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Abstract
The physical phenomenon of intermittency can be investigated via the spectral
analysis of a transfer operator associated with the dynamics of an interval map
with indifferent fixed point. For an example of such an intermittent map, the
Farey map, we give a simple proof that the transfer operator is self-adjoint
on a suitably defined Hilbert space and characterize its spectrum. Using a
suitable first-return map, we present a highly efficient numerical method for
the determination of all the eigenvalues, including those embedded in the
continuous spectrum.

PACS numbers: 02.30.Sa, 02.30.Tb, 02.70.Hm, 05.10.−a, 05.45.Ac

1. Introduction

Intermittency, one of the main routes from order to chaos [1], is characterized by the loss
of stability of a fixed point of the dynamics. The dynamics directly at the transition are
determined by a marginally unstable fixed point near which trajectories are slowed down
severely, leading to the intermittency characteristic interplay of chaotic and regular dynamics.
The simplest type of intermittency, known as type I, is illustrated by a tangent bifurcation in
a one-dimensional map [2]. Such a behaviour can easily be modelled by a map f of the unit
interval [0, 1] which is uniformly expanding everywhere except near an indifferent fixed point
at zero, where f (x) ∼ x + cxr+1 as x → 0 with exponent 1 + r > 1. A typical example is the
Manneville map f (x) = x + x1+r mod 1 [3].

There have been many theoretical approaches to the description of intermittency such
as renormalization group analysis [4]. An approach suited to rigorous treatment is given by
the thermodynamic formalism [5] and leads to the spectral analysis of transfer operators. In
contrast with uniformly expanding maps, however, the indifferent fixed point induces non-
Gibbsian equilibrium states or, more precisely, weakly Gibbsian states [6]. Therefore, deeper
understanding based on rigorous analysis has been hard to come by. Some progress was made
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by studying a suitably defined piecewise linear interval map [7], albeit at the cost of simplifying
the dynamics by severely reducing correlations. In [8, 9] we argued the disappearance of a
spectral gap for the Perron–Frobenius operator, implying loss of an exponential decay of
correlations for the dynamics. The decay of correlations has later been shown to follow a
power law; in the analytic case (r = 1) a numerical estimate of t−2 [10] has been complemented
by a rigorous upper bound of t−2 log t , obtained by random perturbation techniques [11]. Only
very recently has the Perron–Frobenius operator for a particular intermittent map, the Farey
map, been shown to be self-adjoint on an appropriate Hilbert space [12] with continuous
spectrum on the interval [0, 1]. There is also numerical work available describing exactly how
the continuous spectrum emerges when approaching the intermittency transition [13].

Much less is known about the spectrum of the Ruelle–Perron–Frobenius (RPF) operator,
which generalizes the Perron–Frobenius operator within the framework of the thermodynamic
formalism. In [8, 9] we showed that for a general class of intermittent maps this operator
is quasi-compact with essential spectral radius equal to 1, and that the leading eigenvalue
undergoes a phase transition characteristic of intermittent dynamics. Only recently was it
shown that for a class of piecewise analytic maps the continuous spectrum is restricted to the
interval [0, 1] on an appropriate function space [14]. The present work gives for the first time
a complete spectral analysis of the RPF operator for an intermittent map, the Farey map.

A promising conceptual approach to the study of intermittency is the study of a first-return
map (or induced map) with respect to a domain of phase space away from the intermittent
region. We accomplished this in [8, 9] by introducing a suitably modified transfer operator
for the induced map and related its spectral properties to those of the transfer operator of the
intermittent system. This approach has since been extended to the study of other quantities
such as regularized Fredholm determinants and dynamical zeta functions [12, 15–17] and
multi-dimensional systems [18]. One essential idea employed is that one can understand a
general transfer operator P of an intermittent map by first considering its ‘intermittent part’
P0 and then viewing the ‘chaotic remainder’ P1 = 1 −P as a perturbation. In this way, many
of the results presented here can, in principle, be extended to more general intermittent maps,
although we shall focus our attention on the Farey map of the interval [0, 1] onto itself, which
is defined as

f (x) =
{

f0(x) = x/(1 − x) if 0 � x � 1
2

f1(x) = (1 − x)/x if 1
2 < x � 1.

(1)

We denote the inverses by F0(x) = f0
−1(x) = x/(1 + x) and F1(x) = f1

−1(x) = 1/(1 + x).
The advantage of this map is that each branch can be analytically extended to the

whole Riemann sphere and that higher iterates of the left branch can be given exactly,
f0

n(x) = x/(1 − nx), a fact that is intimately connected to the global conjugacy of f0(x)

to the shift x → x − 1.1 The thermodynamic formalism suggests the study of the RPF
operator P associated with a map f , which is given by Pϕ(x) = ∑

f (y)=x |f ′(y)|−βϕ(y)

with β ∈ R. For the Farey map, the operator consists of two terms that can be readily
identified with the ‘intermittent’ and ‘chaotic’ parts. We thus write P = P0 + P1 where
Piϕ(x) = |Fi

′(x)|βϕ(Fi(x)) and β ∈ R, i.e.

Pϕ(x) = 1

(1 + x)2β

[
ϕ

( x

1 + x

)
+ ϕ

(
1

1 + x

)]
. (2)

Despite the apparent simplicity of this operator, a precise investigation of its properties has
proved to be surprisingly difficult. In this paper, we present abstract arguments and numerical
1 For general parabolic fixed points such a conjugacy can always be found locally, a fact that is used in the analysis
of [14].
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calculations to describe its spectral properties. In particular, we prove that P is self-adjoint
on an explicitly given Hilbert space; on this Hilbert space, P has continuous spectrum on the
unit interval. We then describe its spectral properties in more detail and proceed to determine
the eigenvalues with a highly efficient numerical method based on the first-return map.

2. Spectral properties of the transfer operator

As indicated above, one can understand the spectral properties of P by first studying the
operator P0 and then viewing P1 as a perturbation.

Under formal conjugacy with Cϕ(x) = ϕ(f1(x)), the operator P0 transforms to the shift
operator Sϕ(x) = ϕ(1 + x). This operator is now independent of β, and on a suitably
defined function space has continuous spectrum σ(S) = σc(S) = [0, 1]. This can be
understood by considering functions ϕ which are obtained by a generalized Laplace transform
ϕ(x) = Lψ(x) = ∫ ∞

0 e−sxψ(s) dµ(s) of square integrable functions ψ ∈ L2(R+, µ). (This
automatically ensures analyticity of ϕ(x) in a suitable domain.) The action of the operator S
is then conjugate to multiplication by e−s on L2(R+, µ). The spectrum of this multiplication
operator is continuous and given by the closure of the range of the multiplying function. Using
this line of reasoning, one can prove that P0 is a bounded self-adjoint operator on the Hilbert
space CLL2(R+, µ) with spectrum σ(P0) = σc(P0) = [0, 1].

To study the spectrum of P , we consider the identity

1 − zP = (1 − zP0)(1 − Mz) (3)

with Mz = (1 − zP0)
−1zP1 being an operator-valued analytic function for z ∈ C − [1,∞).2

Expanding formally in powers of z, we find that Mz = ∑∞
n=1 znP0

n−1P1 is a transfer operator
associated with the induced map g on

[
1
2 , 1

]
with the branches gn = f0

n−1f1 for n ∈ N, where
the return time n has been encoded via a multiplicative weight factor zn.

To determine the spectral properties of the operator Mz we note that the induced map g

on
[

1
2 , 1

]
is expanding. It follows that for |z| < 1 the operator Mz acting on a Frechet space

of functions analytic in an open connected domain � containing the interval
[

1
2 , 1

]
is nuclear

of order zero. Therefore, the analytic continuation of Mz is also nuclear of order zero (which
can be seen via the analytic continuation of the associated Fredholm determinants, see [14]).

The identity (3) immediately implies that λ = z−1 is an eigenvalue ofP if and only if 1 is an
eigenvalue ofMz. The respective eigenspaces are identical, so that the geometric multiplicities
of the respective eigenvalues z−1 and 1 are the same. Using the analytic continuation of Mz,
general analyticity arguments [19] and the nuclearity of Mz imply that the non-zero point
spectrum of P consists of isolated eigenvalues with finite multiplicity, with 0 and 1 as the only
possible accumulation points. (Nuclearity of Mz and analytic dependence of Mz on z imply
that there are at most finitely many solutions to 1 ∈ σ(Mz) in a small neighbourhood of z by
standard perturbation theory results.) Moreover, bounds on Mz for |z| < 1 imply that there
are only finitely many eigenvalues with modulus greater than 1. Along the cut z ∈ (1,∞)

we see that if the analytic continuation of Mz does not have an eigenvalue 1 then 1 − Mz

is invertible, implying that σc(P) = σc(P0) = [0, 1], albeit with the possibility of embedded
eigenvalues. Similar arguments can be found in detail for a rather general setting in [14]. We
further know that zero is an eigenvalue of infinite multiplicity, as Pϕ = 0 for any ϕ satisfying
ϕ(x) = −ϕ(1 − x).

We now show thatP is in fact self-adjoint on a suitably defined Hilbert space for which we
can give a representation of P which is explicitly symmetric. For this, we consider the transfer
2 In [12] a related identity has been used, leading to the study of M′

z = P1(1 − zP0)
−1. Obviously, Mz and M′

z are
related by conjugacy.
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operator Q for a general Möbius transformation h(x) = (ax + b)/(cx + d) with a, b, c, d ∈ R

and σ = ad − bc = ±1. We have Qϕ(x) = (a − cx)−2βϕ
(

dx−b
a−cx

)
and under a generalized

Laplace transform,

ϕ(x) = Lψ(x) =
∫ ∞

0
e−sxψ(s) dµ(s) (4)

with µ being the density of a measure on R+,Q is conjugated to an integral operator
Kψ(s) = ∫ ∞

0 K(s, t)ψ(t) dµ(t) on L2(R+, µ). Using the Schläfli integral representation
for Bessel functions [20],

1

2π i

∫
C

exp

[
x

2

(
z +

σ

z

)]
z−ν−1 dz =

{
Iν(x) σ = 1

Jν(x) σ = −1
(5)

where C is a Hankel contour in the z-plane encircling counterclockwise a cut along the negative
real axis; one can calculate for c �= 0 directly

µ(s)K(s, t) = 1

c
exp

[
as + td

c

] ( s

t

)β− 1
2
Z2β−1

(
2

c

√
st

)
(6)

where Zν(u) = Iν(u) for σ = 1 and Zν(u) = Jν(u) for σ = −1, respectively. Demanding
that the kernel be symmetric determines the appropriate measure. In this way, we obtain
for Q = P1 the measure µ(s) = e−ss2β−1 and the kernel K(s, t) = (st)

1
2 −βJ2β−1(2

√
st).

Combining this with the discussion of the operator P0, we can define a function space on
which P is self-adjoint by using the obvious self-adjointness of the bounded operator S acting
on L2(R+, µ), which is explicitly given as

Sψ(s) = e−sψ(s) +
∫ ∞

0
K(s, t)ψ(t) dµ(t) (7)

with µ(s) = e−ss2β−1 and K(s, t) = (st)
1
2 −βJ2β−1(2

√
st). It follows that P is self-adjoint on

the Hilbert space{
ϕ(x) = x−2β

∫ ∞

0
e−s 1−x

x ψ(s) dµ(s) : ψ ∈ L2(R+, µ)

}
(8)

with µ(s) = e−s s2β−1 and appropriate induced inner product. Mz also leaves this Hilbert
space invariant, and via a similar argument one can show self-adjointness for real z < 1.

The case β = 1 has already been treated in [12], although with a slightly different choice
of measure, motivated by the Hilbert space approach for the continued fraction transform
[21, 22]. There it was shown that for µ̃(s) = s/(es − 1) the only non-zero eigenvalue of
P is 1 with eigenfunction ϕ(x) = 1/x. The measure µ(s) = s e−s considered here has the
advantage that the self-adjointness is explicitly evident from (7). However, ϕ(x) = 1/x is
not an element of the Hilbert space considered here, as it corresponds to ψ(s) = 1/s which
has infinite norm in L2(R+, µ). We find this quite natural, as the usual interpretation of this
eigenfunction is as an absolutely continuous invariant density with respect to the Lebesgue
measure on the interval [0, 1], which in this case is non-normalizable.

3. Numerical analysis of the spectrum

As shown above, Mz is an operator-valued analytic function with nuclear spectrum. By
standard analytic perturbation theory [19], the eigenvalues of Mz are (branches of) analytic
functions in zwith only algebraic singularities. This therefore provides a possibility to compute
the eigenvalues of P numerically; choosing an eigenvalue branch λn(z), one simply needs to
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Figure 1. The seven leading eigenvalues of Mz for β = 0.5. The analytic continuation of the
eigenvalue branches beyond z = 1 is complex valued and has a jump along the cut [1,∞). Only
the largest eigenvalue branch intersects λ = 1.

solve λn(z) = 1 to obtain an eigenvalue λ = 1/z of P . The essential advantage over working
directly with P is that we have removed the continuous spectrum which presents enormous
difficulties for a direct numerical analysis.

As the operator Mz acts on a Hilbert space of analytic functions, it is reasonable to
consider the action of Mz on coefficients of power series. From the explicit expansion
Mzϕ(x) = ∑∞

n=1 zn(1 + nx)−2βϕ(1 − x/(1 + nx)) we obtain by expanding ϕ(x) in a power
series around x = 1 matrix elements Mn,m

z in terms of the polylogarithm Lis(z) = ∑∞
n=1

zn

ns as

Mn,m
z =

n∑
k=0

(−1)n−k

(−2β − m

k

)(−2β − k

n − k

) (
1

z
Li2β+m+k(z) − 1

)
. (9)

We then approximateMz with truncated operators M(N)
z acting on a subspace of polynomials

of at most degree N. It turns out that this approximation works very well and that one obtains
the values of the leading eigenvalues to a high accuracy. In this setting, this idea goes back to
[15]. In [23], where a related operator was studied, the leading eigenvalues have been obtained
in this way with accuracy of 10−25.3

We begin the description of the results of our analysis by briefly considering the special
cases β = −N/2 with N ∈ N0. For these values of β we find that polynomials of at most degree
N give an (N +1)-dimensional invariant subspace for Mz and P . The corresponding truncated
matrix M(N)

z has entries that are rational functions in z from which one can easily calculate
N + 1 eigenvalues exactly. Numerically, we observe that eigenfunctions of Mz which are not
in this invariant subspace have eigenvalues that are strictly smaller in modulus. It is especially
noteworthy that these leading eigenvalues can be analytically continued across z = 1, which
allows for eigenvalues of the Farey operatorP embedded in the continuous spectrum. However,
a more detailed numerical analysis indicates that this analytic continuation is possible only for
β = −N/2, and a small deviation from these values leads to eigenvalue branches λn(z) whose
analytic extension generically shows a non-vanishing jump in the imaginary part along the cut
[1,∞). One can understand this heuristically by considering the analytic extension of Lis(z),
which along the cut [1,∞) jumps at x > 1 by an amount 2π i logs−1(x)/	(s). For eigenvalues
of P embedded in the continuous spectrum to exist, we need to solve 1 = λn(z), which is
not possible if λn(z) generically has a non-zero imaginary part. Therefore we conjecture that
3 As in [23], we find that we can improve convergence by expanding around a different point. However, this leads
to the introduction of spurious eigenvalues that make the analysis more difficult. By choosing an expansion around
x = 1 we avoid spurious eigenvalues and find that, overall, the spectrum is better approximated.
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Figure 2. The seven leading eigenvalues of Mz for β = −3. Here, the eigenvalue branches can
be continued beyond z = 1 and intersect λ = 1 at z = −2.971, z = −0.168, z = 0.038 and
z = 13.101, the last value being outside the range of this plot.
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Figure 3. The spectrum of P as a function of β, showing two non-zero eigenvalue branches and
isolated eigenvalues at β = −1 and β = −2 which are embedded in the continuous spectrum
[0, 1].

λn(z) = 1 for real z > 1 can only be satisfied when β = −N/2, and that consequently no
eigenvalues of P embedded in the continuous spectrum exist for other values of β. Thus, in
what follows we shall mainly be concerned with real z � 1.

For β > 1 we find that all the eigenvalues of Mz are strictly less than 1 in modulus, so
that P has continuous spectrum [0, 1] and no non-zero eigenvalues at all. As β decreases the
eigenvalues of Mz increase in value. For β > 1, we find that the leading eigenvalue branch of
Mz intersects λ = 1, leading to the emergence of a simple leading eigenvalue of P for β < 1.4

The z-dependence of the spectrum of Mz is shown in figure 1 for β = 1
2 . Only the largest

eigenvalue intersects λ = 1, implying that P has only one non-zero eigenvalue. At β = − 3
2

a second eigenvalue branch begins to intersect λ = 1 at large negative z, implying that P has
two non-zero eigenvalues. The second eigenvalue of P is negative and becomes in modulus
equal to the essential spectral radius at β = −2, and therefore determines for β < −2 the
spectral gap that controls the decay of correlations. Figure 2 illustrates the leading spectrum
of Mz for β = −3. At this special value of β we can extend the eigenvalue branches beyond
z = 1 and find a total of four eigenvalue branches that cross λ = 1. One of these crossings
is at z = 13.101, corresponding to an eigenvalue of P embedded in the continuous spectrum.

4 In [8, 9] it was proved that this leading eigenvalue decreases to 1 like −(1 − β)/ log(1 − β) as β approaches 1
from below.
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Proceeding in this fashion, we can numerically determine the complete spectrum of P for
arbitrary real β. Figure 3 shows the spectrum obtained in this way for −2.5 � β � 1.5.

In summary, we have abstractly characterized the spectrum of the transfer operator for
the Farey map and presented a highly efficient method for the explicit computation of its
eigenvalues. Of special interest is the interplay of sub-dominant eigenvalues and the continuous
spectrum. Both the rigorous arguments and numerical methods are in principle generalizable
to more complicated systems with intermittency. However, a minimal requirement for the
application of the methods presented here to prove self-adjointness properties is naturally that
the branches of the map be real-analytic. If one considers changes in the class of maps, e.g.
when considering a piecewise linear version of the Farey map, the whole structure of the
sub-dominant spectrum changes [15]. This, however, is hardly surprising, as a linearization
procedure suppresses correlations present in the original dynamics. In order to apply the
numerical method to other systems, one needs good control of the transfer operator Mz for
the induced system. This is the case if one has explicit formulae for higher iterates of the map,
such as for the Farey map considered here.

References

[1] Schuster H G 1995 Deterministic Chaos, An Introduction (Weinheim: Physik Verlag)
[2] Poemau Y and Manneville P 1980 Commun. Math. Phys. 74 189
[3] Manneville P 1980 J. Physique 41 1235
[4] Hu B and Rudnick J 1982 Phys. Rev. Lett. 48 1645
[5] Ruelle D 1978 Thermodynamic Formalism (Reading, MA: Addison-Wesley)
[6] Maes C, Redig F, Takens F, van Moffaert A and Verbitsky E 2000 Nonlinearity 13 1681
[7] Gaspard P and Wang X J 1988 Proc. Natl Acad. Sci. USA 85 4591
[8] Prellberg T 1991 PhD Thesis Virginia Tech
[9] Prellberg T and Slawny J 1992 J. Stat. Phys. 66 503

[10] Lambert A, Siboni S and Vaienti S 1993 J. Stat. Phys. 72 1305
[11] Liverani C, Saussol B and Vaienti S 1999 Ergodic Theory Dyn. Syst. 19 671
[12] Isola S 2002 Nonlinearity 15 1521
[13] Kaufmann Z, Lustfeld H and Bene J 1996 Phys. Rev. E 53 1416
[14] Rugh H H 1999 Invent. Math. 135 1
[15] Dodds P 1993 Honour’s Thesis The University of Melbourne
[16] Dodds P 1993 Master’s Thesis The University of Melbourne
[17] Isola S 1995 Preprint MPARC95265
[18] Pollicott M and Yuri M 2001 Nonlinearity 14 1265
[19] Kato T 1980 Perturbation Theory for Linear Operators (Berlin: Springer)
[20] Arfken G B and Weber H J 2001 Mathematical Methods for Physicists (New York: Harcourt/Academic)
[21] Mayer D H and Roepstorff G 1987 J. Stat. Phys. 47 149
[22] Mayer D H 1990 Commun. Math. Phys. 130 311
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