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Abstract
We examine self-avoiding walks in dimensions 4 to 8 using high-precision
Monte Carlo simulations up to length N = 16 384, providing the first such
results in dimensions d > 4 on which we concentrate our analysis. We
analyse the scaling behaviour of the partition function and the statistics of
nearest-neighbour contacts, as well as the average geometric size of the
walks, and compare our results to 1/d-expansions and to excellent rigorous
bounds that exist. In particular, we obtain precise values for the connective
constants, µ5 = 8.838 544(3), µ6 = 10.878 094(4), µ7 = 12.902 817(3),
µ8 = 14.919 257(2) and give a revised estimate of µ4 = 6.774 043(5). All of
these are by at least one order of magnitude more accurate than those previously
given (from other approaches in d > 4 and all approaches in d = 4). Our results
are consistent with most theoretical predictions, though in d = 5 we find clear
evidence of anomalous N−1/2-corrections for the scaling of the geometric size
of the walks, which we understand as a non-analytic correction to scaling of
the general form N(4−d)/2 (not present in pure Gaussian random walks).

PACS numbers: 05.50.+q, 05.70.Fh, 61.41.+e, 64.60.-i

1. Introduction

The universal properties of linear flexible polymers in a dilute solution can be modelled by
the lattice model of self-avoiding walks (SAW), and have been studied for this purpose [1] for
over 50 years [2]. Being described by the limit n → 0 of the O(n) φ4 field theory [3,4] places
SAW amongst the most fundamental models in statistical physics along with the Ising (n = 1)
and Heisenberg (n = 3) models, while its description as a non-Markovian random walk makes
it of intense interest to mathematicians [5]. SAW are also of interest to the combinatorial
mathematician as a fundamental combinatorial problem. As a critical phenomenon, in the
context of theoretical physics, the limit of the length of the walk going to ∞ can be thought
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of as equivalent to approaching a critical temperature (in a generating function approach
the generating variable acts as the Boltzmann weight in an O(n) model). Results from the
associated field theory [3, 4] and subsequent confirmation by numerical methods, including
careful series analysis of exact enumerations [6, 7] and statistical analysis of high-precision
Monte Carlo simulations [8], indicate that the upper critical dimension for SAW is du = 4.
Above this dimension it is expected that SAW behaviour is dominated by the same behaviour
as occurs in Markovian random walks (in a renormalization group analysis of the O(0) φ4

field theory both models are controlled by the so-called Gaussian fixed point). We expect
that while dominant exponents and ratios of scaling amplitudes are the same as for RW the
self-avoidance constraint will affect scaling amplitudes and corrections to scaling. In addition,
apparently asymptotic 1/d-expansions give reasonable estimates of the connective constants.
On the other hand, much is known on a mathematically rigorous level [5, 9–11], thanks to the
ingenuity of the lace expansion, and so the similarity of pure random walk (RW) and SAW
behaviour can be quantified precisely to some extent. Despite all this non-rigorous and rigorous
information several aspects of SAW in high dimensions require numerical investigation. First,
the connective (or growth) constants, while bounded by rigorous arguments and estimated by
1/d-expansion values (and series analysis of fairly short exact enumerations), are not known
precisely from Monte Carlo simulations, and so the relative value of different bounds is not well
understood. Second, the corrections to scaling in high dimensions have not been investigated,
and since controversies and intriguing findings occur [12] in low dimensions for the SAW
and related models, it is of interest to clarify these in high dimensions. In any case, due to
SAW being such a fundamental model it clearly is of interest for us to establish as complete a
description of the behaviour of SAW as possible.

We have simulated SAW on the d-dimensional hypercubic lattice in dimensions d = 4 to 8
using the pruned–enriched Rosenbluth method (PERM), a clever generalization of a simple
kinetic growth algorithm [13, 14] using a combination of enrichment and pruning strategies
to generate walks whose weights are largely distributed around the expected peak of the
distribution. We have utilized an implementation similar to that described in [15], where the
enrichment and pruning thresholds are dynamically changed in response to the output of the
algorithm while maintaining a constant ratio between these thresholds. For each dimension
d = 4, . . . , 8, we have generated 108 samples of length N = 4096 and 107 samples of length
N = 16 384. While not having completely independent samples we have crudely estimated
the effect of the dependence and so are able to give error estimates for our values. The PERM
algorithm is particularly appropriate for high-dimensional simulations where SAW are close
to RW, which are simply generated by a Rosenbluth–Rosenbluth approach [16]. While our
four-dimensional simulations build on the careful previous work of Grassberger et al [8],
who simulated SAW up to length 4000 on the four-dimensional hypercubic lattice, our higher
dimensional simulations are without parallel. In d = 4, our simulations do not provide any
further insight [8,15] into the subtle logarithmic corrections predicted in four dimensions, but
simply allow us to update the connective and other constants in that dimension with estimates
that are an order of magnitude better than previously obtained. In dimensions d > 4, we
compare our results to the bounds of the lace expansion and other approaches, to the 1/d-
expansion, and to series analysis of exact enumeration data. Our main results are contained
in tables 1–3. Apart from the precision of our estimates, our other contribution is to point
out evidence for anomalous sub-dominant corrections to scaling in five dimensions (which
presumably occur in higher dimensions though so weakly as to be not practically measurably).

Let the number of SAW on the lattice of interest be cN , that is cN ≡ |�N | where �N is the
set of all SAW ϕ of length N steps (N + 1 sites) with one end at some fixed origin. Let pN be
the number of self-avoiding polygons (closed walks) of length N . In this paper we consider
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Table 1. Numerical values for self-avoiding walk connective constants µ in dimension 4–8.

Dimension 4 5 6 7 8

Estimate for µ 6.774 043(5) 8.838 544(3) 10.878 094(4) 12.902 817(3) 14.919 257(2)
Previous estimates 6.774 04(4) 8.838 6(8) 10.878 8(9) 12.900 14.920
[6, 8, 27]
Lower bound [11] 6.742 9 8.828 5 10.874 0 12.881 1 14.903 0
Upper bound [24, 25] 6.804 0 8.860 2 10.888 6 12.908 1 14.922 1
1/d-expansion [19] 6.771 4 8.839 7 10.880 0 12.904 0 14.920 0

Table 2. Numerical values for normalised mean m∞ and fluctuation f∞ of nearest-neighbour
contacts in dimension 4–8.

Dimension 4 5 6 7 8

Estimate for m∞ 0.170 88(5) 0.134 576(6) 0.106 902(4) 0.087 715(2) 0.074 222(2)
Previous estimate [28] 0.174 0(15) 0.141(1) 0.111(1) 0.0892(8) 0.0744(6)
1/d-expansion [28] 0.213 125 0.142 627 0.108 376 0.087 925 0.0742 06
Estimate for f∞ 0.330(2) 0.232 4(3) 0.164 0(2) 0.123 31(7) 0.098 18(5)
1/d-expansion [28] 0.417 0.236 2 0.160 8 0.121 14 0.097 03

Table 3. Numerical values for distance amplitudes dm and de and their quotient B∞ = dm/de in
dimension 4–8.

Dimension 4 5 6 7 8

Estimate for de — 1.4767(13) 1.2940(6) 1.2187(3) 1.1760(2)
Previous estimate [20] — 1.434 1.296 1.222 1.178
1/d-expansion [20] — 1.385 1.273 1.212 1.174
Estimate for dm — 0.7385(6) 0.6470(2) 0.6094(1) 0.5880(1)
Estimate for B∞ = dm/de 0.504(7) 0.5001(6) 0.5000(2) 0.5000(1) 0.5000(1)

the d-dimensional hypercubic lattice for d = 4, 5, 6, 7 and 8. We define a reduced free energy
or rather entropy per step κN as

κN = 1

N
log cN . (1.1)

Let 〈Q〉N denote the simple average of any quantity Q over the ensemble set of allowed paths
�N of length N . Let M(ϕ) be the number of non-consecutive nearest-neighbour contacts
(pairs of lattice sites occupied by the walk) for a given walk ϕ. We define a normalized mean
number of contacts mN per step by

mN = 〈M〉
N

(1.2)

and a normalized fluctuation in the number of contacts per step by

fN = 〈M2〉 − 〈M〉2

N
. (1.3)

For a SAW model where each configuration is weighted by a Boltzmann weight (say, ωM(ϕ))
to the number of nearest-neighbour contacts (this model is known as interacting SAW or
ISAW) the quantities mN and fN are proportional to the internal energy and specific heat in
the limit ω → 1. The thermodynamic limit for SAW is given by the limit N → ∞ so that the
thermodynamic limit entropy per step is given by

κ∞ = lim
N→∞

κN . (1.4)
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Given that the thermodynamic limit exists, this quantity determines the partition function
asymptotics, i.e. cN grows to leading order exponentially as µN with the connective constant
µ = eκ∞ .

In our simulations we also calculated two measures of the walk’s average size. Firstly,
specifying a walk by the sequence of position vectors r0, r1, . . . , rN the average mean-square
end-to-end distance is

〈R2
e 〉N = 〈(rN − r0) · (rN − r0)〉. (1.5)

We shall use the symbol R2
e,N to be equivalent to

R2
e,N ≡ 〈R2

e 〉N. (1.6)

The mean-square distance of the sites occupied by the walk from the endpoint r0 of the walk
is given by

〈R2
m〉N = 1

N + 1

N∑
i=0

〈(ri − r0) · (ri − r0)〉. (1.7)

Again we define

R2
m,N ≡ 〈R2

m〉N. (1.8)

Mainly our new results concern d > 4, so we shall now discuss the theoretical predictions
for those dimensions. It has been proved [17] that the thermodynamic limit exists, i.e. µ exists.
Furthermore it has been proved in sufficiently high dimensions [9, 10] that

cN = AµN
(
1 + O(n−ε)

)
(1.9)

for any ε < min ((d − 4)/2, 1) and

R2
e,N = de N

(
1 + O(n−ε)

)
(1.10)

for any ε < min ((d − 4)/4, 1).
On the other hand on a non-rigorous level from the general theory of critical

phenomena [18] we further expect that the numbers of walks and polygons have both analytic
and non-analytic corrections to scaling:

cN ∼ AµNNγ−1
(

1 +
wa

N
+

we

N!e

)
(1.11)

and

pN ∼ AµNNα−2
(

1 +
pa

N
+

pe

N!e

)
(1.12)

with γ − 1 = 0 and α − 2 = −d/2 for d � 5. From this we deduce that the entropy, mean
number of contacts and their fluctuations scale as

κN ∼ κ∞ +
k(1)a

N
+
k(2)a

N2
+

ke

N!e+1
(1.13)

mN ∼ m∞ +
u(1)a

N
+
u(2)a

N2
+

ue

N!e+1
(1.14)

and

fN ∼ f∞ +
s(1)a

N
+
s(2)a

N2
+

se

N!e+1
(1.15)

respectively. The non-analytic correction to scaling exponent !e is associated with the
strongest non-analytic correction. One would expect further non-analytic (other ! exponent-
like terms) and analytic corrections (e.g. a N−2 term)—see [18] for a more in-depth discussion
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of possible scaling forms in general dimensions. Our numerical studies can discern only the
strongest corrections to scaling. Again for the geometric size of the walk one may hypothesise
that

R2
e,N ∼ de N

2ν
(

1 +
ea

N
+

er

N!r

)
(1.16)

R2
m,N ∼ dm N2ν

(
1 +

oa

N
+

or

N!r

)
(1.17)

with 2ν = 1 for d � 5.
In a non-rigorous treatment of SAW above the upper critical dimension, one might

implicitly assume that non-analytic corrections to scaling either do not occur or only occur
with the same exponents as occur in RW. However, the field theoretic description of critical
phenomena above the upper critical dimension is subtle (partially due to the presence of
dangerously irrelevant variables) and mean-field theory is unlikely to be the whole story. For
example, it is often assumed that hyperscaling relations break down above the upper critical
dimension. On the other hand, it is widely accepted that the relation 2 − α = dν holds for
self-avoiding polygons in all dimensions, where 2 − α is the entropic exponent associated
pN and ν is the size exponent, in seeming contradiction. It is certainly true that dominant
exponents are usually not controlled by the fluctuation-dominated critical behaviour that gives
rise to hyperscaling (2 − α 
= dν for the Ising model for d > 4) but rather mean-field energy
versus entropy physics. However, it may be that remnants of the fluctuation-driven critical
behaviour still occur in high dimensions albeit now contributing to the corrections to scaling.
In this picture the upper critical dimension du is the dimension below which fluctuation-driven
critical phenomena (characterised by hyperscaling relations) are dominant, while above du
they are sub-dominant to mean-field criticality (fixed exponents). One hyperscaling relation
expected to break down for d � 5 in SAW is 2!4 − γ = dν with the ‘gap’ exponent !4

associated with the ‘intersection’ probability (see [5, 18] for example). One may hypothesize
a correction to the scaling to cN of a term µNN2!4−dν−1. Since it is accepted that !4 = 3/2
(and proved that ν = 1/2) we can hypothesize a correction to scaling exponent arising from
such a term as

!e = (d − 4)

2
. (1.18)

That is, in d = 5 we expect that !e = 1/2, so corrections of order N−3/2 as well as analytic
corrections of order N−1, N−2 etc, may occur. Unfortunately we are only practically able to
detect corrections of order N−1 in our simulations and we have been unable to detect even
the N−3/2 in d = 5. We note in passing that there are predicted logarithmic corrections in
d = 4 which we can see, to a similar extent as in [8], in our estimations of µ—in fact we
have utilized this expected behaviour to give our refined estimation. We now comment that the
non-analytic correction to scaling exponent hypothesized above is the same as the ‘crossover’
exponent φe = (d − 4)/2 of the Edwards model. This leads us to conjecture that while there
is strictly no crossover from Gaussian to non-Gaussian behaviour, the excluded volume could
still make itself apparent in scaling through a scaling function in the variable bNφe , where b

is the bare measure of the excluded volume. We concede that a further assumption about the
expansion of the scaling function is needed here. In any case following this line of argument
it is then likely that such a correction to scaling term occurs in other quantities such as in the
scaling of the size measures.

Assuming that the Edwards model crossover exponent provides the dominant corrections
to scaling exponent for the size measures, R2

e,N and R2
m,N , also gives us

!r = !e = (d − 4)

2
. (1.19)
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Hence in d = 5 we expect that !r = 1/2, and whenever the value of !r coincides with an
analytic correction to scaling (e.g. d = 6) there may also be confluent logarithms appearing.
We have been able to successfully test for !r = 1/2 in d = 5 (see below), and we even have
some evidence of confluent logarithms present for d = 6. One can also predict that for large
N the quotients

BN = R2
m,N/R

2
e,N ∼ B∞

(
1 +

ba

N
+

br

N!r

)
(1.20)

approach the random walk value, B∞ = dm/de = 1
2 with the same type of corrections as the

size measures approach their limits in d � 5. In conclusion, from the scaling forms above
we predict that in d = 5 we generically expect to see, within the quality of data obtained,
a correction of the order N−1/2 in the size measure quantities. In dimensions 7 and 8 we
expect to see only the N−1 corrections, while in d = 6 we may expect to see some confluent
logarithmic correction term such as log(N)/N .

Our simulations allow us to estimate µ, m∞, f∞, de (we certainly confirm that de = 2dm
in all dimensions studied) and study the corrections to scaling in κN , mN , R2

e,N , R2
m,N , BN . Let

us first discuss the constants as they provide the most important information contained in this
paper. Our best estimates and various comparisons are provided in tables 1–3. We are able to
compare our results to estimates and bounds from various sources. Fisher and Gaunt [19] used
exact enumerations on general d-dimensional hypercubic lattices to give an asymptotic 1/d-
expansion for µ up to fifth order in the variable s = (2d − 1). Nemirovsky et al [20] extended
this to include de, while Ishinabe et al [21] extended it to include m∞ and f∞. In all these
expansions the error is uncontrolled, and since they are considered asymptotic expansions the
optimal number of terms to be used to give an accurate answer varies with dimension. All
terms have been used when applied to d � 5 since Fisher and Gaunt [19] proposed that d
terms plus half the next should be used in general. The 1/d-expansions for µ, m∞, f∞, de,
and dm are

µ = s − 1/s − 2/s2 − 11/s3 − 62/s4 + · · · (1.21)

m∞ = 1/s + 1/s2 + 7/s3 + 35/s4 + 250/s5 + · · · (1.22)

f∞ = 1/s + 4/s2 + 29/s3 + 152/s4 + 752/s5 + · · · (1.23)

de = 1 + 2/s + 28/s2 + 180/s3 + 1382/s4 + · · · (1.24)

where s = (2d − 1) and the expansion for dm is trivially given by half of the expansion for
de. The specific values for d = 4, . . . , 8 are given in tables 1–3. On the other hand, there has
been much effort expended to obtain rigorous and (semi-)rigorous upper and lower bounds for
the connective constants [11,22–25] in all dimensions. The lace expansion provides excellent
lower bounds [11,22] not only in high dimensions such as 5, 6, 7 and 8 but also in dimensions
3 and 4: lower bounds as quoted from Hara et al [11] for dimensions 4, 5 and 6, and for
dimensions 7 and 8 have been computed via equation (2.34) of [11], are given in table 1. The
best current upper bounds [24, 25] are also listed in tables 1, 2 and 3—the upper bounds for
dimensions 7 and 8 have been computed using the Maple code available at [26]. We also
include in our tables the previous most precise estimates. In dimensions 5, 6, 7 and 8 these
have been from series analysis of exact enumeration data [6,27,28], while in dimension 4 the
previous best estimate of µ was obtained by Grassberger et al [8]. The previous estimates for
m∞ are from exact enumerations and were given by Douglas and Ishinabe [28].

We now turn to our evidence for the types of corrections to scaling. For the entropy, mean
number of contacts, and fluctuations in the mean number of contacts, we find that extrapolations
assuming dominant 1/N corrections produce consistent extrapolates in all dimensions d � 5
and all lengthsN � 128. Similarly for the size measure data,R2

e,N ,R2
m,N andBN in dimensions
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Figure 1. R2
e,N /N and BN = R2

m,N/R
2
e,N versus N−1/2 for d = 5, showing clearly the presence

of the N−1/2-correction to scaling. From the right-hand side plot we extrapolate B∞ = 0.5001(6).

Figure 2. BN = R2
m,N/R

2
e,N versus N−1 and versus N−1 logN for d = 6, showing the

possible presence of a confluent logarithm for the N−1-correction to scaling. We extrapolate
B∞ = 0.5000(2).

d = 7 and 8 the assumption of 1/N corrections produces consistent extrapolates for all lengths
N � 128. Thus we conclude that 1/N corrections dominate in those dimensions as predicted
above.

The evidence for anomalous scaling is summarized in figures 1 and 2: for d = 5, we
clearly detect N−1/2-corrections (see figure 1) in the size measure data, and for d = 6 our
results are suggestive of N−1 logN -corrections, which produce a slightly better fit than N−1-
corrections (see figure 2). We note in passing that the absence of N−1/2-corrections in past
extrapolations from exact enumeration data (see table 3) may have affected previous estimates
for Ae.

In summary, we have presented a comprehensive study of scaling of SAW at and above the
upper critical dimension, testing various scaling predictions and providing precise estimates
of associated scaling amplitudes.
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[8] Grassberger P, Hegger R and Schäfer L 1994 J. Phys. A: Math. Gen. 27 7265
[9] Hara T and Slade G 1992 Commun. Math. Phys. 147 101

[10] Hara T and Slade G 1992 Rev. Math. Phys. 4 235
[11] Hara T, Slade G and Sokal A D 1993 J. Stat. Phys. 72 479
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