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Scaling near theu point for isolated polymers in solution
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Recently questions have been raised as to the conclusions that can be drawn from currently proposed scaling
theory for a single polymer in various types of solution in two and three dimensions. Here we summarize the
crossover theory predicted for low dimensions and clarify the scaling arguments that relate thermal exponents
for quantities on approaching theu point from low temperatures to those associated with the asymptotics in
polymer length at theu point itself.
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Recently some interesting work has been completed
stretched polymers in a poor solvent by Grassberger and
@1# ~GH! and on collapsed polymers on a cylinder by H
and Grassberger@2# ~HG!. In the course of these works var
ous scaling conjectures were discussed; the question aro
to whether they can be derived from theory currently in
literature. It is therefore timely to revisit questions such
these: we not only address the questions raised in~GH! and
~HG!, but discuss how such questions can be answere
general.

The basic framework of the polymer problem has be
and still is, given by the seminal works of de Gennes a
Duplantier@3–5# which describe the long length behavior
terms of critical phenomena. Hence the basic propertie
such polymers are argued to display scaling behavior. M
work has been subsequently done to verify specific sca
predictions in both two and three dimensions~for examples,
from the past 10 years see Refs.@1,2,6–10#!. More generally,
scaling usually imposes certain relationships between crit
exponents~a review of the more general scaling framewo
can be found in Ref.@11#—see also Ref.@12#! and it is these
relationships that are addressed here.

Of particular interest here is the scaling of quantities
approaching theu point from the collapsed phase. The co
lapsed phase itself has received attention relatively rece
@1,2,13,14#. Much less is known here, partially because t
long length behavior is no longer a critical phenomen
This is in contrast to the swollen phase and the transi
point, which are both critical. To make clear the answers
questions such as those raised in GH and HG it is first tim
to restate, in compact fashion, the conjectured crossover
ing theory for a single polymer between good and poor s
vents ~high and low temperatures respectively!, and then
demonstrate how questions such as those raised can b
swered in general.

As temperature gets decreased, an isolated polymer in
lution undergoes a phase transition from a swollen coil t
collapsed globule via a criticalu state at a temperatureTu .
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The standard description of this polymer collapse transit
is a tricritical point related to then→0 limit of the
(f2)2–(f2)3 O(n) field theory @3–5#. Scaling theory can
therefore be derived, in principle, from this tricriticality@15#.
The upper critical dimension for the swollen state is fo
while for theu state it is expected to be three. As conflue
logarithmic corrections complicate the discussion in th
dimensions, the crossover theory should be cleanest for
mensions strictly below the upper critical dimension. Let
therefore concentrate our discussions on two dimensions

Consider now, for simplicity, some quantityQ(T,N), as-
sociated with a property of the polymer, that is a function
the lengthN and the temperatureT of the polymer. More-
over, let it be a quantity that has an algebraic asympto
behavior for largeN at any fixed value ofT, such as the
radius of gyrationRg(T,N), for example. Such a quantit
would then be expected to possess three different behav
For fixedT.Tu,

Q~T,N!;a1~T!Nq1, ~1!

for T,Tu,

Q~T,N!;a2~T!Nq2, ~2!

while for T5Tu,

Q~T,N!;auNqu, ~3!

each asN→`. The assumption of crossover scaling@15–17#
applied to this system@11# implies that there exists a cross
over exponentf such that for each fixed value ofx5tNf,
wheret5(T2Tu)/Tu ,

Q~T,N!;NquG~ tNf! as N→`. ~4!

~Note that Ref.@11# contains numerous typesetting errors
some formulas, such as Eq.~26!, that makes readability les
than optimal—see Ch. 2 in Ref.@12# for a nice summary.!
Moreover, and importantly, it is assumed@17# that this
asymptotic form provides all the dominant asymptotics
small t so that
©2003 The American Physical Society01-1
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G~x!;H b1x(q12qu)/f, x→`

b2~2x!(q22qu)/f, x→2`.
~5!

This means that the high- and low-temperature forms, E
~1! and ~2!, respectively, are recovered in the appropri
limits. Consequently, it further implies that

a1~T!;b1t (q12qu)/f as t→01 ~6!

and

a2~T!;b1~2t !(q22qu)/f as t→02. ~7!

Since these exponents often have separate definition
crossover theory provides relationships between expon
defined by asymptotics inN at T5Tu and asymptotics int on
approachingTu . We note that suitable adjustments c
sometimes be made to this scenario if some or all of
asymptotic behaviors are not algebraic, for example, in
scaling of the partition function where exponential as well
algebraic factors arise@11#.

Armed with the general principle of crossover scaling d
scribed above, it is a simple matter to deduce answers to
questions posed in GH. First, the densityr̂ inside the col-
lapsed polymer is considered on approachingTu from below.
Since the density is defined as

r̂~T!5 lim
N→`

r~T,N!5 lim
N→`

N

Rg~T,N!d
, ~8!

whereRg(T,N) is the radius of gyration@which is a quantity
obeying the rules above for a general quantityQ(T,N)], we
can then relate howr̂(T) behaves on approachingTu . Be-
cause the polymer is expanded at high temperatures,r̂(T) is
zero for T>Tu . For T,Tu , Rg(T,N);r 2(T)N1/d so that
r(T,N);r 2(T)2d. In fact, r̂(T) acts like an order param
eter for the transition just as the density is an order param
in a liquid-gas transition. Let us defineb as

r̂~T!;~2t !b as t→02 ~9!

and nu via Rg(Tu ,N);r uNnu. Hence, using the crossove
theory above, we have from the analogous formula to Eq.~7!

r 2;b2~2t !(1/d2nu)/f as t→02 ~10!

and therefore

b5
~dnu21!

f
. ~11!

In two dimensions Eq.~11! implies thatb51/3, sincenu
54/7 andf53/7 are expected@18#. This answers the ques
tion raised in Sec. II of GH. It also is well supported by t
numerical evidence provided in HG, where it is estima
that b2d50.32.

Also of interest in GH and HG is the scaling of the~re-
duced! surface free energys(T) in the collapsed phase
@Again s(T)50 for T>Tu .] s(T) can be defined~up to a
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factor dependent on the average shape of the surface! via the
scaling of the polymer partition function in low temperatur
@13,14#,

Z~T,N!;ef (T)N1s(T)N(d21)/d1A2(T)Ng221, ~12!

where f (T) is the bulk~reduced! free energy per monomer
A2 is a nonconstant function ofT, and g2 may also be
nonconstant. We shall first consider the simpler case, wh
g2 is assumed constant. Let us definex via

s~T!;c2~2t !x as t→02. ~13!

Matching the crossover scaling form for the partition fun
tion,

Z~T,N!;ef (Tu)NNgu21H~ tNf!, ~14!

with Eq. ~12! implies that

H~x!;~2x!2(gu2g2)/fec1(2x)1/f1c2(2x)(d21)/df
~15!

asx→2` with c1 andc2 being constants. This immediatel
gives

x5
~d21!

df
. ~16!

So for two dimensionsx57/6 holds. At this point in the
discussion it is important to note thatx will be difficult to
estimate as it requires an accurate estimate ofs(T), which is
part of a subdominant factor in the scaling of the partiti
function ~or free energy!, just in the region of temperatur
affected by strong crossover effects from the change in thg
exponent fromgu to g2 .

Let us now return to the case whereg2 is considered to
be a nonconstant function of temperatureg2(T) for T
P@0,Tu). We shall assume thatg2(T) is a slowly varying
function continuous on (0,Tu). Let limT↗T

u
2g2(T)5ĝ2 .

One possible scenario is to simply replaceg2 with ĝ2 in Eq.
~15! to allow the crossover form~14! to match asT↗Tu

2 the
low-temperature form~12!. One should note that the match
ing is always an approximate one valid in an asympto
sense~see Ref.@17#! as T↗Tu

2 . For example, even in the
simple case of the matching of algebraic singularities
scribed by Eq.~5!, the fixed temperature asymptotics, Eq
~1! and ~2!, are only recovered for temperatures asympto
cally close toTu , since the amplitudes are given only a
ymptotically. Here we have a subdominant confluent fac
whose exponent would only be asymptotically matched.
the other hand it may also be the case that varyingg2(T) at
low temperatures is also accompanied by a subtle brea
of classic scaling assumptions aroundTu .

In any case we remark that result~16! can be found from
a scaling ansatz for a suitably defined finite sized surface
energy s(T,N). Here the behavior ofg2 is unimportant.
Assuming s(T,N);N2(d21)/dK(tNf) for tNf fixed and
then matching the fixedT,Tu behavior ofs(T,N), namely,
1-2
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that lim
N→`

s(T,N)5s(T)Þ0, implies K(x);

(2x)(d21)/df as x→2` from which the result again fol-
lows.

We have shown that questions such as those raise
recent stimulating work by Grassberger and Hsu@1,2# on the
scaling of collapsing and collapsed polymers in low dime
sions can be answered by the application of crossover sca
theory. Exponents defined by the singularity in temperat
at theu point can be related to those defined by fixed te
perature scaling in the length and to the crossover expo
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f. In particular, we conjecture a value of 1/3 for the tem
perature singularity of the globular density at theu point in
two dimensions. We also explain where the value of 7/6
two dimensions arises for the temperature singularity of
surface free energy at theu point.
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