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Abstract

If px(P) is the number of integer partitions of k>1 whose parts lie in P, it is shown that
pr(P) is an increasing function of k for P ={n,n+1,...,2n — 1}, where n>3 is odd. This
completes the classification of all such monotonic P with min(P)#2,3, or 5.
© 2003 Elsevier Inc. All rights reserved.

In [2] the following monotonicity conjecture was made.

Conjecture. If n>=3 is an odd integer, then
1—¢
" (1 -q)

has non-negative power series coefficients.

+4q

The purpose of this note is prove the conjecture.

The conjecture has been established for prime values of n by Andrews [1], and for
n<99, using a computer proof (see [2,4]). The proof given here relies upon an
identity for the rational function of the conjecture, which is our Lemma. A similar
identity was found by Andrews [1] to establish the case when n is prime.

The conjecture states that if n is odd, the number of integer partitions of k with
part sizes n,n+ 1, ...,2n — 1 is an increasing function of k for k>1. A general form
of this monotonicity question for part sizes belonging to a set P was considered in
[2]. A classification of all such P whose minimum value is odd and at least 7 was
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given in [2, Theorem 3.5], assuming the validity of the conjecture. The analogous
statement when the minimum value of P is even and at least 4 is given in [2, Theorem
3.6]. Establishing the conjecture completes this classification problem if the
minimum value of P is not equal to 2,3 or 5.

Recall the notation

(a;q), = (1 = a)(1 —aq)--(1 —aq"™"), [n],=(1-4")/(1-q)

and
ni (449,
k|, (@)

Lemma. If n>2 is an integer, then

n—2 nel. —
l—gq 1 (1 . q4;1276n+3 + Z q(n+n1)(2m+l)w

+q= 2
(@5 9), 1 — gt —on+2 — (4% 9)am
-3 _ _
+ﬂ§: q2(n+m+1)(m+l)(qn l;q 1)m—}—l )
m=0 (qZ; Q)2m+1

Proof of the Conjecture. We may assume the lemma and take n>5. We show that the
individual terms of the lemma inside the parentheses have non-negative coefficients,
and that ¢*” =63 also occurs.

First, we show that the mth term in each of the two sums has non-negative
coefficients. If m = 0 the term in the second sum is ¢*"+V (1 — ¢"~')/(1 — ¢?), which
is non-negative since 7 is odd, while the term in the first sum is ¢".

So we take 1 <m<n — 3 and first consider the second sum. If 2m + 2>n — 1, then

@4 e _ 1

(@ Damer @5 Doz (@5 D)3

which clearly has non-negative coefficients. Next, suppose that 2m +2<n — 1 and
let

<m+ 12T — 1

for some positive integer s. Note that 2°*! <2m +2<n — 1. Then

U N !
(@ Domer g [ 27 ] (@5 @m0 0 (@ @) s

We now appeal to the fact [1, Theorem 2]; [3, Proposition 2.5.1] that

i
i, k],
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has non-negative coefficients if 1<k<n and GCD(n,k) =1, to obtain non-
negativity of the mth term since n is odd.
For the first sum a similar proof applies. For 1<m<n — 2 we have
(@ a D 1
((]2§ q)2m (qn; q>2m+27n ((]2§ q)n7m72

if 2m+1=2n—1,

while for 2m + 1<n — 1 we let 2°<m + 1<25t! to obtain

¢ 5q ) _ 1|1 1
(qZ; q)2m [n]q 2S+1 q(q2A+l+1 ; q)2m+l—25+1 (qn—25+‘+1 ; q)}‘“—m—l

4n?—

Finally, we must show that the term ¢* ~%*3 does appear in the sum. The m =

n — 2 term of the first sum is
42 —10n-+6
(@"39), 2

4n—3

and a ¢ does appear due to the denominator factors of (1 —¢") and
(1 _ q2n73). O

Proof of the Lemma. The lemma is equivalent to

n—1 n—1. —1
L1 5 g @,

(qn; q)n m=0 (q’ q)2m+l
-2 n—1. —
+ ”Z qz(n+l11+l>(m+l) (q T’ 4q l)erl, (1)
m=0 (q7 q)2m+2

because the m = n — 1 term of the first sum and the m = n — 2 term of the second
sum in (1) do sum to

4n? —6n+2
q

(q";q),
If these two terms are subtracted from (1), then elementary manipulations show that

(1) is the lemma.
To prove (1), the g-binomial theorem implies

1 2 (qd59); 2@y
=1+ — g =1+ 71((/!/ _ qn(/+1))
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Continuing we see that for >0,

1 ’ (¢" a7 ")
=1+ q(11+n1)(2m+ 1) ) m
(4" 9), Z (4 9)apn

‘ n—1. —1
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141
(¢" ,‘1)/ 2t— 2q(n+t+1)j.

+ (qnq; qil)wl
J=2143 (a; q)j

and (1) isthe t=n—1case. O

Remark. One may also see that the lemma proves that the coefficients are strictly

positive past ¢>+* for n>7 (see [2]). The m = 1 term of the first sum is

sl T+t + g
q 5

)

which has the required property.
The equivalent form (1) of the Lemma is the x = ¢" special case of

|7 +m—1 2m? X" + — n+m 2m*+m x2mH]
7 n m=0 q (x5 q)rn m=0 2m + 1 (x; q)erl
A generalization of (2) to any positive integer r>2 is
(@9 x> GDenb/aq), oy, (—a)'x"
>ty frod
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Another identity similar to the lemma is

l1—gq 1 n(2n—1)+1 =
=1 _m|l-dT
(@";9), 1 —gr@n=1) m;

h l_q qm(ernfl) ,
m| (4"

- (2)

which would also prove the Conjecture if the individual terms are non-negative.
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Conjecture 1. The power series coefficients of
n l1—¢q
n) W

are non-negative

(1) if n>0is odd and 0<m<n, or
(2) if n>0 is even and 0<m<n with m#2,n — 2.
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