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Abstract
Motivated by recent claims of a proof that the length scale exponent for the end-
to-end distance scaling of self-avoiding walks is precisely 7/12 = 0.5833 . . .,
we present results of large-scale simulations of self-avoiding walks and self-
avoiding trails with repulsive contact interactions on the simple cubic lattice.
We find no evidence to support this claim; our estimate ν = 0.5874(2) is in
accord with the best previous results from simulations.

PACS numbers: 05.50.+q, 05.40.Fb, 05.70.Fh, 61.41.+e

The lattice model of self-avoiding walks (SAW) has long been studied by probabilists and
physicists alike. It serves as a model for long-chain polymers in physics [1], is related to
critical phenomena in statistical physics [2], and is intriguing from a mathematical point of
view due to its non-Markovian nature [3].

While there have been exact results regarding its critical behaviour in dimensions other
than three, until recently there has not even been a reasonable conjecture for the exact value
of the length scale exponent ν in three dimensions.

Due to its physical importance, there have been many attempts to estimate this value by
a variety of theoretical and simulational work. An recent overview of the simulational results
is given in [2]. The most precise value to date from simulations is ν = 0.58758(7) [4].

Quite surprisingly, in two recent preprints [5, 6] there has been the announcement of a
proof that ν = 7/12 = 0.58333 . . . in three dimensions, which obviously is at odds with the
values obtained by any recent simulation.

Clearly, estimates from simulational data suffer from finite-size corrections, but the role of
these corrections has also received good attention [7]. It is well known that finite-size estimates
of ν from SAW decrease as the walk length increases, so that it may be advantageous to consider
variants of the model in which the finite-size corrections are different. One such model, in
which the finite-size estimates of ν increase, is given by self-avoiding trails (SAT). This model
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is fairly well established to be in the same universality class as SAW [8,9]. In two dimensions,
different corrections to scaling related to an irrelevant scaling variable have been observed [10].

An interpolation between the models is possible by assigning to each trail contact a
repulsive interaction with Boltzmann weight ω. Thus, we can study SAW and SAT in a
unified picture. Moreover, by tuning the parameter ω we can attempt to minimize corrections
to scaling and improve our exponent estimates.

We present here data of just such a simulation. We have simulated interacting self-avoiding
trails on the simple cubic lattice using the pruned-enriched Rosenbluth method (PERM) [11]
in the implementation described in [12]. We have generated up to 109 samples of length
N = 1024 and 108 samples of length N = 16 384. While not having completely independent
samples, we have estimated the effect of the dependence and so are able to give error estimates
for our values.

The interacting SAT model on the simple cubic lattice is defined in the following way.
The lattice has coordination number 6 and we consider configurations ϕN of trails, or bond-
avoiding walks, of length N (bonds) starting from a fixed origin. Let mk (k = 1, . . . , 3) be the
number of sites of the lattice that have been visited k times by the trail so that

∑
k mk = N +1.

The partition function of a very general interacting trail model is

ZN(ω2, ω3) =
∑

ϕN

ω
m2
2 ω

m3
3 (1)

where ωk is the Boltzmann weight associated with k-visited sites. The canonical model is one
where every segment of the trail at some contact site interacts with every other segment at that
site, so that

ωk = ω(k

2) for k = 2, 3 (2)

with ω ≡ ω2. This implies that in our specific case

ω2 = ω ω3 = ω3. (3)

Changing ω from zero to one, we can interpolate between SAW and SAT.
In our simulations we calculated two measures of the polymer’s average size. Firstly,

specifying a trail by the sequence of position vectors r0, r1, . . . , rN the average mean-square
end-to-end distance is

〈R2
e 〉N = 〈(rN − r0) · (rN − r0)〉. (4)

The mean-square distance of a site occupied by the trail to the endpoint, r0, is given by

〈R2
m〉N = 1

N + 1

N∑

i=0

〈(ri − r0) · (ri − r0)〉. (5)

Generally one expects that

R2
N ∼ a(ω) N2ν as N → ∞ (6)

with ω-dependent amplitude a(ω). To estimate the exponent ν we use finite-size estimators
νe,N and νm,N defined as

νe,N = 1

2
log2

Re,N

Re,N/2
and νm,N = 1

2
log2

Rm,N

Rm,N/2
. (7)

Our results for the finite-size estimates of the end-to-end distance scaling are shown in
figure 1 and the for the corresponding mean-distance scaling are shown in figure 2. We see
that while finite-size estimates of ν for SAT are well below 7/12 for shorter trails, they cross
this value around trail lengths of N = 4000 and are finally well above it and in correspondence
with finite-size estimates of ν for SAW.
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Figure 1. Finite-size estimates νe,N of the length scale exponent for SAW (upper values) and SAT
(lower values) along with the conjectured value 7/12.
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Figure 2. Finite-size estimates νm,N of the length scale exponent for SAW (upper values) and SAT
(lower values) along with the conjectured value 7/12.

Given that the finite-size corrections have different signs for SAW and SAT, we have tried
to obtain a value of ω where the leading correction approximately vanishes in order to obtain
a better estimate from high-precision runs at shorter length. This happens around different
values of ω for νe,N and νm,N . As the error bars for νm,N are slightly smaller, we have focused
on the latter. For ω = 0.53 we find indeed that the estimators νm,N are virtually non-changing,
as shown in igure 3, where also results for ω = 0.4 and ω = 0.6 is shown for comparison. We
estimate from this that ν = 0.5874(2).

In summary, we have investigated scaling properties of interacting SAT in the repulsive
regime, provided evidence that SAW and SAT are indeed in the same universality class, and
obtained the estimate ν = 0.5874(2). We find no indication of the conjectured value 7/12.
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Figure 3. Finite-size estimates νm,N of the length scale exponent for interacting SAT at ω = 0.40,
ω = 0.53, and ω = 0.60 from top to bottom. The horizontal lines indicate our estimate
ν = 0.5874(2).
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