
VOLUME 85, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 31 JULY 2000

1104
Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops
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We have investigated the mean-field dynamics of an overdamped viscoelastic medium driven through
quenched disorder. The model allows for the coexistence of pinned and sliding regions and can exhibit
continuous elastic depinning or first-order hysteretic depinning. Numerical simulations indicate mean-
field instabilities that correspond to macroscopic stick-slip events and lead to premature switching. The
model describes the elastic and plastic dynamics of driven vortex arrays in superconductors and other
extended disordered systems.

PACS numbers: 74.60.Ge, 62.20.Fe
Extended condensed matter systems driven over
quenched disorder exhibit a very complex dynamics,
including nonequilibrium phase transitions and history
dependence. Such systems include vortex arrays in type-II
superconductors [1], charge density waves in anisotropic
conductors [2,3], and many others. Closely related be-
havior also arises in friction and lubrication [4], where a
surface or monolayer is brought in contact with another
solid surface and forced to slide relative to it.

Most of the theoretical work to date has focused on the
dissipative dynamics of driven elastic media that are dis-
torted by disorder, but cannot tear. At zero temperature
such systems exhibit a sharp depinning transition from a
pinned to a sliding state [3,5]. The transition, first studied
in the context of charge density waves, is continuous, with
universal critical behavior. The sliding state is unique and
there is no hysteresis or history dependence [6]. More re-
cent work, while still focusing on elastic media, has shown
that the dynamics is quite rich well into the uniformly slid-
ing state [7–11].

On the other hand, experiments [12,13] and simulations
[14,15] show that the elastic medium model is inadequate
for many physical systems with strong disorder that upon
depinning exhibit a spatially inhomogeneous plastic re-
sponse, without long wavelength elastic restoring forces.
In this plastic flow regime, topological defects proliferate
and the system is broken up in fluidlike regions flowing
around pinned solid regions. Not much progress has been
made in describing this behavior analytically. The wealth
of experimental work on driven vortex arrays clearly in-
dicates that, in most of the field and temperature region
of interest, the current-driven vortex dynamics is strongly
history dependent, with long-term memory and switching
as the system explores a variety of nonequilibrium sliding
states [12,13].

In this paper we describe a coarse-grained model for the
dynamics of a driven medium that allows for spatially inho-
mogeneous response, with the coexistence of moving and
pinned regions. The model is inspired by the well-known
phenomenology of viscoelasticity in dense fluids [16]. The
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elastic couplings between the local displacements are re-
placed by couplings that are nonlocal in time and allow for
elastic restoring forces to turn into dissipative fluid flow
on short time scales. The model yields elastic depinning in
one limit; as the parameters are varied, it incorporates con-
tinuous depinning, hysteretic plastic depinning, and even-
tually viscous flow, allowing the crossovers between these
regimes (such as those, observed in vortex arrays [12,15])
to be studied in detail. For a wide range of parameter
values the depinning transition is first order, with velocity
hysteresis (switching). The nonlinear velocity-force char-
acteristic can be evaluated analytically in mean field for
various types of pinning forces, under the assumption of
constant mean-field velocity. Numerical simulations con-
firm the inhomogeneous nature of the dynamics, with pin-
ning and tearing (coexisting moving and pinned degrees
of freedom). In addition, the mean velocity near depin-
ning fluctuates, due to macroscopic stick-slip-type events.
These events appear to only mildly violate the uniform
mean-velocity assumption but directly lead to switching
from one velocity branch to another before the first branch
terminates (premature switching). Models that account for
switching in charge density waves and are in spirit similar
to ours have been proposed and studied by Strogatz and
collaborators [17]. In such models, plasticity is modeled
by a nonconvex elastic potential, in contrast with the ve-
locity convolutions studied here. A model similar to ours
has also been proposed for crack propagation [18].

The model: a driven viscoelastic medium.—To moti-
vate our model, we first recall the generic model of driven
elastic media [3] discussed extensively in the literature,
where the long-wavelength dynamics is described in terms
of a coarse-grained displacement field, u�r, t�. The dis-
placement fields represent deformations of regions pinned
collectively by disorder (e.g., a Larkin domain) and are
coupled by convex elastic interactions. No topological
defects are allowed. Considering, for simplicity, the over-
damped dynamics of a scalar field (the model is easily
extended to the more general case) and modeling the
displacement field on lattice sites, u�r, t� ! ui�t�, the
© 2000 The American Physical Society
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equation of motion for the local field ui (measured in the
laboratory frame [19]) at site i is

g0 �ui �
X
�ij�

mij�uj 2 ui� 1 F 1 Fi�ui� , (1)

where the summation is restricted to nearest-neighbor
pairs and g0 is the friction. If all the nearest-neighbor
elastic couplings, mij $ 0, are equal, the first term on the
right hand side of Eq. (1) is the discrete Laplacian in d
dimensions. The second term is the homogeneous driving
force, F, and Fi�ui� denotes the pinning force arising
from a quenched random potential, Vi�ui�, Fi�ui� �
2dVi�dui � hif�ui 2 bi�, with f�u� a periodic function
with period 1 and bi random phases uniformly distributed
in �0, 1�. The hi are chosen independently at each site
from a distribution r�h�. One of the quantities of interest
is the average velocity of the driven medium, y�F� �
N21

P
�ui . For an elastic medium there is a unique station-

ary sliding state for F . Fc, with critical behavior y�F� �
�F 2 Fc�b [3], and no hysteresis at the transition [6].

We now modify the elastic interactions in Eq. (1) to
allow for local tearing of the medium. Inspired by standard
models of viscoelasticity, we replace the elastic interaction
by couplings to the local velocity field, yi � �ui , that are
nonlocal in time. Our model equation for the overdamped
dynamics of a driven viscoelastic medium is [20]

g0 �ui �
X
�ij�

Z t

0
ds Cij�t 2 s� � �uj�s� 2 �ui�s��

1 F 1 Fi�ui� , (2)

where the viscous couplings Cij�s� have finite first mo-
ments,

R`
0 ds Cij�s� � hij , ` and Cij�0� � mij . Such

nonlocal couplings to velocity are of course not present at
the microscopic level, but are generated generically upon
coarse graining [16,21]. Equation (2) is a coarse-grained
model for the dynamics of a driven disordered medium that
allows for slip or friction of the interacting Larkin domains
relative to each other.

A simple, yet successful, model of viscoelasticity due
to Maxwell is obtained when the memory kernels are as-
sumed to be uniform in space and to decay exponentially
in time, according to Cij�t� � me2t�t , with t � h�m the
Maxwell relaxation time. For t ! ` and fixed m, Eq. (2)
reduces to Eq. (1) for a driven elastic medium. For t ! 0
and h fixed, the first term on the right hand side of Eq. (2)
can be approximated as h

P
�ij��yj�t� 2 yi�t��, which rep-

resents viscous forces coupling the local fluid velocity at
different spatial points. In this limit, Eq. (2) describes
an overdamped lattice fluid of viscosity h. We propose
Eq. (2) as a simple, yet realistic model for a driven disor-
dered system that exhibits spatially inhomogeneous plastic
response.
Mean-field approximation.—As for the driven elastic
media, substantial analytical progress in two or three
dimensions is presumably possible only via perturbation
theory or by a functional renormalization group (RG) treat-
ment [22]. An alternative approach that has provided
valuable insight for a driven elastic medium is mean-field
theory (MFT), first discussed by Fisher [3]. MFT is for-
mally valid in the limit of infinite-range interaction, withP

j Cij � NC�t� held fixed. The equation of motion for
the displacement at each site is then given by

g0 �ui �
Z t

0
y ds C�t 2 s� �y�s� 2 �ui�s�� 1 F 1 Fi�ui� ,

(3)

where the mean field is given by u�t� � N21
PN

i�1 ui�t�,
and y�t� � �u�t�.

If the memory kernel C�t� is chosen to be of the Maxwell
form, it is then possible to transform the integrodifferen-
tial equation (3) to a second-order differential equation,
given by

tü 1 g�h, t, h; ui� �u � F 1 Fi�ui� 1 hy , (4)

with g�h, t, ui; h� � 1 1 h 2 t
≠Fi

≠ui
an effective friction.

We have scaled Eq. (4) by letting t ! th0, t ! th0, h !
h�g0, F ! F��g0h0�, and h ! h��g0h0�, where h0 is
the characteristic scale of the distribution r�h�. With this
change of variables, the model is now characterized by
two parameters, h and t, and the shape of r�h�. The MF
equation for our viscoelastic model closely resembles the
MF equation for a driven massive elastic medium, with t

playing the role of the mass. The most important difference
is that in the massive elastic medium the MF term hy is
replaced by mu. As a result, the MFT of a driven massive
elastic medium even with constant y contains 3 degrees of
freedom (as opposed to the two of our problem) and the
dynamics of a single ui is chaotic [23,24].

We are first interested here in steadily sliding solutions
of the MF model, Eq. (3). It is natural to look for periodic
solutions up�t; h� of period T �h� [

RT �h�
0 dt �up�t; h� � 1]

that may set in after an initial transient [t ¿ T �h�]. Such
solutions need not be unique. Guided by a large body
of previous work on driven elastic media, we focus on
the MFT for the case of a pinning potential with cusplike
singularities, which better captures the physics of the
corresponding finite-dimensional model [25]. An explicit
solution of Eq. (4) can be obtained for the scalloped para-
bolic potential, V �u� � �h�2� �u2 2 u 1 1�4�. In this
case Eq. (4) is linear and its general solution is up�t; h� �
C1 exp�2l1t� 1 C2 exp�2l2t� 1 1�2 1 �hy 1 F��h,
with l1,2 � �1 1 h 1 th 6

p
�1 1 h 1 th�2 2 4th��

�2t�. For each fixed value of h, we obtain an implicit equa-
tion for the period, T �h�, hy 1 F � hG�T ; h, t, h�, with
G�T ; h, t, h� �
l1�1 2 e2l1T � 2 l2�1 2 e2l2T � 1 tl1l2�e2l1T 2 e2l2T �

�l1 2 l2� �1 2 e2l1T � �1 2 e2l2T �
2

1
2

. (5)
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The solution of Eq. (5), together with the self-consistency
constraint y � ��T �h��21�h, determines the drift velocity
as a function of driving force, F. When T �hi� ! `, the
ui is pinned.

Figure 1 shows the analytical solution for the mean ve-
locity as a function of driving force for r�h� � exp�2h�.
The depinning occurs at F � 0 for all distributions of pin-
ning strengths, r�h�, with support not bounded from be-
low by a positive hmin. For small h and t, corresponding
to weak coupling among the local displacements, the ana-
lytical solution is single valued and the depinning is con-
tinuous. For large h and t the analytical solution yields
multivalued velocity curves, reflecting the existence of
multiple sliding states, and the depinning is hysteretic. As
shown in the inset in Fig. 1, there is a critical value, hc�t�,
that separates single-valued from multivalued solutions.
The value h � hc is a critical point and the velocity curve
is expected to exhibit critical scaling. While the value of
hc depends on t, the existence of a hysteretic region at
large h, with coexistence of sliding and moving states and
early switching (see also Fig. 2), occurs for all finite values
of t, including t � 0. For t ! ` and h ! `, with the ra-
tio m � h�t held fixed, Eq. (4) reduces to the MFT of an
overdamped elastic medium [26]. In this case an analyti-
cal solution is available and the velocity vanishes linearly
as F ! Fc [27].

Numerical work.—We have investigated the stability of
the branches of the analytically determined current-drive
relationship. We performed direct numerical simulation of
the equations of motion, for both force drive and con-

FIG. 1. Analytical MFT velocity versus force curve for
r�h� � exp�2h� and selected values of t and h along the path
h � 3t in parameter space. As t and h increase along this
path, the y�F� curve becomes hysteretic. The dashed line is
the result for the purely elastic model with m � 3, showing
the convergence of the viscoelastic model to the elastic model
for large t and h. The inset shows the regions of parameters
where the velocity is hysteretic (shaded region) and where it is
single valued (unshaded region).
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strained mean velocity. The simulations were performed
using two codes, for verification: a Runge-Kutta inte-
gration and an event-driven Euler integration, with the
“events” being crossings of a displacement ui from one
parabolic region to the next. The results were checked
for insensitivity to time step Dt and size N . For the con-
stant y constraint, the drive-velocity relationship matches
the analytical prediction.

In the regions where the velocity is a unique function
of the drive, the simulation results with slowly changing
F for the force-drive curve match very closely those of
the analytical results, which assume a constant y. In the
presumed hysteretic region, though, the simulation results
can be quite different. In particular, we note two features:
mean-field velocity oscillations on the lower branch and
“early” switching, where the mean velocity switches from
the lower to the upper branch prior to the end of the ana-
lytically computed hysteresis region. A sample hystere-
sis curve indicating early switching is shown in Fig. 2.
We have computed the magnitude of the fluctuations in
the mean velocity on the upper branch as a function of
N : the results are numerically consistent with a magni-
tude ~ N21�2, indicating that these fluctuations vanish as
N ! `. The fluctuations on the lower branch do not van-
ish in the limit of large N , however. These fluctuations
are presumably due to an instability of the constant y so-
lution in the large volume limit. We hypothesize, with the

0.203 0.205 0.207
0.00

0.01

0.02

Simulation
Analytic (constant v)

0.16 0.18 0.20 0.22 0.24
F

0.00

0.10

0.20

v

Simulation
Analytic (constant v)

FIG. 2. Comparison of direct numerical simulation (solid line)
with analytic predictions (dashed line), which assume a constant
y, for r�h� � exp�2h�, h � 32, t � 0.8, N � 16 384, and a
ramp rate of dF�dt � 2.5 3 1026. The field F is cyclic in
time. The results are in near exact agreement for much of the
history. Notice the early switching, where the velocity jumps
from the lower to the upper branch at F 	 0.207, well before the
value F 	 0.240, where the constant velocity analytical solution
becomes unstable. In the hysteretic region, on the lower branch,
the mean-field velocity occasionally spikes due to macroscopic
events. The inset is a blowup of the bracketed portion of the
curve.
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support of detailed analysis of the numerics, that nearly
depinned degrees of freedom (which would remain pinned
at constant y) are made unstable by velocity fluctuations
and lead to an avalanche type of behavior, which causes
a peak in y. The magnitude of this instability apparently
becomes large enough to drive the mean velocity to the up-
per branch before the presumed constant y velocity jump
occurs.

In conclusion, we have introduced a coarse-grained
model of plastic flow that allows for slip of coherently
pinned domains. We have solved this model analytically
in mean field for the case of Maxwellian kernel, under
the assumption of nonfluctuating mean velocity. We find
that (i) the model exhibits both continuous and first-order
hysteretic depinning as the parameters are varied, (ii) we
can recover the case of elastic depinning in one limit,
(iii) pinned and sliding regions coexist in the hysteretic
regime, and (iv) the mean velocity curves display features
observed in experiments. Numerical simulations suggest
that the behavior is much richer than suggested by the
MF calculation and includes stick-slip-like instabilities
which lead to early switching. Strong history dependence
has been observed in the dc response of vortex lattices
in type-II superconductors [12,13] and in charge density
waves [28]. Hysteresis in vortex lattice motion is most
pronounced in the region of the so-called peak effect,
where the dc response during ramp-up of the current pro-
ceeds via a series of jumps. These have been attributed
to strong spatial inhomogeneities in the distribution of
vortex velocities, not unlike what is observed in our model
[29]. We expect that in finite dimensions the transition
to hysteresis will be characterized by nontrivial universal
scaling exponents [30], similar to the situation for hys-
teresis in random magnets [22], and that these exponents
could be experimentally tested.
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