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Abstract

If pkðPÞ is the number of integer partitions of kX1 whose parts lie in P; it is shown that

pkðPÞ is an increasing function of k for P ¼ fn; n þ 1;y; 2n � 1g; where nX3 is odd. This

completes the classification of all such monotonic P with minðPÞa2; 3; or 5.
r 2003 Elsevier Inc. All rights reserved.

In [2] the following monotonicity conjecture was made.

Conjecture. If nX3 is an odd integer, then

1� qQ2n�1
i¼n ð1� qiÞ

þ q

has non-negative power series coefficients.

The purpose of this note is prove the conjecture.
The conjecture has been established for prime values of n by Andrews [1], and for

np99; using a computer proof (see [2,4]). The proof given here relies upon an
identity for the rational function of the conjecture, which is our Lemma. A similar
identity was found by Andrews [1] to establish the case when n is prime.
The conjecture states that if n is odd, the number of integer partitions of k with

part sizes n; n þ 1;y; 2n � 1 is an increasing function of k for kX1: A general form
of this monotonicity question for part sizes belonging to a set P was considered in
[2]. A classification of all such P whose minimum value is odd and at least 7 was
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given in [2, Theorem 3.5], assuming the validity of the conjecture. The analogous
statement when the minimum value of P is even and at least 4 is given in [2, Theorem
3.6]. Establishing the conjecture completes this classification problem if the
minimum value of P is not equal to 2,3 or 5.
Recall the notation

ða; qÞn ¼ ð1� aÞð1� aqÞ?ð1� aqn�1Þ; ½n	q ¼ ð1� qnÞ=ð1� qÞ

and

n

k

" #
q

¼ ðq; qÞn

ðq; qÞkðq; qÞn�k

:

Lemma. If nX2 is an integer, then

1� q

ðqn; qÞn

þ q ¼ 1

1� q4n2�6nþ2 1� q4n2�6nþ3 þ
Xn�2
m¼0

qðnþmÞð2mþ1Þðqn�1; q�1Þm

ðq2; qÞ2m

 

þ
Xn�3
m¼0

q2ðnþmþ1Þðmþ1Þðqn�1; q�1Þmþ1
ðq2; qÞ2mþ1

!
:

Proof of the Conjecture. We may assume the lemma and take nX5:We show that the
individual terms of the lemma inside the parentheses have non-negative coefficients,

and that q4n2�6nþ3 also occurs.
First, we show that the mth term in each of the two sums has non-negative

coefficients. If m ¼ 0 the term in the second sum is q2ðnþ1Þð1� qn�1Þ=ð1� q2Þ; which
is non-negative since n is odd, while the term in the first sum is qn:
So we take 1pmpn � 3 and first consider the second sum. If 2m þ 2Xn � 1; then

ðqn�1; q�1Þmþ1
ðq2; qÞ2mþ1

¼ 1

ðqn; qÞ2mþ3�nðq2; qÞn�m�3

which clearly has non-negative coefficients. Next, suppose that 2m þ 2on � 1 and
let

2spm þ 1p2sþ1 � 1

for some positive integer s: Note that 2sþ1p2m þ 2on � 1: Then

ðqn�1; q�1Þmþ1
ðq2; qÞ2mþ1

¼ 1

½n	q
n

2sþ1

" #
q

1

ðq2sþ1þ1; qÞ2mþ2�2sþ1ðqn�2sþ1þ1; qÞ2sþ1�m�2
:

We now appeal to the fact [1, Theorem 2]; [3, Proposition 2.5.1] that

1

½n	q
n

k

" #
q
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has non-negative coefficients if 1okon and GCDðn; kÞ ¼ 1; to obtain non-
negativity of the mth term since n is odd.
For the first sum a similar proof applies. For 1pmpn � 2 we have

ðqn�1; q�1Þm

ðq2; qÞ2m

¼ 1

ðqn; qÞ2mþ2�nðq2; qÞn�m�2
if 2m þ 1Xn � 1;

while for 2m þ 1on � 1 we let 2som þ 1p2sþ1 to obtain

ðqn�1; q�1Þm

ðq2; qÞ2m

¼ 1

½n	q
n

2sþ1

" #
q

1

ðq2sþ1þ1; qÞ2mþ1�2sþ1ðqn�2sþ1þ1; qÞ2sþ1�m�1
:

Finally, we must show that the term q4n2�6nþ3 does appear in the sum. The m ¼
n � 2 term of the first sum is

q4n2�10nþ6

ðqn; qÞn�2
;

and a q4n�3 does appear due to the denominator factors of ð1� qnÞ and

ð1� q2n�3Þ: &

Proof of the Lemma. The lemma is equivalent to

1

ðqn; qÞn

¼ 1þ
Xn�1
m¼0

qðnþmÞð2mþ1Þðqn�1; q�1Þm

ðq; qÞ2mþ1

þ
Xn�2
m¼0

q2ðnþmþ1Þðmþ1Þðqn�1; q�1Þmþ1
ðq; qÞ2mþ2

; ð1Þ

because the m ¼ n � 1 term of the first sum and the m ¼ n � 2 term of the second
sum in (1) do sum to

q4n2�6nþ2

ðqn; qÞn

:

If these two terms are subtracted from (1), then elementary manipulations show that
(1) is the lemma.
To prove (1), the q-binomial theorem implies

1

ðqn; qÞn

¼ 1þ
XN
j¼1

ðqn; qÞj

ðq; qÞj

qnj ¼ 1þ
XN
j¼1

ðqnþ1; qÞj�1
ðq; qÞj

ðqnj � qnðjþ1ÞÞ

¼ 1þ qn

1� q
þ ð1� qn�1Þ

XN
j¼2

ðqnþ1; qÞj�2
ðq; qÞj

qðnþ1Þj

¼ 1þ qn

1� q
þ ð1� qn�1Þ q2ðnþ1Þ

ðq; qÞ2
þ ð1� qn�1Þ

XN
j¼3

ðqnþ1; qÞj�2
ðq; qÞj

qðnþ1Þj :
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Continuing we see that for tX0;

1

ðqn; qÞn

¼ 1þ
Xt

m¼0
qðnþmÞð2mþ1Þðqn�1; q�1Þm

ðq; qÞ2mþ1

þ
Xt

m¼0
q2ðnþmþ1Þðmþ1Þðqn�1; q�1Þmþ1

ðq; qÞ2mþ2

þ ðqn�1; q�1Þtþ1
XN

j¼2tþ3

ðqnþtþ1; qÞj�2t�2
ðq; qÞj

qðnþtþ1Þj:

and (1) is the t ¼ n � 1 case. &

Remark. One may also see that the lemma proves that the coefficients are strictly

positive past q3nþ4 for nX7 (see [2]). The m ¼ 1 term of the first sum is

q3ðnþ1Þ
1þ q2 þ q4 þ?þ qn�3

1� q3
;

which has the required property.
The equivalent form (1) of the Lemma is the x ¼ qn special case of

1

ðx; qÞn

¼
Xn�1
m¼0

n þ m � 1

2m

" #
q

q2m2 x2m

ðx; qÞm

þ
Xn�1
m¼0

n þ m

2m þ 1

" #
q

q2m2þm x2mþ1

ðx; qÞmþ1
: ð2Þ

A generalization of (2) to any positive integer rX2 is

XN
k¼0

ða; qÞk

ðb; qÞk

xk ¼
XN
t¼0

ða; qÞðr�1Þtðb=a; qÞt

ðb; qÞrt

qðrt�1Þt�ðt
2
Þ ð�aÞt

xrt

ðx; qÞt

þ
XN
t¼0

ða; qÞðr�1Þtþ1ðb=a; qÞt

ðb; qÞrtþ1
qrt2�ðt

2
Þ ð�aÞt

xrtþ1

ðx; qÞtþ1

þ
Xr�1
i¼2

XN
t¼0

ða; qÞðr�1Þtþi�1ðb=a; qÞtþ1
ðb; qÞrtþi

qðrtþi�1Þðtþ1Þ� tþ1
2

� �


 ð�aÞtþ1
xrtþi

ðx; qÞtþ1
: ð3Þ

Another identity similar to the lemma is

1� q

ðqn; qÞn

þ q ¼ 1

1� qnð2n�1Þ 1� qnð2n�1Þþ1 þ
Xn�1
m¼1

n

m

" #
q

1� q

ðqn; qÞm

qmðmþn�1Þ

0
@

1
A;

which would also prove the Conjecture if the individual terms are non-negative.
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Conjecture 1. The power series coefficients of

n

m

" #
q

1� q

ðqn; qÞm

are non-negative

(1) if n40 is odd and 0omon; or

(2) if n40 is even and 0omon with ma2; n � 2:
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