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Nonlinear contact mechanics based on ring-down experiments with quartz
crystal resonators
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We report on the explicit derivation of a nonlinear spring constant and a nonlinear friction
coefficient describing the interaction between an oscillating quartz plate and a tip touching its
surface. The analysis is based on ring-down experiments. After the electrical excitation is turned off,
the decay of the oscillation shows an amplitude-dependent resonance frequency and decay rate. This
‘‘chirp’’ does not occur when the quartz plate is out of contact. The chirp and the nonlinear decay
rate are converted to a nonlinear spring constantk1(x) and a nonlinear friction coefficientj1( ẋ) by
means of a perturbation analysis. ©2003 American Institute of Physics.
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I. INTRODUCTION

In contact mechanics, some often encounters large l
stresses due to the small size of the asperities supporting
contact. The size of the asperities adjusts itself such tha
stress is just below the yield stress. Otherwise, the size o
local contact area grows via plastic deformation. Among
most striking consequences of nonlinear contact mecha
are the laws of sliding friction, where the friction force
largely independent of sliding speed.1 This greatly contrasts
hydrodynamic friction, where the drag force is proportion
to speed according to the Stokes law.

Nonlinear force–displacement relations are also of
encountered when contact is made between a sharp tip—
instance, the tip of an atomic force microscope~AFM!2—and
a substrate. In this case, one has a single-asperity co
which, under severe conditions of cleanliness, may be
lecularly well defined. Experiments of this kind have evolv
to a field of their own termed ‘‘nanotribology.’’3 Piezodrives
providing for nanopositioning are essential components
these instruments. While they are extremely accurate, th
devices do not usually reach high sliding speeds. The s
holds for the surface forces apparatus, where a sin
asperity contact is achieved between two molecularly
mica sheets.4

Recently, quartz-crystal resonators5 have been suggeste
as tools for microtribology.6–8 Quartz resonators allow fo
high speeds and accurate positioning at the same time d
their high resonance frequency. Of course one deals with
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Institute of Physical Chemistry, Technical University Clausthal, Arno
Sommerfeld-Str. 4, 38678 Clausthal-Zellerfeld; electronic m
johannsmann@pc.tu-clausthal.de
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oscillatory rather than a steady motion. In our previous wo
we have monitored the shifts in resonance frequency
bandwidth of the quartz resonator while having sm
spheres approach its surface. The resonances were pr
passively by connecting the electrodes of the resonator to
impedance analyzer and performing frequency sweeps.
conductance spectra were fitted with resonance curves. W
the two bodies are tightly locked, the shifts in frequency a
bandwidth are reasonably well explained in terms of
Hertz model.6 Frequently, a peak in bandwidth is seen wh
the sphere just barely touches the quartz surface. This m
mum is caused by friction.6–8 Implicitly assumed in the
analysis of these experiments is a linear friction force–sp
relation. For a linear friction force–speed relation, the eq
tion of motion corresponds to a damped harmonic oscilla
The fact that the data traces on the impedance analyzer c
be fitted well with resonance curves justifies this analysis
some extent. On the other hand, a linear force–speed rela
is not expected. Possibly, the technique was not sens
enough to detect nonlinear components of the friction for

Here, we report on a refined approach, optimized for
detection of nonlinear force–displacement relations. In or
to have more direct access to the motion of the quartz pl
we have performed ‘‘ring-down’’ experiments~Fig. 1! rather
than frequency sweeps.9 The quartz plate is excited at it
resonance frequency and the excitation is interrupted peri
cally. The free decay of the oscillation is visualized with
oscilloscope. Importantly, frequency and decay rate vary d
ing the decay, that is, they depend on the instantaneous
plitude. The amplitude-dependent frequency reflects a n
linear reaction force.

ss;
© 2003 American Institute of Physics
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FIG. 1. ~A! Resonance curve~B!
freely decaying quartz vibration in the
time domain. As long as linear force–
displacement relations are obeyed, th
two representations contain the sam
information, namely the resonance fre
quency and the decay rate. In the pre
ence of nonlinearities, the direct visu
alization of the movement of the
quartz plate in the ring down provide
a more direct access to the underlyin
forces.
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II. EXPERIMENTAL SETUP

Figure 2 shows a sketch of the experimental setup.
used AT cut quartz-crystal shear resonators~MaxTek Inc.,
CA! with a fundamental frequency of 4 MHz. The cut is su
that the quartz plates are temperature compensated fo
third overtone. The quartz plates were flat and optically p
ished on both sides. On the fundamental at 4 MHz, th
quartz usually have poor energy trapping,10 resulting in a
rather broad resonance. At 12 and 20 MHz, the energy t
ping is sufficient, yielding resonances with a width of le
than 30 Hz. Spheres were approached to the center o
quartz plate using an inertia drive for a coarse appro
~PT30, OWIS, Staufen, Germany! and a piezostage for a fin
approach~P-732.ZC from Physics Instruments, Waldbron
Germany!. The piezostage has active feedback control w
capacitive sensors for distance control. The short-time p
tioning accuracy is below 1 nm. Two types of approach

FIG. 2. Sketch of the experimental setup and data acquisition.
Downloaded 18 Jan 2003 to 140.180.134.111. Redistribution subject to 
e

the
l-
e

p-

he
h

,
h
i-

g

surfaces were employed:~a! ceramic spheres (Si3N4, Elek-
troschmelzwerk Kempten, Germany,r 55 mm! which had
been glued to a rod and~b! glass rods, where one end ha
been molten to form a droplet, retaining the droplet sha
after cooling. The roughness as determined with AFM w
below 1 nm root mean square~rms!.

The setup contains a normal force transducer with
spring constant of 86006300 N/m ~ELG-H20 from EN-
TRAN, France! to measure vertical forces. The spring co
stant is high enough to prevent a jump into contact. The fo
transducer does not at all affect the MHz motion because
its inertia. The MHz motion causes ultrasound to be radia
into the approaching body. Because the contact range i
small, the probability that reflected sound waves reenter
quartz crystal is negligible. Deep in contact, the normal fo
always shows a linear increase of the force with piezotra
~Fig. 3!, which says that the weakest element is the spring
the force transducer~rather than the Hertzian contact b
tween the sphere and the quartz plate which obeys a for
displacement relation11 of F}d3/2).

From the finite roughness of the quartz plate~;3 nm
rms!, one can estimate a typical contact area to be in
range of some square microns. At this point, we do not p
form true nanotribology. Nanosized contacts are achie
when the spheres are replaced by AFM or scanning tunne
microscopy tips.12–14 However, the frequency shifts induce
by AFM tips are too small for the analysis described here
a separate article, we reported on the integration of this se
into a surface force apparatus, where nanoscopic control
the surfaces has indeed been achieved.8

The setup was contained in a closed chamber. The
periments were performed at room temperature in a dry
trogen atmosphere~,6 rH, drying agent: phosphorous pen
oxide!. The temperature typically varied by approximate
0.2 °C during a measurement, resulting in mechanical dr
of about 0.6 nm/min.

III. SAMPLE PREPARATION

Prior to the experiment, the quartz plates were sonoca
in a detergent solution~Hellmanex from Hellma, Mu¨llheim,
Germany! and milliQ-water. Gold electrodes were evap
AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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FIG. 3. Frequency shiftd f and normal force in a gold–
gold contact. At a very small separation, the surfac
show weak attractive forces. During further decrease
the nominal distance, the normal force increases l
early with piezotravel.
ur
s
tia
el

.
n
i

et
th

n
tro
la
th

n
ac

e
t
ro-
-

ble

on-

a,
ap-
ic

at
izer
es

r

rated onto the quartz blanks where adhesion was ens
with a 2 nm thick chromium layer. The top electrode wa
always connected to the ground in order to avoid poten
drops between the gold surface and sphere. The back
trode was keyhole shaped and much thicker~.500 nm gold!
than the top electrode to achieve energy trapping.10 The half-
band-half-width on the third overtone typically was 30 Hz

The entire sample chamber was cleaned with etha
prior to the experiment. In order to check for dust particles
the contact zone, a microscope was integrated into the s
~Fig. 2!. We used a halogen lamp with a narrow bandwid
filter ~Schott DAD8,l5628.265 nm! coupled into a zoom
objective with 40 mm working distance~Opto, Germany! for
top illumination. As the opposing surface, we used the tra
parent glass rod. The space between the upper gold elec
of the quartz resonator and the curved surface of the g
rod acts as an optical cavity leading to Newton’s rings in
microscope image.

Figure 4 shows two micrographs with and without co
tamination by dust particles. In the case of a clean cont
Downloaded 18 Jan 2003 to 140.180.134.111. Redistribution subject to 
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the approach curve@Fig. 4~A!# exhibits a sharp peak in th
bandwidth. Figures 4~C! and 4~D! show an experimen
where the gold electrodes were covered with silica mic
spheres~1.5 mm diameter!. In this case, the peak in band
width is broadened to the extent that it is hardly discerni
at all.

IV. DATA ACQUISITION

Prior to the experiment, all quartzes were inspected c
ventionally with an impedance analyzer~E5100A from Agi-
lent Technologies, Germany!. From the conductance spectr
one can determine whether a given mode is regular in
pearance@cf. Fig. 1~A!# and well separated from anharmon
side bands.

For the ring-down experiments, the quartz was excited
its resonance frequency by a high-frequency synthes
~HP3325A, Agilent! which was connected to the electrod
across an electronic switch~mini circuits, 15542 ZAD-3H!.
The switch ~triggered by a Kontron 8201 pulse generato!
ase and, at
ith
FIG. 4. ~A! Approach curve of a round-molded glass rod onto the upper gold electrode of a quartz resonator. Frequency and bandwidth both incre
the point of contact, the bandwidth exhibits an additional peak. The microscope image~B! shows that the contact zone is free from contamination w
particles. No bandwidth peak is observed~C! when microspheres~1.5 mm diameter! are present in the contact zone~D!.
AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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turned the excitation on and off at a rate between of 20
100 Hz. The pulse generator also triggered a digital osci
scope~LeCroy 9351AM! which stored the output voltage o
the quartz crystal after the excitation had stopped. The os
lation decayed freely as depicted in Fig. 1~B!. Due to the
piezoeffect, the current through the electrodes is proportio
to the average shear strain in the crystal and, therefor
direct measure of the movement of the plate. Note, howe
that the strain is averaged over the entire active area, w
is larger than the typical contact area by a factor of 104.

The data were transferred from the digital oscillosco
to a personal computer and numerically analyzed online.
tually, the online analysis limits the speed of data acquisiti
Each data set was cut into slices. The total number of sl
varied between 10 and 50. A rough initial estimate for t
frequency,f, was obtained from a fast Fourier transform
Estimates for the amplitudeA and the decay rate 2pG were
derived from fitting an exponential to the envelope. An es
mate for the phasew was obtained from fitting a cosine to th
first few oscillations. In this fit, the phase was the only fr
parameter; the frequency and the amplitude were kept fix
With these guess values, a nonlinear Levenberg Marqu
fit15 was performed. The fit function isAi cos(2pfit
1wi)exp(22pGit) where the fit parameters areA, f, w, andG.
The indexi labels the particular slice under consideration.
this point, only the frequenciesf i and the decay rates 2pG i

are of further interest. We subtracted the valuesf 0 and G0

from the freely oscillating quartz and plotted the resulti
d f i anddG i as function of the amplitudeAi ~Fig. 5!.

V. INSTRUMENT PERFORMANCE

The typical contact radius is in the order of 10–40mm.
Larger contact areas can be achieved by increasing the
of the sphere. Since we are interested in small contacts,
is not favorable. In addition, a larger contact are increases
bandwidth of the quartz resonator and decreases the am
tude of motion. A smaller contact area, of the sphere of

FIG. 5. Amplitude dependence of the frequency shiftd f and bandwidth
shift dG over the decay of a free oscillating quartz resonator. For dr
levels above25 dB m, the quartz shows intrinsic nonlinearities.
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piezostage on the other hand, introduces less frequency s
The trade off between these effects results in an optim
radius of curvature of 2–3 mm.

The short-time accuracy of the sphere piezostage is g
erned by the capacitive elements used for feedback. I
about 1 Å. On longer time scales, there is a thermal drift
the order of 1 nm/min, which limits the repeatability of th
approach.

Even in the absence of a mechanical contact the qu
resonator shows intrinsic nonlinearities if the drive power
too high. In Fig. 5, we showd f anddG as a function of the
instantaneous amplitude for different driving powers rang
from 28 to 22 dB m. Below a driving power of25 dB m,
there were no intrinsic nonlinearities. A drive power of25
dB m was, therefore, used in most experiments.

We always display single measurements and did not
erage over different single scans. At high amplitude, the
curacy of d f and dG is better than 1 Hz. With decreasin
amplitude, electronic noise becomes an increasing sourc
error in the nonlinear fit. At low amplitudes, the accuracy
about 2–5 Hz with occasional outliers.

The maximum data acquisition rate is, in principle, lim
ited by the decay rate of the oscillation, which is of the ord
of 50 Hz. However, the experiments have to be analy
online in order to ensure that the driving circuitry alwa
operates at the true resonance frequency. Data analysis
a few seconds. It was necessary to take 200–500 data p
over a vertical range of 1mm in order to catch all interesting
features with sufficient vertical resolution. A typical expe
ment takes about 1 h.

VI. DERIVATION OF NONLINEAR SPRING CONSTANTS
AND FRICTION COEFFICIENTS

As stated in Sec. I, nonlinear terms in the equation
motion are an essential part of solidlike friction. Havin
found clear evidence of nonlinear behavior when detect
an amplitude-dependent frequency and bandwidth, the q
tion arises as to whether these can be converted into
corresponding nonlinear terms in the equation of moti
This can be done by a perturbation analysis. The formal
is based Ref. 16. We start out from an equation of motion
the form

mẍ1~j01j1~ ẋ!!• ẋ1~k01k1~x!!x50, ~1!

wherem, j0 , and k0 are the mass, the friction coefficien
and the spring constant of the freely oscillating quartz,
spectively.m is one half of the mass of the active portion
the crystal, that is,m5AelZq /(4 f 0), with Ael as the electrode
area,Zq58.83106 kg m22 s21 as the acoustic impedance o
AT-cut quartz, andf 0 as the fundamental frequency. The p
rametersj1( ẋ) andk1(x) are a nonlinear friction coefficien
and a nonlinear spring constant~chosen such thatj1(0)50
and k1(0)50). The dot is the derivative with respect t
time, t. Note that Eq.~1! is not the most general form of
weakly nonlinear system because cross terms contai
both x and ẋ are excluded. Further, we assume thatj andk
only depend on the state of the system at that same timj
andk are non-hysteretic.~The entire system may be hyste
etic if the nonlinearilies are too strong.!

e
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It is our goal to explicitly derivej1( ẋ) andk1(x) from
the amplitude-dependent dampingG(A) and frequency shift
d f (A). We use the ‘‘two-timing approximation’’ for weakly
nonlinear oscillators, as described in Ref. 16. This appro
mation is based on the observation that one can identify
different time scales in the problem. We introduce the n
parametersg05j0 /m, g15j1 /m, v0

25k0 /m, and v1
2

5k1 /m and write Eq.~1! as

ẍ1v0
2x1@~g01g1~ ẋ!!• ẋ1v1

2~x!x#50. ~2!

The term in the square brackets can be interpreted as a
turbation of the harmonic oscillator equationẍ1v0

2x50.
The two times scales are described by the dimension
times u5v0t and T5g0t. Introducing the small paramete
«5g0 /v0 and substitutingu for t leads to

x91x1«h~x,x8!50, ~3!

with the primes denoting differentiation with respect tou.
From Eq.~2!, it follows thath(x,x8) is here given by

h~x,x8!5a~x8!x81b~x!x ~4a!

with

a~x8!511g1~v0x8!/g0 and b~x!5v1
2~x!/~g0v0!.

~4b!

Regardless of the specifics ofh(x,x8), the problem at
hand is now its determination from the measured amplitu
dependent dampingG(A) and frequency shiftd f (A). We use
the two-timing approximation for weakly nonlinea
oscillators,16 which is based on a first-order perturbation c
culation in the small parameter«5g0 /v0 . Starting with the
Ansatz

x~u!5A~T!cos~u1f~T!!, ~5!

whereA(T) andf(T) are aslowly varying amplitude and a
slowly varying phase, respectively, one can show that
following time-averaged equations hold:

dA

dT
5

1

2pE0

2p

h~A cos~u!,2A sin~u!!sinu du ~6a!

and

A
df

dT
5

1

2pE0

2p

h~A cos~u!,2A sin~u!!cosu du. ~6b!

For convenience, the derivation from Ref. 16 is reprodu
in Appendix A.

At this point, it is natural to ask under which assum
tions one can invert the system~6!, or in other words, what
can be said abouth(x,x8) given the measurements ofA(T)
andf(T). In particular, this leads to two important questio
about the model assumptions underlying Eq.~1!: are these
assumptions consistent with the measured data@existence of
an inversion of Eq.~6!#, and could there be other assum
tions leading to the same measured data@uniqueness of the
inversion of Eq.~6!#.

Due to the appearance of integrals in Eqs.~6a! and~6b!
A(T) andf(T) are given by weighted averages ofh(x,x8)
5h(x,ẋ/v0) over the ellipsex21 ẋ2/v0

25A2. It follows
that inversion is not possible without further assumptio
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unless one can varyv0 . As this is not possible for the quart
resonators considered here, we proceed with discussing
ther assumptions, which make an inversion possible. Let
ourselves be guided by the structure of Eq.~1!, we write
h(x,x8) as

h~x,x8!5a~x,x8!x81b~x,x8!x, ~7!

wherea(x,x8) and b~x,x8! can be related to the nonlinea
friction coefficient and the nonlinear spring constant, resp
tively, and do not yet exclude the possibility of cross term
containing bothx andx85 ẋ/v0 .

To achieve simplification, we now assume invariance
a(x,x8) andb(x,x8) under change of sign ofx andx8. This
assumption is satisfied by Eq.~1! if j1 and k1 are even
functions ofx and ẋ, respectively. From this, it follows tha
the system~6! decouples in the sense that Eq.~6a! only con-
tains the terma(x,x8)•x8 and Eq. ~6b! only contains
b(x,x8)•x. Because of the invariance under change of si
one can also restrict the upper limit of integration top/2 and
one obtains

2
1

A

dA

dT
5

2

pE0

p/2

a~A cos~u!,2A sin~u!!sin2 u du

~8a!

and

df

dT
5

2

pE0

p/2

b~A cos~u!,2A sin~u!!cos2 u du. ~8b!

The left-hand sides can readily be identified with the dam
ing G(A) and frequency shiftd f (A) via

2pG~A!52
1

A

dA

dt
52

g0

A

dA

dT

and

2pd f ~A!5
df

dt
5g0

df

dT
. ~9!

In doing so, we casually equate functions ofA with functions
of T ~or t!, which however is possible ifA(t) is strictly
decreasing in time.

The main conclusion so far is that assuming Eq.~7! and
invariance under change of sign, the nonlinear friction co
ficient affects only the dampingG(A) and the nonlinear
spring constant affectsonly the frequency shiftd f (A).

As the right-hand sides of Eqs.~8a! and~8b! correspond
to weighted averages ofa(x,x8) andb(x,x8) over x21x82

5A2, there are many differenta(x,x8) andb(x,x8) which
give rise to the sameG(A) andd f (A). In order to obtain a
unique inversion, one therefore needs to impose further
strictions.

One such restriction is given by assuming a veloci
dependent friction coefficient and position-dependent spr
constant as in Eq.~4a! with a(x8) andb(x) even functions
in x8 andx. ~We emphasize that this choice needs to be m
on physical modeling grounds, as it is mathematically rat
arbitrary; we could equally well have chosen a positio
dependent friction coefficient, for example.! It follows that
AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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G~A!5
g0

p2E0

p/2

a~A sinu!sin2 u du

5
g0

4p
1

1

p2E0

p/2

g1~v0A sinu!sin2 u du ~10a!

and

d f ~A!5
g0

p2E0

p/2

b~A sinu!sin2 u du

5
1

p2v0
E

0

p/2

v1
2~A sinu!sin2 u du, ~10b!

where in Eq.~10b!, we have changed the integration variab
from u to u/22u. The integral transforms in Eq.~10a! and
~10b! have identical structure and can be explicitly inverte
as shown in Appendix B. We obtain

g01g1~ ẋ!52pE
0

p/2F3GS ẋ

v0
sinu D

1
ẋ

v0
sinu G8S ẋ

v0
sinu D Gsin3 u du, ~11a!

and

v1
2~x!52pv0E

0

p/2

@3d f ~x sinu!

1x sinu d f 8~x sinu!#sin3 u du, ~11b!

where the primes denote differentiation.
Equations~10! and~11! now provide two different ways

of numerical determination ofg1( ẋ) andv1
2(x) from the set

of data points$(Ai ,G i5G(Ai),d f i5d f (Ai))u i 51, . . . ,N%.
We can either discretize Eqs.~10a! and ~10b! and invert the
resulting matrix numerically, or directly discretize Eqs.~11a!
and ~11b!.

To discretize Eqs.~10a! and ~10b!, we approximate
g1( ẋ) and v1

2(x) by piecewise constant functions, i.e., w
set g1( ẋ)5g1,i for ẋP( ẋi 21 ,ẋi)5(v0Ai 21 ,v0Ai) and
v1

2(x)5v1,i
2 for xP(Ai 21 ,Ai) ~with A050). It follows

that for i 51, . . . ,N:

G i'
g0

4p
1

1

p2 (
j 51

i

g1,jE
arcsin~Aj 21 /Ai !

arcsin~Aj /Ai !

sin2 u du

5
g0

4p
1

1

p2 (
j 51

i

g1,jF2
u

2
A12u21

1

2
arcsinuG

Aj 21 /Ai

Aj /Ai

~12a!

and

d f i'
1

p2v0
(
j 51

i

v1,j
2E

arcsin~Aj 21 /Ai !

arcsin~Aj /Ai !

sin2 u du

5
1

p2v0
(
j 51

i

g1,j
2F2

u

2
A12u21

1

2
arcsinuG

Aj 21 /Ai

Aj /Ai

.

~12b!
Downloaded 18 Jan 2003 to 140.180.134.111. Redistribution subject to 
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As these matrix equations are triangular, this leads to
straightforward calculation ofg1,j andv1,i

2.
To discretize Eqs.~11a! and~11b!, we approximateG(A)

and d f (A) by piecewise linear functions. SettingG(A)
5G i 211(G i2G i 21 )/(Ai2Ai 21)(A2Ai 21) for A
P(Ai 21 ,Ai) ~with A050), we obtain

g01g1,i'2p(
j 51

i E
arcsin~Aj 21 /Ai !

arcsin~Aj /Ai ! F3
G j 21Aj2G jAj 21

Aj2Aj 21

14Ai sinu
G j2G j 21

Aj2Aj 21
Gsin3 u du,

52p(
j 51

i F2
G j 21Aj2G jAj 21

Aj2Aj 21
~21u2!A12u2

1Ai

G j2G j 21

Aj2Aj 21
S 3

2
arcsinu

2u
312u2

2
A12u2D G

Aj 21 /Ai

Aj /Ai

. ~13a!

Proceedingmutatis mutandumwith d f (A), we obtain

v1,i
2'2pv0(

j 51

i F2
d f j 21Aj2d f jAj 21

Aj2Aj 21
~21u2!A12u2

1Ai

d f j2d f j 21

Aj2Aj 21
S 3

2
arcsinu

2u
312u2

2
A12u2D G

Aj 21 /Ai

Aj /Ai

. ~13b!

We caution here that the assumption of piecewise c
stant or linear functional behavior is a simplification. O
can naturally refine the numerical calculation by usi
smooth splines, a fitted curve through the data points, o
interpolation polynomial, depending on the quantity a
quality of the measured data.

Applying Eqs. ~11! and ~13! to the same dataset, on
obtains very similar results. The differences are less than
In Figs. 6 and 7, we used Eqs.~12a! and ~12b!.

VII. RESULTS

Depending on the type of surfaces, the resonance par
eters as function of piezotravel show different features. Up
contact, the resonance frequency and bandwidth incre
For gold–gold contacts, there is a peak in the bandwi
right at contact. In Fig. 6, we plotd f i anddG i as a function
of the instantaneous amplitudeAi at three characteristic
points of the approach curve which are ‘‘out of contact’’, ‘‘o
top of the bandwidth peak’’, and ‘‘deep in contact’’. By dee
in contact we mean a nominal vertical position about 10
200 nm lower than the initial contact. The first few nan
meters of decrease in nominal distance mostly induce pla
deformation of asperities in the contact zone.8 A further de-
crease of the nominal distance leads to an increase of
normal load and deforms the weakest vertical spring whic
either the quartz plate or the spring of the force transdu
Due to the increase of the normal load, the sphere elastic
AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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FIG. 6. Frequency shiftd f and bandwidth shiftdG over 40 sections of a decaying quartz oscillation in a gold–gold contact. Three data sets at di
vertical positions are plotted as function of the electrical amplitude~top!. Performing the perturbation analysis one obtains the nonlinear spring constak1

and the elastic force as function of the lateral displacement and the nonlinear friction coefficientj1 and the friction force as a function of lateral speed.
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deforms which can be well described with the Johnso
Kendall–Roberts~JKR! contact mechanics model.17

Deep in contactd f i and dG i approach an amplitude
independent behavior. Figures 6~C! and 6~D! show the re-
sults of the perturbation analysis, which are the nonlin
spring constantk1 and the nonlinear friction coefficientj1 as
a function of displacement and speed, respectively. Note
there are two sources for an increase ind f anddG: Friction
processed in the contact zone and the emission of so
waves.6,8,20 The latter has no amplitude dependence a
therefore, produces a constant offset. The data do not allo
straightforward separation of effects originating from frictio
processes in the contact zone and from sound waves. In
ciple, such a separation might be feasible based on the v
tion of both effects with vertical pressure.17 In particular, at
the position of the bandwidth peak@Fig. 4~A!# one can as-
sume that most of the dissipation is caused by friction. O
deep in contactk and j are significantly influenced by th
emission of sound waves. However, this separation requ
additional assumptions. At this point, we donot separate the
two effects:k andj contain the entire plate–sphere intera
tion. In Figs. 6~E! and 6~F!, we have finally converted the
data to a force–displacement relation and a force–spee
lation. The maximum displacements and speeds are 20
and 1.5 m/s, respectively.

Out of contact both resonance frequency and bandw
are constant. At the position of the bandwidth peak, the re
Downloaded 18 Jan 2003 to 140.180.134.111. Redistribution subject to 
–

r

at

nd
,
a

in-
ia-

y

es
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re-
m

th
o-

nance frequency shows a decrease with increasing ampli
resulting in asublineardependence of the elastic force o
displacement. The sublinear force–displacement rela
suggests the occurrence ofmicroslip in the contact zone
which plays an important role in rolling friction.18 For gold–
gold contacts, the bandwidth mostly appears to be indep
dent of the instantaneous amplitude over the entire
ezotravel, that is, the friction force depends linearly on
lateral speed. The bandwidth increases with increasing c
tact area. The linear dependence of the friction force
speed is not in agreement with the speed-independent law
solidlike friction. Presumably, the high speed of motion r
sults in friction mechanisms, where local minima of the i
teraction energy are of no consequence. Such mechan
are sometimes termed ‘‘phonon drag’’.19 Only at small lateral
speeds do we find a deviation from linearity, which we d
cuss in detail in a separate publication.20–22

A contact between a silicon nitride sphere and the b
quartz crystal shows a much different behavior. There is
most no amplitude dependence of eitherd f i or dG i , result-
ing in a linear force–displacement relation and a line
force–speed relation~Fig. 7!. Both elastic force and friction
force are smaller than for the gold–gold contact. No m
croslip is observed for the contact between the bare qu
surface and a ceramic sphere. Contacts between hard
faces exhibit linear elastic behavior and less friction.
AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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FIG. 7. Same as Fig. 6 for a contact between a bare quartz surface and a Si3N4 tip. The elastic force, in this case, is linear in displacement.
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APPENDIX A: DERIVATION OF THE TIME-AVERAGED
EQUATIONS

Given the perturbed harmonic oscillator equation

x91x1«h~x,x8!50, ~A1!

with the primes denoting differentiation with respect to t
variableu, we derive here that for small« in the two-timing
approximation with T5«u, the approximate solution is
given by

x~u!5A~T!cos~u1f~T!!, ~A2!

where

dA

dT
5

1

2pE0

2p

h~A cos~u!,2A sin~u!!sinu du, ~A3a!

and

A
df

dT
5

1

2pE0

2p

h~A cos~u!,2A sin~u!!cosu du.

~A3b!

To show this, we insert the Ansatz of Eq.~A2! into Eq.
~A1!. Terms of orderO(«0) vanish. Demanding that terms o
orderO(«1) vanish, as well, leads to
Downloaded 18 Jan 2003 to 140.180.134.111. Redistribution subject to 
-

2@A8~T!sin~u1f~T!!1A~T!f8~T!cos~u1f~T!!#

5h~A~T!cos~u1f~T!!!,2A~T!sin~u1f~T!!.

~A4!

The requirement that terms linear in« vanish is characteristic
of the two-timing approximation. Written thus, the functio
h(x,x8) is now a periodic function oft5u1f(T), which
we can write as Fourier series

h~t!5 (
k50

`

ak coskt1 (
k51

`

bk sinkt, ~A5!

where the Fourier coefficients are given by

a05
1

2pE0

2p

h~t!dt,

ak5
1

pE0

2p

h~t!coskt dt, k>1,

bk5
1

pE0

2p

h~t!sinkt dt, k>1. ~A6!

Hence, Eq.~A4! becomes

2@A8~T!sint1A~T!f8~T!cost#

5 (
k50

`

ak coskt1 (
k51

`

bk sinkt. ~A7!
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Requiring the absence of resonant terms results in 2A8(T)
5b1 and 2A(T)f8(T)5a1 , which directly leads to Eq
~A3!.

APPENDIX B: INVERSION OF THE INTEGRAL
EQUATION

We show here that the inverse of

a~u!5F~a!~u!5
2

pE0

p/2

a~u sinu!sin2 u du ~B1!

is given as

a~v !5G~a!~v !

5E
0

p/2

@3a~v sinu!1v sinua8

3~v sinu!#sin2 u du ~B2!

For this, we note first thatF maps powers inv to powers in
u, as

F~vn!~u!5un
2

pE0

p/2

sinn12 u du5Cnun. ~B3!

It follows that the inverse transform must satisfy

G~un!~v !5vn/Cn . ~B4!

Using the integral representation of the Beta function21,22

B~x,y!52E
0

p/2

sin2x21 u cos2y21 u du

for x.0 and y.0, ~B5!

we can identifyCn5B(m13/2,1/2)/p and obtain 1/Cn using
B(x,y)5G(x)G(y)/G(x1y) as

1/Cn5
n13

2
BS n14

2
,
1

2D5~n13!E
0

p/2

sinn13 u du.

~B6!
Downloaded 18 Jan 2003 to 140.180.134.111. Redistribution subject to 
From this, one obtains Eq.~B2! from generating function
techniques,22 using (n>0(n13)anxn5@x(d/dx)
13#(n>0anxn. The formal proof follows now by verifying
that a(v)5G+F(a)(v) holds generally.
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