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Scaling near the @ point for isolated polymers in solution
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Recently questions have been raised as to the conclusions that can be drawn from currently proposed scaling
theory for a single polymer in various types of solution in two and three dimensions. Here we summarize the
crossover theory predicted for low dimensions and clarify the scaling arguments that relate thermal exponents
for quantities on approaching thepoint from low temperatures to those associated with the asymptotics in
polymer length at the point itself.
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Recently some interesting work has been completed oifthe standard description of this polymer collapse transition
stretched polymers in a poor solvent by Grassberger and Hsa a tricritical point related to then—0O limit of the
[1] (GH) and on collapsed polymers on a cylinder by Hsu($?)2-(¢?)* O(n) field theory[3-5]. Scaling theory can
and GrassberggP] (HG). In the course of these works vari- therefore be derived, in principle, from this tricriticality5].
ous scaling conjectures were discussed; the question arose Hse upper critical dimension for the swollen state is four
to whether they can be derived from theory currently in thewhile for the 6 state it is expected to be three. As confluent
literature. It is therefore timely to revisit questions such agogarithmic corrections complicate the discussion in three
these: we not only address the questions raisg@Gi) and  dimensions, the crossover theory should be cleanest for di-
(HG), but discuss how such questions can be answered imensions strictly below the upper critical dimension. Let us
general. therefore concentrate our discussions on two dimensions.
The basic framework of the polymer problem has been, Consider now, for simplicity, some quantiQ(T,N), as-
and still is, given by the seminal works of de Gennes andsociated with a property of the polymer, that is a function of
Duplantier[3—5] which describe the long length behavior in the lengthN and the temperatur@ of the polymer. More-
terms of critical phenomena. Hence the basic properties adver, let it be a quantity that has an algebraic asymptotic
such polymers are argued to display scaling behavior. Muchehavior for largeN at any fixed value off, such as the
work has been subsequently done to verify specific scalingadius of gyrationRy(T,N), for example. Such a quantity
predictions in both two and three dimensidifier examples, would then be expected to possess three different behaviors:
from the past 10 years see Rdf5,2,6—10). More generally, For fixedT>T,,
scaling usually imposes certain relationships between critical

exponentqa review of the more general scaling framework Q(T,N)~a, (T)N9-, (8]
can be found in Ref.11]—see also Ref.12]) and it is these
relationships that are addressed here. for T<T,,
Of particular interest here is the scaling of quantities on
approaching the point from the collapsed phase. The col- Q(T,N)~a_(T)N9-, 2

lapsed phase itself has received attention relatively recently
[1,2,13,14. Much less is known here, partially because thewhile for T=T,,
long length behavior is no longer a critical phenomenon.
This is in contrast to the swollen phase and the transition Q(T,N)~a,N%, ©)]
point, which are both critical. To make clear the answers to
guestions such as those raised in GH and HG it is first timelyach asN— 0. The assumption of crossover scal{ig—17
to restate, in compact fashion, the conjectured crossover scaipplied to this systerfill] implies that there exists a cross-
ing theory for a single polymer between good and poor solover exponenip such that for each fixed value af=tN?,
vents (high and low temperatures respectieland then  wheret=(T—T,)/T,,
demonstrate how questions such as those raised can be an-
swered in general. Q(T,N)~N9G(tN?) as N—ox, 4
As temperature gets decreased, an isolated polymer in so-
lution undergoes a phase transition from a swollen coil to gNote that Ref[11] contains numerous typesetting errors in
collapsed globule via a criticad state at a temperaturg,. some formulas, such as E@6), that makes readability less
than optimal—see Ch. 2 in Reff12] for a nice summary.
Moreover, and importantly, it is assumdd7]| that this
*Electronic address: aleks@ms.unimelb.edu.au asymptotic form provides all the dominant asymptotics for
TElectronic address: thomas.prellberg@tu-clausthal.de smallt so that
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b, x(d+~ /¢ X—300 factor dependent on the average shape of the suriée¢he
G(x)~ b_(—x) @6y oo, ) [5f§1I|1n4(];1 of the polymer partition function in low temperatures

This means that the high- and low-temperature forms, Egs.
(1) and (2), respectively, are recovered in the appropriate
limits. Consequently, it further implies that

Z(T’N)Nef(T)N+S(T)N(d71)/d+A,(T)Ny,—l' (12)

wheref(T) is the bulk(reduced free energy per monomer,

a,(T)~Db,t@+-9/¢ a5t 0" (6) A_ is a nonconstant function of, and y_ may also be
nonconstant. We shall first consider the simpler case, where
and v_ is assumed constant. Let us defipevia
a_(T)~b,(—t)(4-"%'¢ as t—0". 7 S(T)~c_(—t)X ast—0". (13)

Since these exponents often have separate definitions, \g iching the crossover scaling form for the partition func-
crossover theory provides relationships between exponents, -

defined by asymptotics iN at T=T, and asymptotics ihon

approachingT,. We note that suitable adjustments can Z(T,N)~ef TONNTo~1H(tN?), (14)

sometimes be made to this scenario if some or all of the

asymptotic behaviors are not algebraic, for example, in theyith Eq. (12) implies that

scaling of the partition function where exponential as well as

algebraic factors arisl1]. (v = (Ve Y ) by (—X) Yt cp(—x) (@ DIdS
Armed with the general principle of crossover scaling de- HOO~(=%) © (19

scribed above, it is a simple matter to deduce answers to ﬂ‘%x_)—oo with ¢, andc,

questions posed in GH. First, the densityinside the col- gives
lapsed polymer is considered on approachipdrom below.
Since the density is defined as (d—1)

being constants. This immediately

(16)

p(T)=lim p(T,N)= lim ———, ®) N o
N—o N_ng(T,N)d So for two dimensionsy=7/6 holds. At this point in the

discussion it is important to note thgtwill be difficult to
whereRy(T,N) is the radius of gyratiofwhich is a quantity  estimate as it requires an accurate estimat ©f, which is
obeying the rules above for a general quan@yT,N)], we  part of a subdominant factor in the scaling of the partition
can then relate hovfz(T) behaves on approachifiy,. Be-  function (or free energy just in the region of temperature
cause the polymer is expanded at high temperat@(és, is  affected by strong crossover effects from the change inythe
zero forT=T,. For T<T,, Ry(T,N)~r_(T)N'd so that ~€xponent fromy, to y_.

p(T.N)~r_(T)~%. In fact, p(T) acts like an order param- Let us now return to the case wheye is considered to

eter for the transition just as the density is an order parametebre a_nonconstant function of temperatue (T) for T

in a liquid-gas transition. Let us defin@ as €[0,T,). We shall assume that_(T) is a slowly va[ying
function continuous on (0,). Let limy -y _(T)=17y_.
7/ 4

p(T)~(—t)? as t—0" (9 One possible scenario is to simply replacewith y_ in Eq.
(15) to allow the crossover forrfiLl4) to match asl /T, the
low-temperature forn{12). One should note that the match-
ing is always an approximate one valid in an asymptotic

and v, via Ry(T4,N)~r,N"?. Hence, using the crossover
theory above, we have from the analogous formula to(Exq.

r_~b (—t)M-veld a5t 0~ (100  sense(see Ref[17]) asT 7T, . For example, even in the
simple case of the matching of algebraic singularities de-
and therefore scribed by Eq.5), the fixed temperature asymptotics, Egs.

(1) and(2), are only recovered for temperatures asymptoti-
_ (dvy—1) cally close toT,, since the amplitudes are given only as-
- ¢ ymptotically. Here we have a subdominant confluent factor
whose exponent would only be asymptotically matched. On
In two dimensions Eq(11) implies that3=1/3, sincev, the other hand it may also be the case that varyingT) at
=4/7 and¢=3/7 are expectefil8]. This answers the ques- low temperatures is also accompanied by a subtle breaking
tion raised in Sec. Il of GH. It also is well supported by the of classic scaling assumptions aroungl.
numerical evidence provided in HG, where it is estimated In any case we remark that res(li6) can be found from
that 8,4q=0.32. a scaling ansatz for a suitably defined finite sized surface free
Also of interest in GH and HG is the scaling of tliee-  energy s(T,N). Here the behavior ofy_ is unimportant.
duced surface free energy(T) in the collapsed phase. Assuming s(T,N)~N~(@" DK (tN?) for tN? fixed and
[Again s(T)=0 for T=T,.] s(T) can be definedup to a then matching the fixed <T, behavior ofs(T,N), namely,

(11)
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that lim, _s(T,N)=s(T)#0, implies K(x)~ ¢. In particular, we conjecture a value of 1/3 for the tem-
d—1V/dd ) . perature singularity of the globular density at thegoint in
(—x)@" D" asx— —e from which the result again fol- o dimensions. We also explain where the value of 7/6 in
lows. two dimensions arises for the temperature singularity of the
We have shown that questions such as those raised &urface free energy at thepoint.

recent stimulating work by Grassberger and IHE\2] on the
g y g ] Financial support from the Australian Research Council is

spaling of collapsing and coIIapseq pqumers in low dime*?' ratefully acknowledged by A.L.O. A.L.O. also thanks the
sions can be answereq by the appl|gat|on O,f cr'ossover scallr]%stitut fur Theoretische Physik at the Technische Univetsita
theory. Exponents defined by the smgula_nty in tef"peratur%lausthal. We thank R. Brak, P. Grassberger, and H.-P. Hsu
at the 6 point can be related to those defined by fixed tem-for carefully reading the manuscript and making several use-
perature scaling in the length and to the crossover exponeffitl suggestions.

[1] P. Grassberger and H.-P. Hsu, Phys. Re§5E031807(2002. [12] E. J. Janse van Rensbufthe Statistical Mechanics of Inter-

[2] H.-P. Hsu and P. Grassberger, J. PhyS85AL759 (2002. acting Walks, Polygons, Animals and Vesidl@sford Univer-
[3] P.-G. de Gennes, J. Phy&rance Lett. 36, L55 (1975. sity Press, Oxford, 2000

[4] M.J. Stephen, Phys. Lett. B3, 363 (1979. [13] A.L. Owczarek, T. Prellberg, and R. Brak, Phys. Rev. L2t
[5] B. Duplantier, J. PhygFrance 43, 991 (1982. 4275(1993.

[6] T. Prellberg and A.L. Owczarek, J. Phys2&, 1811(1994. [14] A.L. Owczarek, J. Phys. 26, L647 (1993.
[7] P. Grassberger and R. Hegger, J. Chem. Pl 6881  [15]| D. Lawrie and S. Sarbach, ihase Transitions and Critical

(1995. Phenomenaedited by C. Domb and J. L. LebowitzAca-
[8] P. Grassberger and R. Hegger, J. Phys,. 597 (1995. demic, London, 1984 Vol. 9.

[9] T. Prellberg and A.L. Owczarek, Phys. ReVbE 2142(1995. [16] R.B. Griffiths, Phys. Rev. B, 545 (1973.

[10] P. Grassberger, Phys. Rev5E, 3682(1997).
17] R. Brak and A.L. Owczarek, J. Phys.28, 4709(1995.
[11] R. Brak, A.L. Owczarek, and T. Prellberg, J. Phys2@\ 4565 [17) . wez 4 (1999
(1993 [18] B. Duplantier and H. Saleur, Phys. Rev. L&, 539 (1987).

032801-3



