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Abstract. In this paper we present simulations of a surface-adsorbed polymer
subject to an elongation force. The polymer is modelled by a self-avoiding walk
on a regular lattice. It is confined to a half-space by an adsorbing surface
with attractions for every vertex of the walk visiting the surface, and the last
vertex is pulled perpendicular to the surface by a force. Using the recently
proposed flatPERM algorithm, we calculate the phase diagram for a vast range
of temperatures and forces. The strength of this algorithm is that it computes
the complete density of states from one single simulation. We simulate systems
of sizes up to 256 steps.
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1. Introduction

New experimental methods in the physics of macromolecules [1] have been used to
study and manipulate single molecules and their interactions. These methods make a
contribution to our understanding of such phenomena as protein folding or unzipping
DNA; one can push or pull a single molecule and watch how it responds. It is possible
to apply (and measure) forces large enough to induce structural deformation of single
molecules. One can monitor the mechanism of some force-driven phase transition
occurring at the level of a single molecule. The theoretical understanding of this
behaviour has attracted much attention [2]–[4]. New features are observed if one pulls
a macromolecule localized near an adsorbing surface [5]. One observes two phases: an
adsorbed phase and a desorbed phase. The desorbed phase is characterized by the mean
fraction of molecules in the adsorbing plane going to zero as the number of molecules in
the chain goes to infinity. For a given temperature one can find the critical force at which
the macromolecules are desorbed. The phase diagram in the force–temperature plane can
show re-entrant behaviour similar to that found in DNA unzipping models [6] and directed
walk models [4].

Lattice models play an important role in the study of equilibrium properties of
linear polymer molecules. Including interactions between monomers and a surface
confining the polymer, it is possible to investigate phenomena such as the adsorption–
desorption transition. The pulling of directed polymers is already well investigated and
understood [3, 4]. We use self-avoiding walks (SAW) on a regular lattice to study
the adsorption of a polymer at a surface subject to an elongation force. Vrbova and
Whittington studied the phase diagram for adsorbing interacting self-avoiding walks
using rigorous arguments [5] and simulations with the Markov chain method employing
pivot steps [7]. The transition studied by them for polymers in a good solvent (without
interaction between monomers) is equivalent to temperature-driven adsorption (without
force) in our SAW-model. The model of SAW for force-induced desorption was already
investigated by Mishra et al [8] using exact enumeration, which gave the correct phase
diagram, but due to the rather small system sizes studied, the location of the phase
boundary for infinite systems was not very precise. In this paper we present an
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force

Figure 1. Example of a configuration near a surface. Monomers interacting with
the surface (in two dimensions this is a line) are denoted by diamonds. The first
vertex, which is fixed to the surface, is denoted by a white-filled diamond. The
elongation force acts only at the last monomer pulling it in the perpendicular
direction to the surface.

investigation of this problem using a new flatPERM algorithm [9]. This is a very good
tool to easily get information of the whole phase diagram by calculating the complete
density of states. While the exact enumeration study [8] was restricted to n ≤ 19 steps,
flatPERM allowed us to perform ‘approximate’ enumeration up to n = 256 steps.

2. Definition of the model

We consider a self-avoiding walk on the simple cubic and square lattices confined to the
half-space or half-plane, with z ≥ 0. We define a visit as a vertex, representing a monomer,
lying in the surface z = 0. The monomers interact with the surface via an interaction
strength, ε = −1. In addition we have an elongation force f acting on the last monomer,
pulling it away from the surface, i.e. in the positive z-direction; see figure 1. Therefore
we have two competing effects: attraction to the surface leading to adsorption and the
elongation force leading to desorption. The partition function of the model is given by

Zn(ωs, ωf) =
∑

ms,h

Cn,ms,h ωms
s ωh

h, (1)

where Cn,ms,h is the number of all configurations with n+1 vertices (monomers) with one
end at some fixed origin at the surface z = 0. The number of visits (including the fixed
site) is denoted by ms, and h is the distance of the (n + 1)th vertex from the surface.
The Boltzmann weight ωs = e−βε = eβ (ε = −1) is associated with the interaction with
the surface and ωh = eβf with the elongation force f , where β = 1/kBT . We define a
finite-size free energy κn(ωs, ωh) per step as

κn(ωs, ωh) =
1

n
log Zn(ωs, ωh). (2)

The usual free energy is related to this by −βFn ≡ nκn(ωs, ωh). In our simulation we
obtain estimates of Cn,ms,h, so that a quantity Qn,ms,h averaged over the set of parameters

J. Stat. Mech.: Theor. Exp. (2004) P10004 (stacks.iop.org/JSTAT/2004/P10004) 3

http://stacks.iop.org/JSTAT/2004/P10004


JS
TAT

(2004)
P

10004

Stretching of a chain polymer adsorbed at a surface

  0
100

200
300

  0
100

200
300

 0

 50

 100

 150

log10(C256,ms,h
)

h
ms

log10(C256,ms,h
)

  0
100

200
300

  0
100

200
300

 0
 50

 100
 150
 200

log10(C256,ms,h
)

h
ms

log10(C256,ms,h
)

Figure 2. Density of states for n = 256 in two (top) and three (bottom)
dimensions. The weights of all vectors (256,ms, h) were found during one
simulation with flatPERM.

(ms, h) for a given length n is calculated by

〈Q〉n(ωs, ωf) =

∑
ms,h

Qn,ms,hCn,ms,hω
ms
s ωh

h∑
ms,h

Cn,ms,hω
ms
s ωh

h

. (3)

In this paper we concentrate on the adsorption and elongation of the self-avoiding walk and
the corresponding phase diagram. We investigate the behaviour of the average distance
of the last monomer from the adsorbing surface,

〈h〉 = n
∂κn

∂ log ωh
, (4)

the average numbers of monomers interacting with the surface,

〈ms〉 = n
∂κn

∂ log ωs
, (5)
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Figure 3. The average number of surface contacts ms (top) and the average height
per monomer h/n (bottom) in two dimensions at length n = 256. One can see
two well-distinct phases. The desorbed phase is characterized by h > 0 and
ms/n ≈ 0. For the adsorbed phase ms reaches its maximal value while h/n ≈ 0.
If the force is bigger than one the system is desorbed for all temperatures.

and the fluctuations of ms,

σ2(ms) = 〈m2
s 〉 − 〈ms〉2 = n

∂2κn

∂2 log ωs

. (6)

Since the desorption transition is characterized by a significant change in the number
of surface adsorbed sites, we also investigate the fluctuations of ms as a signature of the
transition. We are interested in determining the location of the adsorption transition for
the whole range of forces and temperatures.

Note that, alternatively, one can consider a different ensemble in which the height of
the last vertex h is fixed, and the force f is allowed to fluctuate. The difference between
these two ensembles is discussed in [10].

3. Algorithm

Since we are interested in investigating the complete phase diagram, one needs to perform
simulations for the whole range of temperatures and forces. Conventionally, one would
carry out different simulations for numerous values of temperature and force to investigate
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Figure 4. The average number of surface contacts ms (top) and the average
height per monomer h/n (bottom) in three dimensions at length n = 256. For
values of force f < 1 the behaviour of the system is similar to the two-dimensional
case moving from an adsorbed phase at low temperatures to a desorbed phase
at high temperatures. Above the critical force f = 1 re-entrant behaviour occurs
up to some maximum force fmax. For some force f , with fmax ≥ f > 1, the
system moves from the desorbed to adsorbed and back to the desorbed phase as
the temperature is increased from near zero.

the region of interest. With the flatPERM algorithm it is possible to cover the whole range
(given sufficient time for the simulation to converge) with one single simulation. While
it may not be the optimal strategy for any particular narrow range of parameters, it is
its ability to explore the whole phase space that gives the algorithm its power and the
reason we use it here. The flatPERM algorithm is a recently proposed stochastic growth
algorithm [9], which performs an estimation of the whole density of states and can be
interpreted as an approximate counting algorithm. The algorithm combines the pruned-
enriched Rosenbluth method (PERM) [11] with umbrella sampling techniques [12]. The
configurations of interest are grown from scratch adding a new monomer at each step.
We parameterize the configuration space in such a manner that the algorithm explores
it evenly; i.e. for every set of parameters (n, ms, h) it aims to generate the same number
of samples. This requirement leads to a flat histogram in the parameterization. Here we
choose as parameters the surface energy (number of contacts, ms) and the distance of
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Figure 5. Fluctuations of ms in two (top) and three (bottom) dimensions for
n = 256. One can distinguish two different phases (an adsorbed phase and a
desorbed phase), which are separated by a peak in the fluctuations.

the last monomer from the adsorbing surface, h. During one simulation we are able to
explore all possible sets of parameters (all vectors (n, ms, h) for all n ≤ 256) and estimate
the associated density of states Cn,ms,h. As an example, for n = 256 we have calculated a
histogram over 33 151 vectors for both dimensions.

4. Results

In this section we present the results for both two and three dimensions. Figure 2 shows
the density of states for two and three dimensions for polymers of length n = 256 steps.
From this we can calculate all quantities of interest using equation (3). Because we are
focusing on the transition between desorbed and adsorbed phases we consider the changes
in both ms and h.

At low temperatures we find, for both dimensions, a clear indication of a desorption
transition between an adsorbed state in which the average number of surface contact is
maximal (ms ≈ n) to an elongated desorbed state in which the polymer is completely
stretched (h ≈ n) and pulled away from the surface. For higher temperatures this
transition persists up to a critical temperature, at which thermal fluctuations alone lead
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Figure 6. Fluctuations of ms at various fixed values of the force (f) in two (top)
and three (bottom) dimensions for n = 256. The re-entrant behaviour in three
dimensions is seen as the doubly peaked curves for intermediate values of f .

to desorption. In figure 3 one can see the behaviour of the average number of visits ms and
the average distance h of the last vertex from the adsorbing surface for two dimensions,
n = 256. For forces f > 1 in two dimensions the system is desorbed for all temperatures.
In three dimensions, figure 4 shows that the behaviour is similar but not identical. Here
we see the re-entrant behaviour previously observed in directed models [4]. For a range
of forces f > 1, though not too large, if one fixes the force and considers going from small
to high temperatures the system is first desorbed then at some temperature depending
on the force becomes adsorbed, and after further increasing the temperature further the
system becomes once again desorbed. Such behaviour does not appear in two dimensions.

We estimate the phase boundary looking for positions of maximal fluctuations in
ms. The fluctuations in ms for n = 256 are shown for both dimensions in figure 5 as a
surface plot and a number of fixed force slices are plotted in figure 6. The fluctuations
separate two distinct phases (the adsorbed phase and the desorbed phase). The whole
phase diagram for three different sizes of the system is shown in figure 7.

The nature of the transitions seems to coincide with the results of directed models [4].
It is well-known that for f = 0 the desorbed phase acts as an excluded volume polymer,
with size exponent 1/2 < ν < 1 in two and three dimensions. A second-order phase
transition with crossover exponent φ = 1/2 is expected in those dimensions. On the other
hand, in directed models, when the force is non-zero the desorbed phase is stretched (with
ν = 1) and the adsorbed–desorbed transition becomes first order [4]. Our results give a
similar picture for non-directed walks.

There is an argument, based on the minimization of an approximate free energy, that
explains the difference in behaviour between the dimensions (the existence of re-entrance
in three dimensions); for details see e.g. [4, 8]. Another approach is to simply compare
the free energy of the completely stretched polymer to that of the completely adsorbed
polymer at close to zero temperature: the free energy written as the difference of the
internal energy and the temperature times entropy is approximated by substituting the
zero temperature energy and entropy. Using either argument one finds that for T close to
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Figure 7. Phase diagram for three different lengths for two (top) and three
(bottom) dimensions. One can clearly see the difference between the systems.
In three dimensions we have clear re-entrant behaviour. There is no difference
in the transition position for small temperature and high force, while for higher
temperature and small force the position of the transition depends on the system
size n.

zero in the d-dimensional system the critical force is given by

f (d)
c ≈ −ε + T log µd−1 = 1 + T log µd−1, (7)

where µd−1 is the connective constant in d−1 dimensions. Hence it is the entropy log µd−1

of the totally adsorbed polymer that plays a crucial role in determining whether or not
re-entrant behaviour is seen. The interesting region of the phase diagram is shown in
figure 8. Since for two dimensions the entropy for small T is equal to zero (there are
only two configurations contributing at T = 0) we see that the critical force is equal
to one. In three dimensions the entropy for small T is equal to the conformational
entropy of self-avoiding walk in two dimensions of length ms. By fitting the relation
of equation (7) we find that log µ2 ≈ 0.965. Given our small system size, this is in
reasonable agreement with the established value of the connective constant for SAW in
two dimensions log µ2 ≈ 0.970 08 . . . [13].

If we do not apply any force we have a transition which is driven only by temperature.
The position of this transition depends on n and the estimates are only approximations of
the phase transition location in the thermodynamic limit. With increasing n, the position
of the transition approaches, of course, the real thermodynamic location. In figure 9 we
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Figure 8. The critical force for T → 0 is found to fulfil the relation f(T ) =
1+T log µd−1 for both two dimensions (top) and three dimensions (bottom). The
respective surface connective constants are log µ2 ≈ 0.965 and log µ1 = 0. The
solid curve is the data from our simulations and the dashed line is the relation.

estimate the transition temperature for infinite systems using the value of the cross-over
exponent obtained by Grassberger and Hegger [14] φ = 1/2. We see that the corrections to
finite-size scaling are stronger than linear for both dimensions. Fitting a simple quadratic
function to our data we find the values T = 1.71 for two dimensions and T = 3.27 for three
dimensions. The transition temperature for three dimensions is smaller than the value
found by Vrbova and Prochazka in [15] (T = 3.39(2)) based on simulations of systems of
size up to n = 1600.

5. Conclusion

We have presented an application of the flatPERM algorithm to a simple desorption
problem with an intriguing phase diagram that mimics that expected for DNA unzipping
models. Using flatPERM one may quickly get a good qualitative overview of the whole
phase diagram. In further studies we extend our simulations to investigations of adsorption
of interacting self-avoiding walks at a surface, where we have found intriguing and novel
phenomena [16].
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Figure 9. The transition temperature between adsorbed and desorbed phase in
the absence of force (f = 0) for two (top) and three (bottom) dimensions. The
solid curve is our data. We approximate the transition temperature for an infinite
system in both dimensions using a least-squares quadratic fit, shown as a dashed
curve.
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