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Abstract

We have simulated four-dimensional interacting self-avoiding trails (ISAT) on the hypercubic
lattice with standard interactions at a wide range of temperatures up to length 4096 and at some
temperatures up to length 16384. The results con3rm the earlier prediction (using data from a
non-standard model at a single temperature) of a collapse phase transition occurring at 3nite
temperature. Moreover they are in accord with the phenomenological theory originally proposed
by Lifshitz, Grosberg and Khokhlov in three dimensions and recently given new impetus by
its use in the description of simulational results for four-dimensional interacting self-avoiding
walks (ISAW). In fact, we argue that the available data is consistent with the conclusion that the
collapse transitions of ISAT and ISAW lie in the same universality class, in contradiction with
long-standing predictions. We deduce that there exists a pseudo-3rst order transition for ISAT
in four dimensions at 3nite lengths while the thermodynamic limit is described by the standard
polymer mean-3eld theory (giving a second-order transition), in contradiction to the prediction
that the upper critical dimension for ISAT is du =4. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The geometric collapse of polymers in dilute solution, being one of the fundamen-
tal and most well studied phase transitions in statistical mechanics attracts continuing
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interest from both the theoretician attempting to understand the subtleties inherent in
this phenomenon and the experimentalist wanting a 3rm foundation for interpreting
their results on more complicated systems. One approach has been the use of lat-
tice models of various types of self-avoiding paths to describe the geometry of linear
polymers with added local potentials to broadly account for the complex solvent–
polymer and polymer–polymer interactions. The canonical lattice path utilised in this
regard has been the self-avoiding walk (SAW) as it explicitly demonstrates the “ex-
cluded volume” expected of physical polymers. However, much of our understanding
of three-dimensional polymer collapse [1–3] has come from calculations using the con-
tinuum Edwards model [4,5] which is based upon intersecting random paths, rather than
interacting self-avoiding walks (ISAW). Hence it is of interest to study lattice models
closer in nature to the Edwards model. One such model is based on the lattice paths
known as self-avoiding trails (SAT) [6–9] rather than self-avoiding walks. The type
of interaction considered (contact versus nearest-neighbour for ISAW) is also more
closely analogous to the Edwards model. It is also worth noting that the upper critical
dimension for polymer collapse is expected to be du =3; and therefore many subtle
logarithmic corrections are predicted to occur in three dimensions. As is often the case
in the study of critical phenomena our understanding is enhanced by considering the
dimension of the problem as a parameter that can be varied. Any discrepancies between
the behaviour of competing models in four dimensions for example would impinge on
our interpretation of results in three dimensions.
SAT or trails for short are paths on a lattice which have no two steps on the

same bond of that lattice but may occupy the same site. This restriction is sometimes
referred to as bond-avoiding, in contrast to SAW which are site-avoiding (that is, no
two vertices of the walk may occupy the same site on the lattice). Clearly walks
are, by default, also bond-avoiding. Trails possess an excluded volume eGect and it is
fairly well established that SAT and SAW are in the same universality class [10,11]
which describes good solvent polymers. (For a more recent discussion of the subtle
diGerences between walks and trails regarding corrections to scaling see [12].) It has
been shown [7] that there should exist a collapse transition when contact attraction
is added to the trail model: this model of polymer collapse is known as interacting
self-avoiding trails (ISAT). Moreover, Shapir and Oono [7] have argued that this point
should be tricritical in nature, as it is at the ISAW collapse point. However, they predict
that ISAW and ISAT are in diGerent universality classes. Importantly, while the upper
critical dimension for ISAW is expected to be du =3; the Shapir–Oono 3eld theory
gives du =4 for ISAT. Therefore, this implies generically that logarithmic corrections
occur at the �-point in four dimensions, which presumably should occur at a 3nite
temperature. On the other hand the above discussion about the hypothesised equivalence
of the critical phenomena of self-avoiding walks and the Edwards model may lead
one to the opposite conclusion, namely that the collapse transitions of ISAT, ISAW
and the (3-parameter) Edwards model lie in the same universality class. Computer
simulations in two and three dimensions have given conHicting results and so it is
of interest to ascertain whether computer simulations in four dimensions may shed
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light on the question of whether ISAW and ISAT share the same collapse universality
class.
Recent developments have been two-fold. Firstly, preliminary evidence of collapse

in any polymer model in four dimensions was presented in [13] using the so-called
kinetic growth trail which eGectively simulates ISAT with a particular 3xed set of
non-standard Boltzmann weights (and so 3xed temperature). It was argued from the
results of the simulations that this set of Boltzmann weights corresponded to a so-called
�-point where the ISAT behaves in a way predicted, by the mean-3eld theory of the
polymer collapse, to be precisely at the collapse transition point. Plausibility argu-
ments then deduced the existence of the collapse transition as the temperature is varied
through this value. Secondly, and more startling have been the results of simulations
[14,15] of interacting self-avoiding walks in four dimensions. A dramatic collapse tran-
sition was located in this model using simulations up to length 32678. The nature
of this transition was described as a pseudo-;rst order transition because at any 3-
nite length the distribution of the internal energy was bimodal when the temperature
was near that at which the speci3c heat attained its maximum (one indicator of the
transition’s position), while it was argued that the eGective latent heat would slowly
decay to zero in the thermodynamic limit (as the length diverges) with an anoma-
lous exponent. On the other hand the speci3c heat seemed to diverge as the length
was increased. Despite these peculiar 3ndings the simulational results were able to
be interpreted in terms of a framework explained some time ago by Khokhlov [16],
who applied the non-standard mean-3eld approach of Lifshitz, Grosberg and Khokhlov
(LGK) [17–19] to arbitrary dimensions. This theory is based on a phenomenolog-
ical free energy in which the competition between a bulk free energy of a dense
globule and its surface tension drive the transition. The consequences of this sur-
face free energy were largely ignored in the polymer literature until recently, when
its eGect on the scaling form of the 3nite-size partition function was proposed and
con3rmed [20–23]. While markedly diGerent for 3nite lengths this theory still pre-
dicts a standard Gaussian �-point and in the in3nite length limit a second order phase
transition with a jump in the speci3c heat (no divergence as the temperature is var-
ied: the divergence as length is varied exists but “disappears” in the thermodynamic
limit).
In this work we have simulated the standard ISAT model on the four-dimensional

hypercubic lattice over a range of temperatures using the PERM algorithm [24] in a
similar fashion to simulations implemented for ISAW [14]. This algorithm is particu-
larly eMcient in high dimensions and so is well suited to these simulations. We 3nd
evidence that parallels the 3ndings in the ISAW simulations [14] for a collapse tran-
sition with the signature of pseudo-3rst order type. The transition is, if anything more
pronounced, with an equivalent strength at shorter lengths. We demonstrate that our
data is at least as, if not more, consistent with the LGK theory as is the ISAW results
[14]. Hence we deduce that the collapse transitions of ISAW and ISAT in four dimen-
sions are in the same universality class. It follows from these conclusions that the upper
critical dimension for collapse in ISAT is du ¡ 4; and that possibly du = 3 in accord
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with the standard polymer theory and with the logarithmically modi3ed Gaussian state
found in three-dimensional kinetic growth trail simulations [25].

2. The ISAT model and scaling theories

2.1. The ISAT model

We de3ne the ISAT model on the four-dimensional hypercubic lattice in the follow-
ing way. The lattice has coordination number 8 and we consider con3gurations ’N of
trails, or bond-avoiding walks, of length N (bonds) starting from a 3xed origin. Let
mk; k =1; : : : ; 4 be the number of sites of the lattice that has been visited k times by
the trail so that

∑
kmk =N + 1. The partition function of a very general interacting

trail model is

ZN (!2; !3; !4)=
∑
’N

!m2
2 !m3

3 !m4
4 ; (2.1)

where !k is the Boltzmann weight associated with k-visited sites. The canonical model
is one where every segment of the trail at some contact site interacts with every other
segment at that site, so that

!k =!
(
k
2

)
for k =2; 3; 4 ; (2.2)

with ! ≡ !2. This implies that in our speci3c case

!2 =!; !3 =!3; !4 =!6 : (2.3)

The Boltzmann weight !=e� is associated with a energy of contact −� so that !¿ 1:0
for attractive interactions. As we are only interested in the attractive case here one
can set �=1 for convenience. We de3ne a reduced 3nite-size free energy per step
�N (!) as

�N (!)=
1
N

log ZN (!) : (2.4)

The usual free energy is related to this by −FN ≡ N�N (!).
The average of any quantity Q over the ensemble set of allowed paths �N of length

N is given generically by

〈Q〉N (!)=
∑

’∈�N
Q(’)!m(’)∑

’∈�N
!m(’) (2.5)

where m=m2 +3m3 +6m4. We de3ne a normalised 3nite-size internal energy per step
by

UN (!)=
〈m〉
N

; (2.6)
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and a normalised 3nite-size speci3c heat per step by

CN (!)=
〈m2〉 − 〈m〉2

N
: (2.7)

These quantities are related in the usual way to the reduced free energy via UN = @�N =
@ log! and CN = @UN =@ log!. Note that because of the absent factors of temperature
both UN and CN can take on non-zero values for !=1:0.

The thermodynamic limit in this problem is given by the limit N → ∞ so that the
thermodynamic free energy per step f∞(!) is given by

−f∞(!)= �∞(!)= lim
N→∞

�N (!) : (2.8)

This quantity determines the partition function asymptotics, i.e., ZN (!) grows to leading
order exponentially as �(!)N with �(!)= e�∞(!).
In our simulations we calculated two measures of the polymer’s average size. Firstly,

specifying a trail by the sequence of position vectors r0; r1; : : : ; rN the average mean-
square end-to-end distance is

〈R2
e〉N = 〈(rN − r0) · (rN − r0)〉 : (2.9)

We shall use the symbol R2
e;N to be equivalent to

R2
e;N (!) ≡ 〈R2

e〉N : (2.10)

The mean-square distance of a site occupied by the trail to the endpoint, r0; is given
by

〈R2
m〉N =

1
N + 1

N∑
i=0

〈(ri − r0) · (ri − r0)〉 : (2.11)

Again we de3ne

R2
m;N (!) ≡ 〈R2

m〉N : (2.12)

We also de3ne the ratio

BN (!)=
R2
m;N

R2
e;N

; (2.13)

which should have a universal limit in each critical phase of the model.

2.2. Standard polymer scaling theory

Let us expand our view in this section to general polymer scaling theory. We 3rst as-
sume that there is a single collapse transition at some value of temperature and explore
the four-dimensional behaviour we might expect from the above de3ned quantities in
each of the phases. The basic physics of the coil-globule (collapse) transition can be
understood by the consideration of the average size of the polymer, RN ; either Re;N or
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Rm;N ; as a function of length N in each of the phases, so let us consider this 3rst. Let
us de3ne an eGective Boltzmann weight !=e—of course, in any particular model
or physical system the associated potentials may be diGerent. Generally one always
expects that

R2
N ∼ a(!) N 2� as N → ∞ (2.14)

for any 3xed value of !. In four dimensions at in3nite temperature, !=1; it has been
predicted [26] that

R2
N ∼ a+N (log(N ))1=4 : (2.15)

If there does exist a collapse transition then one would expect that this scaling extends
(with a constant a+ that depends on temperature) down to the transition point. In the
collapsed phase the polymer is expected to assume a dense con3guration on average
and hence the globular value of the radius-of-gyration exponent is �g =1=d=1=4 [1]
with

R2
N ∼ a−(!)N 1=2 : (2.16)

Finally at some 3nite transition temperature 1:0¡!t ¡∞ a Gaussian scaling of the
radius of gyration should occur, that is

R2
N ∼ a�N ; (2.17)

so that �t =1=2. This Gaussian scaling is often used (theoretically at least) to de3ne
the �-point !=!� of an isolated polymer so that !t =!�. The universal ratio BN

is expected to converge to the value B∞ =1=2 both in the swollen phase and at !�.
However, one would expect slow logarithmic corrections for !¡!� and algebraic
corrections at !�. For !¿!� the phase is no longer expected to be critical and so
B∞ is no longer universal and may be a non-constant function of !.
One can also consider the scaling of the partition function in each of the regimes,

given that there is a transition. For high temperatures 1:0¡!¡!� one expects the
in3nite temperature behaviour, which is [26]

ZN ∼ b+(!)�(!)N (logN )1=4 ; (2.18)

while at low temperatures [20] one expects asymptotics of the form

ZN ∼ b−(!)�(!)N�s(!)N
3=4
Ng (2.19)

where �s is related to the surface free energy of the polymer globule and the exponent
g need not be universal (we only write it for completeness of the asymptotic form).
For !=!� one expects

ZN ∼ b��(!�)N (2.20)

as a reHection of Gaussian behaviour.
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In the thermodynamic limit the thermodynamic functions f∞(!); U∞(!) and C∞(!)
are all expected to be analytic functions of ! except at !�. By using the correspon-
dence to the tricritical model [1] the mean 3eld theory would imply that the speci3c
heat had a jump discontinuity at !� (the associated exponent $=0). Of course, for
3nite N there is no sharp transition for an isolated polymer (unless one examines a
macroscopic number of such polymers).

2.3. LGK theory

We now provide a brief review of the predictions of the theory of Lifshitz, Gros-
berg and Khokhlov (LGK) [19] as applied to four-dimensional polymer collapse by
Khokhlov [16]. Firstly, there exists a state where the excluded volume property of
long chain molecules is exactly cancelled by the attractive interactions between parts
of the polymer as mediated by the solvent. This is the �-state. Secondly, when the
attraction becomes even stronger there eventuates a globular state where the polymer
behaves as a liquid drop. The results of the theory are based on a phenomenological
free energy of that globular state relative to the free energy of the pure Gaussian state
of the �-point at T�. Hence the condition applied to 3nd the 3nite-size position of the
transition is to equate the relative free energy to zero. The relative free energy is given
as a sum of bulk and surface contributions which are, in turn, given in terms of the
second and third virial coeMcients, the length of the chains, and the linear size of the
polymer found from the globular density. In particular both the bulk and surface free
energies are proportional to the square of the second virial coeMcient. It is assumed
that on approaching the �-point the second virial coeMcient goes to zero linearly with
temperature while the third virial coeMcient remains non-zero. Note that this implies
a quadratic dependence of the bulk free energy on the distance to the �-point. Since
the free energy has exponent 2− $ this implies an exponent $=0 (assuming that this
part of the free energy is singular). Therefore a second-order phase transition occurs
in the thermodynamic limit.
It is further assumed that the density in the globule is proportional to the second

virial coeMcient and hence also goes to zero linearly with temperature on approaching
the �-point (=1). Again using an eGective Boltzmann weight !=e and de3ning the
transition as when the free energy is zero, Khokhlov [16] 3nds a 3nite-size transition
temperature 1 !c;N which approaches the �-temperature (!�) as

!c;N − !� ∼ s
N 1=3 (2.21)

for some constant s. That is, the polymer collapse shift exponent is 1=3. The width of
the transition region P! at 3nite N can be found from the free energy rewritten in
terms of this transition temperature to scale as

P! ∼ w
N 2=3 (2.22)

1 For the sake of ease of expression in this section we will use the word “temperature” to mean the eGective
Boltzmann weight.
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for some constant w. That is, the polymer collapse crossover exponent is 2=3. Hence
note that the size of the crossover region is asymptotically small relative to the shift
of the transition.
Following the work [15] of Lifshitz, Grosberg and Khokhlov [19] one can also

calculate the change in the internal energy over the crossover width of the transition
P! as the latent heat (or “heat of the transition”) by using expression of the free
energy in terms of the transition temperature as

PU ∼ uc

N 1=3 : (2.23)

The corresponding height of the peak in the speci3c heat is

CN (!c;N ) ∼ hcN 1=3: (2.24)

So to summarise the LGK picture, the theory predicts a thermodynamic second-order
transition at a Gaussian �-point with a jump in the speci3c heat. For 3nite polymer
length this transition is shifted below the �-point by a temperature of the order of
O(N−1=3) with the width of the transition of the order of O(N−2=3). Over this width
there is a rapid change in the internal energy that scales as O(N−1=3): the important
point here of course is that this tends to zero for in3nite length so the eGect of the peak
in the speci3c heat is scaled away for N large, leaving a 3nite jump in the thermody-
namic limit. To understand this further let us consider the distribution of internal energy
as a function of temperature and length. For any ! below !� and well above !c;N

one expects the distribution of internal energy to look like a single peaked distribution
centred close to the thermodynamic limit value: a Gaussian distribution is expected
around the peak with variance O(N−1=2). In fact, this picture should be valid for all
temperatures outside the range [!c;N −O(N−2=3); !c;N +O(N−2=3)]. When we enter this
region we expect to see a double peaked distribution as in a 3rst-order transition region.
For any temperature in this region there should be two peaks in the internal energy
distribution separated by a gap *U of the order of *U ≈PU˙O(N−1=3). Each peak
is of Gaussian type with individual variances again of the order of O(N−1=2). Hence
as N increases the peaks will become more and more distinct and relatively sharper
but the peak positions will be getting closer together. We refer to this scenario as a
pseudo-3rst-order transition or, more correctly, as 3rst-order-like 3nite-size corrections
to a second-order phase transition. If there were a real 3rst-order transition then the
distance between the peaks should converge to a non-zero constant. On the other hand
the transition is not a conventional second-order phase transition with a well de3ned
limit distribution of the internal energy that is simply bimodal.

3. Simulational results and analysis

We have simulated ISAT on a four-dimensional hyper-cubic lattice using the Pruned–
Enriched Rosenbluth Method (PERM), a clever generalisation of a simple kinetic
growth algorithm [24,27]. PERM builds upon the Rosenbluth–Rosenbluth method [28],
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in which trails are generated by simply growing an existing trail kinetically but over-
comes the exponential “attrition” and re-weighting needed in this approach by a com-
bination of enrichment and pruning strategies. Our implementation here follows our
previous ISAW work [15,14]. BrieHy, we chose upper and lower thresholds Wu and
Wl, for enrichment and pruning respectively, proportional to the current estimate of
the average weight of a trail at length N; 〈ZN 〉=sN , where sN is the number of gen-
erated samples at length N , and 〈ZN 〉 is the current estimate of the partition function
at length N . That is to say, Wu

N = cuN 〈ZN 〉=sN ; W l
N = clN 〈ZN 〉=sN . In order to enforce

an even sample size distribution we allowed for dynamic adjustment of cuN and clN ,
keeping the quotient of the thresholds Q= cuN =c

l
N constant. To stabilise the dynamic

adjustment, we enforced cuN ¿cumin and clN ¡clmax. As in the ISAW work, we chose
cumin = 2 and clmax = 1=2. For each run, we attempted to choose the smallest threshold
quotient Q for which we could obtain an even sample size distribution.
Each run had a maximum length Nmax set and while individual runs gave infor-

mation about shorter lengths we collected data from independent runs at some shorter
lengths to guarantee statistical independence. Simulations were conducted with the max-
imum lengths Nmax set to 512, 1024, 2048, and 4096, with values of ! ranging from
1.0 to 2.07 for Nmax = 512, from 1.0 to 2.00 for Nmax = 1024, from 1.0 to 1.78 for
Nmax = 2048, from 1.0 to 1.67 for Nmax = 4096. We also ran many closer spaced sim-
ulations in the range of ! from 1.4 to 1.42 at length Nmax = 16384. At each 3xed !,
we generated at least 107 trails. To illustrate the computational eGort, the generation
of a sample of size 107 at length Nmax = 16384 took about 2 weeks CPU time on a
600 MHz DEC Alpha. The threshold quotient Q used ranged from 10 to 80 with larger
values of Q needed for higher !. We also performed one large-scale simulation deep
in the collapsed regime, with Nmax = 512 and !=4:0, for which it was necessary to
increase the threshold quotient up to Q=1000.

We computed statistics for R2
e;N and R2

m;N , the partition function ZN , the internal
energy UN and speci3c heat CN . Moreover, we generated the distribution of the number
of interactions at Nmax. The distributions obtained at various temperatures were then
combined using the multiple histogram method [29].
The disadvantage of PERM is that due to the enrichment the generated data is not

independent. All the data generated during one “tour”, i.e., between two successive
returns of the algorithm to length 0, is correlated. Therefore, we kept track of the
statistics of tour sizes t to get a rough idea of the quality of the data. In our statistical
evaluation we use (somewhat arbitrarily) the quotient of sN and

√〈t2〉 as a measure
of an eGective independent sample size. This is correct as long as the tour sizes don’t
Huctuate too strongly, and, more importantly, as long as individual tours explore the
sample space evenly. When simulating in the collapsed phase, both of these assumptions
break down, and the sample is dominated by few huge tours. Moreover, the pruning
and enrichment rates become so large that the eMciency of the algorithm is signi3cantly
decreased. Error bars are only given for high temperature and �-point simulation 3gures
(Figs. 1 and 3) and are based on the method described above, although we always
computed error estimates. No error bars are given in the rest of the 3gures because
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Fig. 1. R2
e;N =N versus 1=N in the �-region: !=1:408; 1:411; 1:414; 1:417; 1:420 from top to bottom.

of the performance of the algorithm in and near the collapsed phase, even though the
data seemed converged suMciently.
Let us 3rst discuss the scaling of the mean-squared end-to-end distance normalised

by trail length, R2
e;N =N and the mean-squared distance of a site occupied by the trail to

the trail’s end-point, R2
m;N =N . In the swollen phase, our results are in correspondence

with the logarithmic corrections seen by Grassberger [30]. As in that paper, we observe
that R2

e;N grows faster than N for ! near 1.0, and 3tting to N (logN )c at !=1:0 gives
an eGective exponent close to that predicted by 3eld theory (1=4). This value shifts
as ! is increased indicating the presence of strong temperature-dependent correction
terms.
By considering when the quantity R2

e;N =N approaches a constant we narrowed our
search for the �-point to the region !=1:40 to !=1:42. In this region we extended
our simulations to trails of length 16384. Fig. 1 shows a plot of R2

e;N =N versus 1=N
for values of ! between 1.408 and 1.420. At !=1:414(3) we have an approximate
linear asymptotic dependence of R2

e;N on N . Moreover, at !=1:414 we estimate from
our data BN =R2

m;N =R
2
e;N =0:5000(2), which is also indicative of Gaussian behaviour:

the precision of this estimate stems from the weakness of the corrections to scaling at
this point.
As shown in Fig. 2 for !=4:0, R2

e;N changes non-monotonically in N ! After an
initial increase, the size of the polymer actually starts to shrink around N =50 as it
undergoes collapse corresponding to a rapid increase of the density. For large enough
N , we expect to see the true collapsed behaviour, i.e., R2

e;N growing again as N 1=2, but
while we see R2

e;N just starting to increase again, the asymptotic regime is beyond the
reach of our PERM simulations on current computer hardware.
Let us now discuss the scaling of the partition function. The swollen phase and the

�-point behaviour can also be clearly identi3ed from the free-energy scaling. In the
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Fig. 2. R2
e;N versus N for !=4:0 up to length 512.

Fig. 3. ZN =Z2
N=2 versus 1=N in the �-region: !=1:408; 1:411; 1:414; 1:417; 1:420 from bottom to top.

swollen phase we 3nd again the same behaviour as [30]. The presence of logarithmic
corrections is consistent with our data. At !=1, we estimate �(1)= �SAT =6:926080(2).
In the �-region, an analysis shows that here ZN scales as �N with weak 1=N correc-
tions. Fig. 3 shows ZN =Z2

N=2 plotted versus 1=N from which we estimate the �-point to
be !� =1:414(3) and �� =7:0016(6). (At 3xed !, the accuracy is of course higher:
for !=1:414, we estimate �=7:0015714(5).) In the collapsed region, one expects
the 3nite-size free energy to have a strong correction term of the order N−1=4 due to
surface eGects. Fig. 4 shows this for !=4:0. As argued above, the globule starts to
collapse when the length is above N =50, and we notice here the onset of a corre-
sponding strong change in the behaviour of the 3nite-size free energy around this length
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Fig. 4. Finite-size free energy �N versus N−1=4 for !=4:0:

Fig. 5. Speci3c heat CN versus ! for lengths 512, 1024, 2048, and 4096 from right to left respectively,
using the multi-histogram method.

(N−1=4 ≈ 0:35). Even though we cannot simulate long enough chain lengths to clearly
determine the precise nature of the correction term, our data is certainly compatible
with a N−1=4 correction for N−1=4 ¡ 0:3 (i.e., N ¿ 150).

In order to study the collapse transition more closely, we now focus our attention on
the internal energy and speci3c heat. As can be seen from Fig. 5, the speci3c heat has a
sharply peaked graph for each length that becomes more sharply peaked as N increases.
The transition region becomes sharper and stays well separated from the �-point, even
though the location of the transition (peak in the speci3c heat) approaches the �-point
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Fig. 6. Scaling of the transition: shift and width of the collapse region. Shown are the scaling combinations
N 1=3(!c;N − !�) and N 2=3P! versus N−2=3.

slowly. The scaling of the shift of the transition towards the �-point, !c;N − !�, and
the sharpening of the transition width, P!, are both shown in Fig. 6. Here, we de3ned
the location of the collapse transition by the location of the speci3c heat peak, and
the width of the transition is given by the interval in which the speci3c heat is greater
or equal to half the value of the peak height. Expecting from the LGK theory that
!c;N −!� scales as N−1=3 and that P! scales as N−2=3, we plot both N 1=3(!c;N −!�)
and P!N 2=3 versus N−2=3 which was chosen empirically. Both quantities can be seen
to be asymptotic to constants: on the graph extrapolations give non-zero intercepts.
Hence, Fig. 6 shows that the LGK predictions are compatible with our simulations.
We do note that the corrections to scaling for P! are much larger than for !c;N −!�.

The character of the transition becomes apparent if one plots the internal energy den-
sity distribution (rescaled density of interactions) at the 3nite-size collapse transition,
!c;N . Fig. 7 shows the emergence of a bimodal distribution. At length 512 one sees a
slight non-convexity, which at length 4096 has evolved into a distribution dominated
by two sharp and well-separated peaks. The values of the minima and maxima of the
distribution are diGerent by two orders of magnitude. This bimodal distribution means
that as ! is increased through the transition region the density distribution switches
from the peak located at a small value of contacts to the peak located at a larger value
of contacts, corresponding to a sudden change in the internal energy. In the collapsed
phase, the width of the peak is much wider than in the swollen phase, implying a
larger speci3c heat. It is this diGerence between the swollen and collapsed phases’
speci3c heats that will eventually become the thermodynamic second order jump. The
rapid 3rst-order like switch between two peaks in the distribution becomes more pro-
nounced at larger polymer lengths since the depth of the “valley” between the two
peaks becomes relatively larger.
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Fig. 7. Internal energy density distributions at !c;N for 512 and 4096. The more highly peaked distribution
is associated with length 4096.

Fig. 8. Scaling of the latent heat PU : our two measures of PU; CN (!c;N )P! and peak distance *U are
plotted versus N−1=3.

Continuing with the scaling predictions from Khoklov theory, a suitably de3ned
3nite-size latent heat, PQ, should tend to zero as N−1=3 in the thermodynamic limit.
One possible measure of this latent heat is given by the product of speci3c heat peak
CN (!c;N ) and speci3c heat width P!, and another is given by the distance *U of the
peaks in the bimodal internal energy distribution. Fig. 8 shows the behaviour of both
of these quantities. One notices two things from this 3gure. Firstly, it indicates that
CN (!c;N )P! decreases to zero linearly in N−1=3 as predicted. However, even at length
N =2048 (N−1=3 ≈ 0:08) there is considerable discrepancy between the two quantities



T. Prellberg, A.L. Owczarek / Physica A 297 (2001) 275–290 289

plotted, so that one needs to be cautious in the interpretation of the scaling behaviour.
The explanation for the discrepancy between the two quantities is of course that in
order to observe the asymptotic behaviour the two peaks in the histogram have to be
well separated and distinct, and that this is only really the case when N is of the
order of 103. We caution that Fig. 8 alone is not suMcient to discriminate between the
scenario proposed here and a real 3rst-order transition in the thermodynamic limit, but
we believe the rest of our data and other theoretical facts provide a more consistent
picture.
When comparing our data with the simulations for ISAW [15] we note further that

the bimodal distribution emerges for ISAT at much shorter con3gurations, so that the
peaks in the distribution for ISAT at length N =512 are already more pronounced
than the peaks in the distribution for ISAW at length N =2048. To quantify this
observation, we turn to the scaling predictions of LGK theory. An important parameter
in the theory is the quotient ad=v; where a is the mean-square distance between two
subsequent monomers (repeated unit element of the polymer: equivalent to occupied
sites of the lattice model) along a chain and v is the eGective excluded volume of a
monomer, de3ned via the vanishing of the second virial coeMcient at the �-temperature.
For instance, the shift of the transition temperature (cf. Eq. (2.21)) is given more
explicitly by

!c;N − !�

!�
∼

(
s̃a4

Nv

)1=3

(3.25)

where s̃ is a constant proportional to the quotient of the third virial coeMcient and the
excluded volume squared. From Fig. 6 we estimate that N 1=3(!c;N −!�) asymptotes to
3.4(1) for ISAT, and for ISAW we estimate for the same quantity the value 0.92(3)
[15]. Identifying a with the lattice constant, which in both models is set equal to one,
we can get a rough estimate for the relative size of the eGective excluded volume v in
both models. We obtain

vSAT
vSAW

≈ 0:03
s̃SAT
s̃SAW

(3.26)

and thereby quantify the intuitive notion that the excluded volume eGect is numerically
“weaker” in trails than in walks, though of the same basic type.
In conclusion, our ISAT simulations elucidate further the structure of the polymer

collapse transition in four dimensions. We show conclusively that there is indeed a col-
lapse transition at a 3nite temperature. Secondly, we 3nd evidence for a �-temperature
at which the polymer is well approximated by Gaussian behaviour as well as for a
collapse transition which is well separated from the �-point. The collapse transition
shows many 3rst-order like features, such as a bimodal distribution in the internal
energy. An analysis of the scaling behaviour of this transition in the context of the
theory of Lifshitz, Grosberg and Khokhlov [19,16] shows that a consistent interpretation
of these 3ndings is that of 3rst-order like 3nite-size corrections to a thermodynamic
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second-order transition. These 3ndings are essentially the same as those made recently
for ISAW collapse in four dimensions [14]. Consequently, we deduce that the upper
critical dimension for ISAT is du ¡ 4 (most likely 3) and not du =4 as was previously
predicted.
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