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Summary. We present Monte Carlo simulations of the coil-globule transition for
interacting self-avoiding walks (ISAW) and interacting self-avoiding trails (ISAT)
on the hyper-cubic lattice in four and five dimensions, performed with the PERM
algorithm. We find that the second-order nature of the coil-globule transition is
masked by pseudo-first-order behaviour, i.e. the build-up of first-order-like singu-
larities due to strong finite-size corrections to scaling.
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It is widely accepted that polymer collapse is a second-order phase transi-
tion described by a standard tri-critical O(0) field theory [1, 2, 3], supported
by evidence from simulations [4, 5, 6]. Above the upper critical dimension
d, = 3, a mean-field analysis of polymer collapse predicts that at the tran-
sition point the polymer actually behaves as if it were a random walk. In
the thermodynamic limit, one expects a weak transition with a jump in the
specific heat (i.e. the specific heat exponent « equals zero). For finite polymer
length there is no sharp transition for an isolated polymer and so this mean-
field transition is rounded and shifted. In four and higher dimensions one
may therefore expect pure mean-field behaviour with a crossover exponent
¢ =1/2[1].

However, a more detailed theoretical framework predicts a rather different
scenario [7, 8]. This framework is based on an extended self-consistent mean-
field theory of Lifshitz, Grosberg and Khokhlov [9, 10, 11, 12], which takes
into account the contribution to the free energy coming from a well-defined
surface of the globule in the collapsed phase. In the thermodynamic limit, the
surface contribution vanishes and one recovers some aspects of the expected
behaviour in the infinite polymer limit. The phase transition, which should
still be a second-order transition in the thermodynamic limit, now has finite-
polymer-length scaling behaviour with first-order characteristics, and so has
been named a pseudo-first-order (PFQ) transition. The proposed theory also
predicts various dimension-dependent exponents while the general scenario
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of ‘false’ first-order behaviour should be seen in any dimension greater than
three.

Support for the validity of this theoretical approach comes from simu-
lations of two lattice models of polymer collapse. The first is the canonical
model of interacting self-avoiding walk (ISAW), where one associates an at-
tractive interaction with non-consecutive nearest-neighbour interactions of a
self-avoiding walk. The model of interacting self-avoiding trails (ISAT) is yet
another plausible lattice model of polymer collapse, with self-avoidance re-
stricted to bonds and attractive interaction incorporated via contacts. There
is some evidence that while self-avoiding trails are in the same universality
class as self-avoiding walks the corresponding interacting models may have
different scaling at their collapse points. For instance, simulations on the
square lattice show that there are logarithmic corrections to scaling at the
ISAT 6-point [13].

Using PERM, a clever generalisation of a kinetic growth algorithm [5], we
have simulated interacting self-avoiding walks and interacting self-avoiding
trails on the hyper-cubic lattice in four [7, 14] and five dimensions [15]. The
implications for collapse scaling is discussed in detail in [8]. PERM is based on
the Rosenbluth-Rosenbluth method [16], in which samples are generated by
growing configurations kinetically. Additionally, it overcomes the exponential
“attrition” and re-weighting needed in this approach by a combination of
enrichment and pruning strategies. It turns out that PERM is highly efficient
for simulations of polymers near the -point.

The main result of our simulations is that in all four cases considered we
find a #-scaling region and additionally a collapse transition region distinct
from the @-point scaling region.

In four dimensions, the 8-point scaling region is simply the region in which
the polymer behaves like a random walk. In five dimensions, we must use a
more subtle argument, as the swollen phase has now the same dominant
scaling behaviour as we expect at the 6-point. As recently shown [17] the
excluded volume effects at high temperatures do not disappear altogether,
and reappear as corrections-to-scaling. There is now a subtle sub-dominant
difference between the excluded volume state and §-state, which can be used
for locating the #-point.

However, we also find a collapse transition region shifted away from and
distinct to the f-point scaling region. The nature of this collapse is most
strikingly seen in the internal energy density distribution near the collapse
transition, as shown in Figures 1.1 and 1.2. We find a distinct double peak
distribution for the internal energy, which becomes more pronounced as the
chain length is increased. This would seem to suggest a first-order transition.
A closer analysis suggests, however, that the distance of the peaks starts to
decrease with increasing system size, which would indicate a vanishing latent
heat in the thermodynamic limit.
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Fig. 1.1. Internal energy density distributions for interacting self-avoiding walks at
lengths 2048 and 16384 (above) and interacting self-avoiding trails at lengths 512
and 4096 (below) on the four-dimensional hyper-cubic lattice, at their respective
transition temperatures. The more highly peaked distribution is associated with
the longer respective length.

In summary, we find that there is a rather dramatic breakdown of the
simple crossover scaling for the case of the coil-globule transition of an isolated
polymer.

These findings turn out to be consistent with PFO theory. For example,
when considering the distribution of internal energy for d-dimensional inter-
acting polymers as a function of polymer length N, PFO theory predicts a
collapse region in which one expects to see a double peaked distribution as
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Fig. 1.2. Internal energy density distributions for interacting self-avoiding walks
at lengths 512 and 2048 (above) and interacting self-avoiding trails at lengths 128
and 512 (below) on the five-dimensional hyper-cubic lattice, at their respective
transition temperatures. The more highly peaked distribution is associated with
the longer respective length.

in a first-order transition region. There should be two peaks in the internal
energy distribution separated by a gap of the order of O(N~'/(¢-1)  with
each peak being of Gaussian type with individual variances of the order of
O(N~'/2). As N increases the peaks will become more and more distinct
and relatively sharper but the peak positions will be getting closer together.
This is why this scenario has been termed a pseudo-first-order transition. If
there were a real first-order transition then the distance between the peaks
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should converge to a non-zero constant. On the other hand the transition is
not a conventional second-order phase transition with a well defined limit
distribution of the internal energy that is simply bimodal.

Comparing the data for interacting trails and walks in more detail, we
note further that the bimodal distribution emerges for trails at much shorter
configurations than for walks, so that the peaks in the distribution for trails
at length N = 512 are already more pronounced than the peaks in the distri-
bution for walks at length N = 2048, which is is due to the smaller effective
excluded volume in ISAT as compared to ISAW.

Similarly, when comparing the data for four and five dimensions, we note
that the bimodal distribution emerges in five dimensions at much shorter
configurations than in four dimensions. The reason for this is that the bi-
modality is caused by the surface contribution to the finite size free energy.
As dimensionality increases, so does the relative proportion of globule surface
to volume.

A closer look at the distribution for ISAT in five dimensions in Figure
1.2 shows that the distance between the peaks does not decrease at the sim-
ulated system sizes. However, as collapsed trails of length N = 512 in five
dimensions have diameters of less than four lattice spacings, it is likely that
the asymptotic scaling regime, in which typical length scales are much larger
than the lattice spacing, has not yet been reached.

In summary, we have discussed the results of large scale Monte Carlo
simulations of interacting self-avoiding walks and trails on the hyper-cubic
lattice in four and five dimensions. The data was compared to the predictions
of a pseudo first-order transition. The transition was found to be stronger for
ISAT than for ISAW and stronger in five than four dimensions.
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