
1 Polymer Simulations with a flat histogram

stochastic growth algorithm

Thomas Prellberg1, Jaroslaw Krawczyk1, and Andrew Rechnitzer2

1 Institut für Theoretische Physik, Technische Universität Clausthal, Arnold
Sommerfeld Straße 6, D-38678 Clausthal-Zellerfeld, Germany,

2 Department of Mathematics and Statistics, The University of Melbourne,
Parkville 3010, Australia.

Summary. We present Monte Carlo simulations of lattice models of polymers.
These simulations are intended to demonstrate the strengths of a powerful new
flat histogram algorithm which is obtained by adding microcanonical reweighting
techniques to the pruned and enriched Rosenbluth method (PERM).

Key words: flat histogram method, pruned and enriched Rosenbluth method,
polymers, self-avoiding walks

1.1 Introduction

Monte Carlo simulations of polymer models have played a significant role in
the development of Monte Carlo methods for more than fifty years [1]. We
present here results of simulations performed with a powerful new algorithm,
flatPERM [2], which combines a stochastic growth algorithm, PERM [3], with
umbrella sampling techniques [4]. This leads to a flat histogram in a chosen
parameterization of configuration space.

The stochastic growth algorithm used is the pruned and enriched Rosen-
bluth method (PERM) [3], which is an enhancement of the Rosenbluth and
Rosenbluth algorithm [5], an algorithm that dates back to the early days of
Monte Carlo simulations. While PERM already is a powerful algorithm for
simulating polymers, the addition of flat-histogram techniques [6] provides a
significant enhancement, as has already been exploited in [7], where it has
been combined with multicanonical sampling [8].

Before we describe the algorithm in detail and present results of the sim-
ulations, we give a brief motivating introduction to the lattice models con-
sidered here.

If one wants to understand the critical behavior of long linear polymers in
solution, one is naturally led to a course-grained picture of polymers as beads
of monomers on a chain. There are two main physical ingredients leading to
this picture. First, one needs an “excluded volume” effect, which takes into
account the fact that different monomers cannot simultaneously occupy the
same region in space. Second, the quality of the solvent can be modeled by
an effective monomer-monomer interaction. Monomers in a good solvent are

2 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

surrounded by solvent molecules and hence experience an effective monomer-
monomer repulsion. Similarly, a bad solvent leads to an effective monomer-
monomer attraction.

Consequently, polymers in a good solvent form swollen “coils”, whereas
polymers in a bad solvent form collapsed “globules” and also clump together
with each other (see Fig. 1.1). In order to study the transition between these
two states, it is advantageous to go to the limit of an infinitely dilute solution,
in which one considers precisely one polymer in an infinitely extended solvent.

Fig. 1.1. Eight lattice polymers in a bad solvent (picture courtesy of H. Frauenkron,
FZ Jülich)

As we are interested in critical behavior, it is also possible to further
simplify the model by discretizing it. Due to universality, the critical behavior
is expected to be unchanged by doing so. We therefore consider random walks
on a regular lattice, eg the simple cubic lattice for a three-dimensional model.
One can think of each lattice site corresponding to a monomer and the steps
as monomer-monomer bonds.

We model excluded volume effects by considering self-avoiding random
walks which are not allowed to visit a lattice site more than once. The quality
of the solvent is modeled by an attractive short-range interaction between
non-consecutive monomers which occupy nearest-neighbor sites on the lattice.
At this point we may add more structure to our polymer model by considering
monomer-specific interactions. Specific properties of monomers i and j on the
chain lead to an interaction εi,j depending on i and j.

1 Polymer Simulations with a flat histogram stochastic growth algorithm 3

In this paper, we will consider three examples in detail. First, we con-
sider as pedagogical example, the problem of simulating polymers in a two-
dimensional strip. The interaction energy is simply εi,j = 0, however, the
introduction of boundaries makes simulations difficult [9].

Our second example is the HP model which is a toy model of proteins
[10]. It consists of a self-avoiding walk with two types of monomers along
the sites visited by the walk — hydrophobic (type H) and polar (type P).
One considers monomer-specific interactions, mimicking the interaction with
a polar solvent such as water. The interaction strengths are chosen so that
HH-contacts are favored, eg εHH = −1 and εHP = εPH = εPP = 0. The
central question is to determine the density of states (and to find the ground
state with lowest energy) for a given sequence of monomers. An example of
a conjectured ground state is given in Fig. 1.2 for a particular sequence of 85
monomers on the square lattice (the sequence is taken from [11]).

Fig. 1.2. HP model: shown is the conjectured groundstate of a sequence with 85
monomers on the square lattice. The monomers with a lighter shade are of type H
(hydrophobic), the monomers with a darker shade are of type P (polar).

Our third example is the interacting self-avoiding walk (ISAW) model of
(homo)-polymer collapse; it is obtained by setting εi,j = −1 independent of
the individual monomers. Here, one is interested in the critical behavior in
the thermodynamic limit, ie the limit of large chain lengths. An example
of an 26-step interacting self-avoiding walk with 7 interactions is shown in
Fig. 1.3.

The partition function of n-step interacting self-avoiding walks can be
written as

4 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

Fig. 1.3. A 26 step interacting self-avoiding walk on a square lattice with 7 inter-
actions.

Zn(β) =
∑

ϕ

e−βE(ϕ) =
∑

m

Cn,me
βm , (1.1)

where E(ϕ) is the energy of an n-step walk, ϕ. Note that the second sum is
over the number m of interactions, and Cn,m is the number of configurations
of n-step self-avoiding walks with precisely m interactions.

While the motivation for simulations of the various models is different, the
central problems turn out to be similar. For interacting self-avoiding walks,
the collapse transition is in principle understood. One has a tri-critical phase
transition with upper critical dimension du = 3, so that one can derive the
critical behavior from mean-field theory for d ≥ 3 [12], whereas for d = 2
one obtains results from conformal invariance [13]. However, even though
this transition is in principle understood, there are surprising observations
above the upper critical dimension [14]. Most importantly, there is no good
understanding of the collapsed regime, which is also notoriously difficult to
simulate.

Similarly, in the HP model one is interested in low-temperature problems,
ie deep inside the collapsed phase. In particular, one wishes to understand
the design problem, which deals with the mapping of sequences along the
polymer chain to specific ground state structures. Again, the most important
open question is in the collapsed regime.

It is therefore imperative, to find algorithms which work well at low tem-
peratures. In the following section, we present just such an algorithm.

1.2 The Algorithm

This section describes our algorithm, as proposed in [2]. The basis of the
algorithm is the Rosenbluth and Rosenbluth algorithm, a stochastic growth
algorithm in which each configuration sampled is grown from scratch. The

1 Polymer Simulations with a flat histogram stochastic growth algorithm 5

growth is kinetic, which is to say that each growth step is selected at random
from all possible growth steps. Thus, if there are a possible ways to add a
step then one selects one of them with probability p = 1/a.

For example, for a self-avoiding walk on the square lattice there may be
between one and three possible ways of continuing, but it is also possible that
there are no continuing steps, in which case we say that the walk is trapped
(see Fig. 1.4).

1/2 1 trapped1/3

Fig. 1.4. For a self-avoiding walk on the square lattice, there can be between three
and one ways of continuing, and the next step is chosen with equal probability
from all possible continuations. In the right-most configuration, there is no way to
continue, and the walk is trapped.

As the number of possible continuations generally changes during the
growth process, different configurations are generated with different proba-
bilities and so one needs to reweight configurations to counter this. If one
views this algorithm as “approximate counting” then the required weights of
the configurations serve as estimates of the total number of configurations.

To understand this point of view, imagine that we were to perform a
complete enumeration of the configuration space. Doing this requires that at
each growth step we would have to choose all the possible continuations and
count them each with equal weight. If we now select fewer configurations,
then we have to change the weight of these included configurations in order
to correct for those that we have missed. Thus, if we choose one growth
step out of a possible, then we must replace a configurations of equal weight
by one “representative” configuration with a-fold weight. In this way, the
weight of each grown configuration is a direct estimate of the total number
of configurations.

Let the atmosphere, an = a(ϕn), be the number of distinct ways in which
a configuration ϕn of size n can be extended by one step. Then, the weight
associated with a configuration of size n is the product of all the atmospheres
ak encountered during its growth, ie

W =

n−1∏

k=0

ak . (1.2)

After having started S growth chains, an estimator Cestn for the total number

of configurations Cn is given by the mean over all generated samples, ϕ
(i)
n , of

size n with respective weights W
(i)
n , ie

6 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

Cestn = 〈W 〉n =
1

S

∑

i

W (i)
n . (1.3)

Here, the mean is taken with respect to the total number of growth chains
S, and not the number of configurations which actually reach size n. Config-
urations which get trapped before they reach size n appear in this sum with
weight zero.

The Rosenbluth and Rosenbluth algorithm suffers from two problems.
First, the weights can vary widely in magnitude, so that the mean may be-
come dominated by very few samples with very large weight. Second, reg-
ularly occurring trapping events, ie generation of configurations with zero
atmosphere can lead to exponential “attrition”, ie exponentially strong sup-
pression of configurations of large sizes.

To overcome these problems, enrichment and pruning steps have been
added to this algorithm, leading to the pruned and enriched Rosenbluth
method (PERM) [3]. The basic idea is that one wishes to suppress large

fluctuations in the weights W
(i)
n , as these should on average be equal to Cn.

If the weight of a configuration is too large one “enriches” by making
copies of the configuration and reducing the weights by an appropriate factor.
On the other hand, if the weight is too small, one throws away or “prunes”
the configuration with a certain probability and otherwise continues growing
the configuration with a weight increased by an appropriate factor. Note
that neither S nor the expression (1.3) for the estimate, Cestn , are changed
by either enriching or pruning steps.

A simple but significant improvement of PERM was added in [15], where
it was observed that it would be advantageous to force each of the copies of an
enriched configuration to grow in distinct ways. This increases the diversity
of the sample population and it is this version of PERM that we consider
below.

We still need to specify enrichment and pruning criteria as well as the
actual enrichment and pruning processes. While the idea of PERM itself
is straightforward, there is now a lot of freedom in the precise choice of
the pruning and the enrichment steps. The “art” of making PERM perform
efficiently is based to a large extent on a suitable choice of these steps — this
can be far from trivial! Distilling our own experience with PERM, we present
here what we believe to be an efficient, and, most importantly, parameter free
version.

In contrast to other expositions of PERM (eg [11]), we propose to prune
and enrich constantly; this enables greater exploration of the configuration
space. Define the threshold ratio, r, as the ratio of weight and estimated

number of configurations, r = W
(i)
n /Cestn . Ideally we want r to be close to 1

to keep weight fluctuations small. Hence if r > 1 the weight is too large and
so we enrich. Similarly if r < 1 then the weight is too small and so we prune.
Moreover, the details of the pruning and enrichment steps are chosen such
that the new weights are as close as possible to Cestn :

1 Polymer Simulations with a flat histogram stochastic growth algorithm 7

• r > 1 → enrichment step:
make c = min(brc, an) distinct copies of the configuration, each with

weight 1
cW

(i)
n (as in nPERM [15]).

• r < 1 → pruning step:

continue growing with probability r and weight 1
rW

(i)
n = Cestn (ie prune

with probability 1− r).
Note that we perform pruning and enrichment after the configuration has
been included in the calculation of Cestn . The new values are used during the
next growth step.

Initially, the estimates Cestn can of course be grossly wrong, as the al-
gorithm knows nothing about the system it is simulating. However, even if
initially “wrong” estimates are used for pruning and enrichment the algo-
rithm can be seen to converge to the true values in all applications we have
considered. In a sense, it is self-tuning.

We also note here, that the number of samples generated for each size is
roughly constant. Ideally, in order to effectively sample configuration space,
the algorithm traces an unbiased random walk in configuration size. This
means that PERM is, in some sense, already a flat histogram algorithm. We
shall return to this central observation below.

It is now straight-forward to change PERM to a thermal ensemble with
inverse temperature β = 1/kBT and energy E (defined by some property of
the configuration, such as the number of contacts) by multiplying the weight
with the appropriate Boltzmann factor exp(−βE), which leads to an estimate
of the partition function, Zn(β), of the form

Zestn (β) = 〈W exp(−βE)〉n . (1.4)

The pruning and enrichment procedures are changed accordingly, replac-
ing W by W exp(−βE) and Cestn by Zestn (β). This gives threshold ratio

r = W
(i)
n exp(−βE(i))/Zestn (β). This is the setting in which PERM is usually

described.
Alternatively, however, it is also possible to consider microcanonical es-

timators for the total number Cn,m of configurations of size n with energy
m (ie the “density of states”). An appropriate estimator Cestn,m is then given

by the mean over all generated samples ϕ
(i)
n,m of size n and energy m with

respective weights W
(i)
n,m, ie

Cestn,m = 〈W 〉n,m =
1

S

∑

i

W (i)
n,m . (1.5)

Again, the mean is taken with respect to the total number of growth chains
S, and not the number of configurations Sn,m which actually reach a config-
uration of size n and energy m. The pruning and enrichment procedures are

also changed accordingly, replacing Cn by Cn,m and using r = W
(i)
n,m/Cestn,m.

8 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

As observed above, the pruning and enrichment criterion for PERM leads
to a flat histogram in length, ie a roughly constant number of samples being
generated at each size n for PERM. In fact, one can motivate the given prun-
ing and enrichment criteria by stipulating that one wishes to have a roughly
constant number of samples, as this leads to the algorithm performing an un-
biased random walk in the configuration size. Similarly, in the microcanonical
version described above, the algorithm performs an unbiased random walk in
both size and energy of the configurations, and we obtain a roughly constant
number of samples at each size n and energy m.

It is because of the fact that the number of samples is roughly constant in
each histogram entry, that this algorithm can be seen as a “flat histogram”
algorithm, which we consequently call flat histogram PERM, or flatPERM. In
hindsight in becomes clear that PERM itself can be seen as a flat histogram
algorithm, at it creates a roughly flat histogram in size n. Recognizing this
led us to the formulation of this algorithm in the first place.

We have seen that by casting PERM as an approximate counting method,
the generalization from PERM to flat histogram PERM is straight-forward
and (nearly) trivial. One can now add various refinements to this method if
needed. For examples we refer the reader to [2]. We close this section with
a summary of the central steps to convert simple PERM to flatPERM by
comparing the respective estimators and threshold ratios, r:

1. athermal PERM: estimate the number of configurations Cn
• Cestn = 〈W 〉n
• r = W

(i)
n /Cestn

2. thermal PERM: estimate the partition function Zn(β)
• Zestn (β) = 〈W exp(−βE)〉n
• r = W

(i)
n exp(−βE(i)

m)/Zestn (β)
3. flat histogram PERM: estimate the density of states Cn,m
• Cestn,m = 〈W 〉n,m
• r = W

(i)
n,m/Cestn,m

One can similarly generalize the above to several microcanonical parameters,
m1,m2, . . ., to produce estimates of Cn,m1,m2,....

Once the simulations have been performed the average of an observable,
Q, defined on the set of configurations can be obtained from weighted sums:

Qestn,m =
〈QW 〉n,m
〈W 〉n,m

=

∑
iQ

(i)
n,mW

(i)
n,m∑

iW
(i)
n,m

. (1.6)

These can then be used for subsequent evaluations. For instance, the expec-
tation value of Q in the canonical ensemble at a given temperature β can
now be computed via

Qestn (β) =

∑
mQ

est
n,mC

est
n,m exp(−βEm)∑

m C
est
n,m exp(−βEm)

. (1.7)

1 Polymer Simulations with a flat histogram stochastic growth algorithm 9

ie only a single simulation is required to compute expectations at any tem-
perature.

For many problems we are interested in their behavior at low temperatures
where averages of observables are dominated by configurations with high en-
ergy. Such configurations are normally very difficult to obtain in simulations.
The flatPERM algorithm is able to effectively sample such configurations
because it obtains a roughly constant number of samples at all sizes and en-
ergies (due to the constant pruning and enrichment). This means that it is
possible to study models even at very low temperatures. Examples of this are
given in the next section.

1.3 Simulations

A good way of showing how flatPERM works is to simulate two-dimensional
polymers in a strip. This kind of simulation has previously been performed
with PERM using Markovian anticipation techniques [9] which are quite com-
plicated. With flatPERM one simply chooses the vertical position of the end-
point of the walk in the strip as an “energy” for the algorithm to flatten
against. We have found that this produces very good results.

1000
800

600
400

200
0

n

 60

 40

 20

 0

y

0.06

0.04

0.02

0.00

ρn(y)

1000
800

600
400

200
0

n

 60

 40

 20

 0

y

6e+06

4e+06

2e+06

0e+00

Sn,y

Fig. 1.5. Probability density ρn(y) (left) and number of generated samples Sn,y
(right) versus length n and vertical endpoint coordinate y for self-avoiding walk on
a strip of width 64 on the square lattice.

Fig. 1.5 shows the results of our simulations of 1024-step self-avoiding
walks in a strip of width 64. The left-hand figure is the probability density
ρn(y) of the endpoint coordinate y shown as a function of walk length n.
The right-hand figure shows the actual number of samples generated for each
length n and end point position y. One sees that the histogram of samples
is indeed nearly completely flat. One can now extract several quantities from

10 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

1.5

1.0

0.5

0.0
1.00.80.60.40.20.0

ρ n
(ξ

)

ξ

Fig. 1.6. Endpoint densities (scaled to the interval [0, 1]) for lengths 512, 768, and
1024. The different curves are indistinguishable.

such simulations (see [9]), but we restrict ourselves here to the scaled end-
point density shown in Fig. 1.6.

Next we show results from simulations of the HP-model. Here, we have
obtained the whole density of states for small model proteins with fixed se-
quences. The first sequence considered (taken from [7]) is small enough to
enable comparison with exact enumeration data. It has moreover been de-
signed to possess a unique ground state (up to lattice symmetries).

Fig. 1.7 shows our results. We find (near) perfect agreement with exact
enumeration even though the density of states varies over a range of eight
orders of magnitude! The derived specific heat data clearly shows a collapse
transition around T = 0.45 and a sharper transition into the ground state
around T = 0.15.

The next sequence (taken from [11]) is the one for which Fig. 1.2 shows a
state with the lowest found energy. Fig. 1.8 shows our results for the density
of states and specific heat. We find the same lowest energy E = 53 as [11]
(though this is not proof of it being the ground state). The density of states
varies now over a range of 30 orders of magnitude! The derived specific heat
data clearly shows a much more complicated structure than the previous
example.

For several other sequences taken from the literature we have confirmed
previous density of states calculations and obtained identical ground state
energies. The sequences we considered had n = 58 steps (3 dimensions,
Emin = −44) and n = 85 steps (2 dimensions, Emin = −53) from [11],
and n = 80 steps (3 dimensions, Emin = −98) from [16]. We studied also a
particularly difficult sequence with n = 88 steps (3 dimensions, Emin = −72)
from [17], but the lowest energy we obtained was E = −69. While we have
not been able to obtain the ground state, neither has any other PERM im-
plementation (see [11]).

1 Polymer Simulations with a flat histogram stochastic growth algorithm 11

�
�
�
�
�
�
�
�
�
	

� � � � � � � � � 	

 ���� ��� �������

�

� � � �
�

�
�

�

�

�
��� �
��� �
���
��� !
��� "
��� #
��� $
��� %

� �&� � ��� � ��� ��� ! ��� " ��� # ��� $ �&� % ��� ' �

(*),+ -/.0

1

Fig. 1.7. Sequence I (14 Monomers, HPHPHHPHPHHPPH, d = 3): density of
states versus energy (above) and specific heat CV /n versus temperature T (below).

We now turn to the simulation of interacting self-avoiding walks (ISAW)
on the square and simple cubic lattices. In both cases have we simulated
walks up to length 1024. Here, we encounter a small additional difficulty;
when PERM is initially started it is effectively blind and may produce poor
estimates of Cn,m and this may in turn lead to overflow problems. It is there-
fore necessary to stabilize the algorithm by delaying the growth of large
configurations. For this, it suffices to restrict the size of the walks by only
allowing them to grow to size n once t = cn tours (the number of times the
algorithm returns to an object of zero size) has been reached. We found a
value of c ≈ 0.1 sufficient.

Fig. 1.9 shows the equilibration of the algorithm due to the delay. Snap-
shots are taken after 106, 107, and 108 generated samples. While the sample
histogram looks relatively rough (even on a logarithmic scale) the density of
states is already rather well behaved. In the plots one clearly sees the effect
of large correlated tours in which large number of enrichments produce many
samples with the same initial walk segment.

12 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

2
3
452
453
6�2
6�3
7�2
7�3

2 482 692 7�2 :�2 392

; <9=�> ?�@ ACB9DFE

G

H H H H H H�H H

I
I&J K
I&J L
I&J M
I&J N
I&J O
I&J P

I I&J L I&J N I�J P I&J Q K K9J L K9J N K�J P K�J Q L

R/S*T U�VW

X

Fig. 1.8. Sequence II (85 Monomers, d = 2): density of states versus energy (above)
and specific heat CV /n versus temperature T (below).

The final result of our simulations for interacting self-avoiding walks in
two and three dimensions is shown in Fig. 1.10. It clearly shows the strength
of flatPERM: with one single simulation can one obtain a density of states
which ranges over more than 300 orders of magnitude!

From these data one can now, for example, compute the specific heat
curves Cn = kB(βε)2σ2(m)/n. The results for both systems are shown in
Fig. 1.11. We see that the data is well behaved well into the collapsed low-
temperature regime.

1.4 Conclusion and Outlook

We have reviewed stochastic growth algorithms for polymers. Describing the
Rosenbluth and Rosenbluth method as an approximate counting method has
enabled us to present a straight-forward extension of simple PERM to flat
histogram PERM. Using this algorithm one can obtain the complete density
of states (even over several hundred orders of magnitude) from one single
simulation.

1 Polymer Simulations with a flat histogram stochastic growth algorithm 13

0
0.2

0.4
0.6

0.8
1

m/n 0

200
400

600

800
1000

n

0
50

100
150
200
250
300
350
400
450

log10(Cnm)

0
0.2

0.4
0.6

0.8
1

m/n 0

200
400

600

800
1000

n

1

10

100

1000

10000

Snm

0
0.2

0.4
0.6

0.8
1

m/n 0

200
400

600

800
1000

n

0
50

100
150
200
250
300
350
400
450

log10(Cnm)

0
0.2

0.4
0.6

0.8
1

m/n 0

200
400

600

800
1000

n

1

10

100

1000

10000

Snm

0
0.2

0.4
0.6

0.8
1

m/n 0

200
400

600

800
1000

n

0
50

100
150
200
250
300
350
400
450

log10(Cnm)

0
0.2

0.4
0.6

0.8
1

m/n 0

200
400

600

800
1000

n

1

10

100

1000

10000

Snm

Fig. 1.9. Number of configurations Cn,m (left) and number of generated samples
(right) versus internal energy m/n and length n for ISAW on the square lattice, for
various total sample sizes: 106 (top), 107 (middle), and 108 (bottom).

We demonstrated the strength of the algorithm by simulating self-avoiding
walks in a strip, the HP-model of proteins, and interacting self-avoiding walks
in two and three dimensions as a model of polymer collapse.

Further applications are in preparation, eg simulations of branched poly-
mers, and simulations of higher-dimensional densities of states.

14 Thomas Prellberg, Jaroslaw Krawczyk, and Andrew Rechnitzer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200

400

600

800

1000

0
50

100
150
200
250
300
350
400
450

Y Z�[�\]�^ _a`bdc

egf�h
h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

200

400

600

800

1000

10000

100000

1e+06

1e+07

1e+08

i*jk

lnm9o
o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

200

400

600

800

1000

0
100
200
300
400
500
600
700

p q�r�s t�u vawxdy

zg{�|
| 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

200

400

600

800

1000

1000

10000

100000

1e+06

1e+07

}*~�

�n�9�
�

Fig. 1.10. Number of configurations Cn,m (left) and number of generated samples
(right) versus internal energy m/n and length n for ISAW on the square lattice
(above) and simple cubic lattice (below)

� � �
� � �
� � �
� � �
� � �
� � �
�
� � �
� � �

� � � ��� � � � � � ��� � � ��� � � � � � � � � � � � � ��� �

� ��� ����

� �

�
�
�
�
�

� �
� �

� �
�

� �
� �

� �
�

� �
� �

� ��� ���

¡

Fig. 1.11. Normalized fluctuations σ2(m)/n versus inverse temperature β = 1/kBT
for ISAW on the square lattice (above) and the simple cubic lattice (below) at
lengths 64, 128, 256, 512, and 1024. The curves for larger lengths are more highly
peaked. The vertical lines denote the expected transition temperature at infinite
length.

1 Polymer Simulations with a flat histogram stochastic growth algorithm 15

References

1. G. W. King, in Monte Carlo Method, volume 12 of Applied Mathematics Series,
National Bureau of Standards, 1951

2. T. Prellberg and J. Krawczyk, Phys. Rev. Lett., in print
3. P. Grassberger, Phys. Rev E 56 3682 (1997)
4. G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23 187 (1977)
5. M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 23 356 (1955)
6. F. Wang and D. P. Landau, Phys. Rev. Lett. 86 2050 (2001)
7. M. Bachmann and W. Janke, Phys. Rev. Lett. 91 208105 (2003)
8. B. A. Berg and T. Neuhaus, Phys. Lett. B 267 249 (1991)
9. H.-P. Hsu and P. Grassberger, Eur. Phys. J. B 36 209 (2003)

10. K. A. Dill, Biochemistry 24 1501 (1985)
11. H.-P. Hsu and V. Mehra and W. Nadler and P. Grassberger, J. Chem. Phys.

118 444 (2003)
12. I. D. Lawrie and S. Sarbach,in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz, volume 9, Academic, London, 1984
13. J. L. Cardy, in Phase Transitions and Critical Phenomena, edited by C. Domb

and J. L. Lebowitz, volume 11, Academic Press, New York, 1987
14. T. Prellberg and A. L. Owczarek, Phys. Rev. E. 62, 3780 (2000)
15. H.-P. Hsu and V. Mehra and W. Nadler and P. Grassberger, Phys. Rev. E 68

21113 (2003)
16. H. Frauenkron and U. Bastolla and E. Gerstner and P. Grassberger and W.

Nadler, Phys. Rev. Lett. 80 3149 (1998)
17. T.C. Beutler and K.A. Dill, Protein Sci. 5 2037 (1996)

