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In this Letter we present a flat histogram algorithm based on the pruned and enriched Rosenbluth
method. This algorithm incorporates in a straightforward manner microcanonical reweighting tech-
niques, leading to ‘‘flat histogram’’ sampling in the chosen parameter space. As an additional benefit,
our algorithm is completely parameter free and, hence, easy to implement. We apply this algorithm to
interacting self-avoiding walks, the generic lattice model of polymer collapse.
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further applications. one growth step out of a possible ones, we replace a
Recently, there has been revived interest in flat histo-
gram algorithms [1], which strive to evenly sample con-
figuration space with respect to a chosen parametrization,
e.g., microcanonical energy. These algorithms are par-
ticular implementations of ‘‘umbrella sampling’’ [2], in
which the configuration space is sampled according to a
given probability distribution, the so-called ‘‘umbrella.’’
This umbrella distribution is generally chosen such that
the whole configuration space of interest is accessible in
one simulation. One major difficulty is finding a suitable
umbrella distribution.

There has also been an exciting development in sto-
chastic growth algorithms, which are based on the
Rosenbluth and Rosenbluth algorithm [3]. If this algo-
rithm, which kinetically grows configurations, gets en-
hanced by cleverly chosen enrichment and pruning steps
[4], one obtains the pruned and enriched Rosenbluth
method (PERM), a powerful algorithm for, e.g., simula-
tion of the polymer collapse transition.

We present in this Letter a new algorithm, flatPERM,
which is a combination of these two types of algorithms,
i.e., a flat histogram version of the pruned and enriched
Rosenbluth method.

As opposed to earlier work in this direction [5], in
which an iterative scheme similar to the multicanonical
algorithm [6] was used, we utilize the self-tuning capa-
bilities of PERM directly. This leads to a considerable
simplification of the algorithm.

While flatPERM includes umbrella sampling ideas, it
is strictly speaking not a multicanonical method, as
multicanonical sampling conventionally describes a par-
ticular iterative version of adaptive umbrella sampling, in
which first an umbrella distribution is obtained iteratively
and then a final simulation is performed with a fixed
umbrella distribution.

This Letter is structured as follows: we first give a
pedagogical introduction to PERM, which then allows
us to introduce flatPERM as a seemingly trivial extension.
As an application, we present simulations of interacting
self-avoiding walks (ISAW) on the square lattice and the
simple cubic lattice. We conclude with a description of
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We consider a rather abstract setting of configurations
with a certain size n, which is parametrized with an
additional variable m. In general, one can even consider
a set of variables mi, but for pedagogical reasons in this
Letter we restrict ourselves to the case of m correspond-
ing to an energy E � �m. Both n and m are assumed to
have non-negative integer values. Moreover, we need the
notion of ‘‘atmosphere’’ of a configuration, which is the
number a of different ways to continue to grow this
configuration and is also a non-negative integer.

While it is useful to present the algorithm in such an
abstract setting, it may help the reader to keep the appli-
cation to ISAW on a regular lattice in mind. In this case,
the size of the configuration is the number of steps of the
walk, the energy is the number of nonconsecutive nearest-
neighbor bonds, and the atmosphere is the number of
nonoccupied sites around the end point of the walk. If
all the sites around the end point are occupied, then the
atmosphere is zero and the walk cannot be continued.

The basis of the algorithm is the Rosenbluth and
Rosenbluth algorithm, a stochastic growth algorithm in
which the configurations of interest are grown from
scratch. The growth is kinetic, which is to say that
each growth step is selected at random from all possible
growth steps. Thus, if there are a possible ways of
growth, one selects one of them with probability p �
1=a. As this number generally changes during the growth
process, different configurations are thus generated with
different probabilities, and one needs to resort to re-
weighting techniques.

It is advantageous to view this algorithm as approxi-
mate counting, in which case the weights of the configu-
rations serve as estimates of the number of configurations.
To understand this point of view, imagine that we were
to perform a complete enumeration of the configuration
space. Doing this requires that at each growth step we
would have to choose all the possible continuations and
count them each with equal weight. If we now select
fewer configurations, we have to change the weight of
these configurations accordingly, in order to correct for
missing out on some configurations. Thus, if we choose
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configurations with equal weight by one ‘‘representative’’
configuration with a-fold weight. In this way, the weight
of each grown configuration is a direct estimate of the
total number of configurations.

Let the atmosphere an � a�’n� be the number of dis-
tinct ways in which a configuration ’n of size n can be
extended. Then, the weight associated with a configura-
tion of size n is the product of all the atmospheres ak
encountered while growing this configuration, i.e.,

W �
Yn�1

k�0

ak: (1)

After having started S growth chains, an estimator Cest
n

for the total number of configurations Cn (the ‘‘infinite-
temperature’’ partition function, in which all configura-
tions appear with equal weight 1) is given by the mean
over all generated samples ’�i�

n of size n with respective
weights W�i�

n , i.e.,

Cest
n � hWin �

1

S

X

i

W�i�
n : (2)

Here, the mean is taken with respect to the total number
of growth chains S, and not the number of configura-
tions that actually reach size n. Configurations that get
trapped before they reach size n appear in this sum with
weight zero.

The problem with the Rosenbluth and Rosenbluth al-
gorithm is twofold. First, the weights can vary widely in
magnitude, so that the mean can get to be dominated by
very few samples with very large weight. Second, regu-
larly occurring trapping events, i.e., generation of con-
figurations with zero atmosphere, can lead to exponential
‘‘attrition,’’ i.e., exponentially strong suppression of con-
figurations of large sizes.

To overcome both of these problems, enrichment and
pruning steps have been added to this algorithm, leading
to PERM [4]. The basic idea is that one wishes to suppress
fluctuations in the weights W�i�

n , as these should on average
be equal to Cn. Therefore, if the weight is too large, one
enriches, i.e., one makes copies of the configuration and
reduces the weight accordingly. On the other hand, if the
weight is too small, one prunes probabilistically and, in
case the pruning is unsuccessful, continues growing with
appropriately increased weight. Note that S, and therefore
the expression (2) for the estimate Cest

n , is not changed by
either enriching or pruning steps.

We need to specify enrichment and pruning criteria as
well as the actual enrichment and pruning processes.
While the idea of PERM itself is straightforward, there
is now a lot of freedom in the precise choice of the
pruning and the enrichment steps. The ‘‘art’’ of mak-
ing PERM perform efficiently is based to a large extent
on a suitable choice of these steps. Distilling our own
experience with PERM, we present here what we believe
to be an efficient and, most importantly, parameter-free
version.
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In contrast to other expositions of PERM (e.g., [7]), we
propose to prune or enrich constantly to enable larger
exploration of the configuration space (the motivation
will become clear once flatPERM is introduced below).
Define r as the ratio of weight and estimated number of
configurations, r � W�i�

n =Cest
n . Then we enrich if r > 1

and prune if r < 1. Moreover, the actual pruning and
enrichment steps are chosen such that the weights are
set as closely as possible to Cest

n to minimize fluctuations.
(i) r > 1 ! enrichment step: make c � min�brc; an�

distinct copies, each with weight 1cW
�i�
n (as in nPERM [8]).

(ii) r < 1 ! pruning step: continue growing with
probability r and weight Cest

n (i.e., prune with probabil-
ity 1� r).

Note that we perform pruning and enrichment after
the configuration has been included in the calculation of
Cest
n and is used for weights during the next growth step.

Initially, the estimates Cest
n can, of course, be grossly

wrong, as the algorithm knows nothing about the system
it is simulating. However, even if initially ‘‘wrong’’ esti-
mates are used for pruning and enrichment, in all appli-
cations considered the algorithm can be seen to converge
to the true values. It is, in a sense, self-tuning.

At this point it is now straightforward to change PERM
to a thermal ensemble with inverse temperature � �
1=kBT and energy E � �m by multiplying the weight
with the appropriate Boltzmann factor exp���E�, which
leads to an estimate of the partition function Zn��� of
the form Zest

n ��� � hW exp���E�in. The pruning and
enrichment procedures are changed accordingly, replac-
ing W by W exp���E� and Cest

n by Zest
n ���, and using r �

W�i�
n exp���E�i�

m �=Zest
n ���. (It is in this setting that PERM

is usually described.)
Alternatively, however, it is also possible to consider

microcanonical estimators for the total number Cn;m of
configurations of size n with energy m (i.e., the ‘‘density
of states’’). An appropriate estimator Cest

n;m is then given by
the mean over all generated samples ’�i�

n;m of size n and
energy m with respective weights W�i�

n;m, i.e.,

Cest
n;m � hWin;m �

1

S

X

i

W�i�
n;m: (3)

Again, the mean is taken with respect to the total number
of growth chains S, and not the number of configurations
Sn;m, which actually reach a configuration of size n and
energy m. The pruning and enrichment procedures are
also changed accordingly, replacing Cn by Cn;m and using
r � W�i�

n;m=Cest
n;m.

At this point it is worth noting that the pruning and
enrichment criterion for PERM leads to a roughly con-
stant number of samples being generated at each size n for
PERM. In fact, one can motivate the given pruning and
enrichment criteria by stipulating that one wishes to have
a roughly constant number of samples, as this leads to the
algorithm performing an unbiased random walk in the
configuration size. Correspondingly, in the flat-energy
120602-2
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FIG. 1 (color online). Logarithm of the number of configu-
rations Cn;m versus internal energy m=n and length n for ISAW
on the square lattice (above) and simple cubic lattice (below).
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version the algorithm performs an unbiased random walk
in both size and energy of the configuration, and we
obtain a roughly constant number of samples for each
size n and energy m.

It is because of the fact that the number of samples is
roughly constant in each histogram entry that this algo-
rithm can be seen as a flat histogram algorithm, which we
consequently call flatPERM. In hindsight it becomes clear
that PERM itself can be seen as a flat histogram algo-
rithm, as it creates a roughly flat histogram in size n.
Recognizing this led us to the formulation of this algo-
rithm in the first place.

At this point we return to our discussion of the pruning
and enrichment strategies. For PERM it may be more
advantageous to allow for a high diffusivity along the
size n. This is done by minimizing pruning and enrich-
ment, i.e., at the cost of allowing larger weight fluctua-
tions. For flatPERM, on the other hand, we need to
achieve diffusive behavior also with respect to the energy
variable m. Precisely this is achieved by allowing for
much enrichment (and thus necessarily also pruning),
as each set of configurations enriched at size n contributes
to a range of different energies m at size n
 1.

Even though we view flatPERM as a flat histogram
algorithm, we have not yet explicitly conditioned the
pruning and enrichment with respect to the local number
of samples Sn;m created at each size n and energy m. This
can be done by multiplying r by S=Sn;m, as this enhances
enrichment if Sn;m < S, i.e., when there are too few
samples, and vice versa.

One general problem with PERM is that enrichment
generates large correlation between samples, so that it
would be useful to replace the number Sn;m of samples
by a number Seffn;m of effectively independent samples,
thereby taking account of some autocorrelation time.
This can be done heuristically by considering the average
number of independent growth steps in a configuration. If
the last enrichment has occurred at size nenr, then a
configuration of size n and energy m has nind � n� nenr
independent steps. The frequency of independent steps in
a configuration is w�i�

n;m � nind=n. We thus use

r �
S

Seffn;m

W�i�
n;m

Cest
n;m

with Seffn;m �
X

i

w�i�
n;m (4)

for the pruning and enrichment criterion in our
algorithm.

Now that one has a flat histogram method of PERM
for the whole range of energies, one can easily modify
the algorithm further to sample only a selected range
by dividing r by a ‘‘profile shape’’ fn;m, leading to prun-
ing whenever fn;m is close to zero. This is advantageous
if one wants to explore only a restricted region of pa-
rameter space.

Even though the algorithm described thus far is free of
parameters, there is a technical problem due to the fact
that initial weights are grossly wrong, which can lead to
120602-3
overflow problems. This can easily be overcome by ini-
tially restricting the maximal size of grown configura-
tions, e.g., by limiting the maximal size by the number of
started growth chains, n < cS. The relevant number of
growth chains at size n is thus reduced to S� n=c. For
ISAW we find that a choice of delay of c � 10 is sufficient.

Averages of observables Q defined on the set of con-
figurations can now be obtained by storing weighted
sums of these observables, from which one obtains

Qest
n;m �

hQWin;m
hWin;m

�

P
i
Q�i�

n;mW
�i�
n;m

P
i
W�i�

n;m

: (5)

These can then be used for subsequent evaluations. For
instance, the expectation value of Q in the canonical en-
semble at a given temperature � can now be computed via

Qest
n ��� �

P
m
Qest

n;mCest
n;m exp���Em�

P
m
Cest
n;m exp���Em�

: (6)

We have implemented this algorithm for interacting
self-avoiding walks on the square and simple cubic lat-
tice. In both two and three dimensions, we have simulated
walks up to length n � 1024. Figures 1 and 2 clearly
show the strength of the method. Figure 1 shows the
number of configurations Cn;m, which vary over several
hundred orders of magnitude. This range would have
been inaccessible during one simulation with any ca-
nonical method. As an aside, we note that we had to
rescale weights during the run to avoid overflow [9].
Additionally, we chose a delay of c � 10 to stabilize the
algorithm.
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FIG. 2 (color online). Number of generated samples versus
internal energy m=n and length n for ISAW on square lattice.
The top graph shows the number of samples Sn;m for a simu-
lation in which a flat histogram for Sn;m was created, whereas
the middle and bottom graphs show the number of samples Sn;m
and the effective number of samples Seffn;m, respectively, for a
simulation in which a flat histogram for Seffn;m was created.
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FIG. 3. Normalized fluctuations �2�m�=n versus inverse tem-
perature � � 1=kBT for ISAW on the square lattice (left) and
the simple cubic lattice (right) at lengths 64, 128, 256, 512, and
1024. The curves for larger lengths are more highly peaked.
The vertical lines denote the expected transition temperature at
infinite length.
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As can clearly be seen in Fig. 2, the number of samples
generated is roughly constant, irrespective of whether one
flattens with respect to Sn;m (top graph) or Seffn;m (middle
and bottom graphs). Only results for the square lattice are
shown, as we find the same behavior for the simple cubic
lattice. Using Seffn;m for the flatness criterion leads moreover
to an increased sampling of walks with very few and very
many interactions, thus overcoming the usual difficulty of
obtaining configurations with a large number of interac-
tions. (The largest energy state gets repeatedly sampled
in simulations in both dimensions.)

Once the simulations have been completed, thermo-
dynamic quantities of interest, such as specific heat
curves, can easily be computed (see Fig. 3). We have
also tested our algorithm on the HP model [10], which
is a toy model for proteins. For various sequences taken
from the literature we have confirmed previous density of
states calculations and obtained identical ground state en-
ergies. For detailed results of these simulations, see [11].
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To summarize, we have presented a new algo-
rithm, flatPERM, which is a flat histogram version of a
stochastic growth algorithm. This algorithm can, in prin-
ciple, be applied to any statistical mechanical system for
which configurations can be grown in a well-defined
manner. Next to the presented applications of linear
polymers, this algorithm can be applied to more compli-
cated systems, such as lattice models of branched poly-
mers [12]. Extensions to models with two energy
parameters are in preparation, e.g., for the problem of
adsorbing interacting polymers [13] or an extended
Domb-Joyce model of polymer collapse [13].
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