 4-layers transition. This demonstrates the
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Fig. 4 – A plot of the logarithm of the fluctuations per monomer divided by n in the number of surface
contacts at βb = 4.0 with the horizontal axis scaled as (βa

s −βs)
√

n. We have used βa
s = 4.4(1). Shown

are lengths 128, 181, 256.

scaling collapse of the height and shift of the layering transitions from �-layers to � + 1-layers
as βs is decreased. The shifts of the peaks of all three transitions scale towards the same
estimate of βa

s when using this same scale, 1/
√

n. The width of the transitions can also be
shown to scale with 1/n, re-enforcing the hypothesis of first-order transitions.

In fig. 5 we give a schematic of the proposed phase diagram based on fig. 1(b). The figure
indicates the estimated locations of the DE, AE, AC and SAG phases —these phases all persist
in the thermodynamic limit. We also indicate the locations of the 2-layer and 3-layer phases
for length 256.
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Fig. 5 – The schematic phase diagram (obtained from fig. 1(b)). The solid lines represent the phase
boundaries that will survive in the thermodynamic limit: the dotted sections cannot be estimated
from the fluctuations but represent assumed behaviour. The dashed lines between the layered phases
will merge in the thermodynamic limit with the boundary between the AC and 2L phases. The dash-
dotted line at the top of the SAG phase represents the transition between the SAG and DC phases.
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In this letter we demonstrate that the fundamental model of collapsing and adsorbing
polymers in three dimensions contains a new phenomenon at low temperatures; at finite
polymer lengths a series of (rounded) layering transitions exist. These transitions increase in
number and become sharper as the polymer length increases. The associated layered phases
do not appear to be related to the anisotropic SAG phases found in a directed walk model [10].
We note that while this model is a lattice model, low-temperature layering transitions have
been seen in off-lattice models [14] and arise due to the types of compact configurations that
can occur in the idealised or physical polymer. It may be possible to understand these layering
effects in terms of the layering observed in the wetting transition using the description of the
adsorption of a polymer as a wetting problem by Johner and Joanny [15]. Even though the
transitions are rounded for a single polymer if the phenomenon occurs for physical polymers
the transitions should appear for a dilute solution. It would be intriguing to further investigate
this using a model of polymer solutions. The ability to coat a surface with a fixed thickness
of polymer may have experimental and technological applications.

We provide a theoretical framework based on zero-temperature energy arguments which
explain these transitions. The arguments predict that the transitions coalesce in the infinite
length limit to leave a transition between a collapsed, but not macroscopically adsorbed,
polymer and a collapsed polymer which is fully adsorbed.
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