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Abstract

We present the results of simulations of kinetic growth trails (KGT) (bond-avoiding walks)
in four dimensions. We use a mapping from a kinetic growth model to a static model of self-
interacting trails (ISAT) at a particular temperature to argue that this temperature is precisely the
collapse temperature of four-dimensional interacting trails. To do this we show that the kinetic
growth trails behave neither like static non-interacting trails, which should behave as excluded-
volume-dominated four-dimensional polymers (that is self-avoiding walks), or collapsed four-
dimensional polymers, but rather show an intermediate behaviour. This is the �rst indication of
collapse in any four-dimensional lattice polymer model and so may be helpful in deciding which
of the competing models of polymers is a good model in lower dimensions. We have calculated
various exponents of the KGT model and identi�ed them with certain critical exponents of the
static ISAT problem. c© 1998 Elsevier Science B.V. All rights reserved.

PACS: 05.50.+q; 61.41.+e; 05.70.Fh
Keywords: Trails; Self-interacting trails; Kinetic growth; Lattice polymers; Polymer collapse

1. Introduction

There has been continuing interest in statistical mechanical models of the confor-
mations of linear polymers in dilute solutions in two and three dimensions [1]. One
aim of these studies is to extract the universal (critical) scaling properties of these
models, since they should hold exactly for a range of physical systems. It is expected
that the models display three distinct behaviours. At high temperatures, they should
mimic polymers in a ‘good’ solvent, where the excluded volume e�ect is dominant.
Opposing this, at low temperatures the model should describe a collapsed, internally
dense, state caused by the attractive interactions of di�erent sections of a polymer
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mediated by a solvent. At one temperature, known as the �-point, the excluded vol-
ume and attractive forces ‘balance’ to give a third, intermediate behaviour. This third
behaviour is often approximated by a simple random walk model. However, it was
realised some time ago that in low dimensions the real situation is more complex.
In two dimensions, the �-state does not share the scaling features of a random walk
[2,3]. In three dimensions the two equivalent descriptions of the �-state are given by
the continuum Edwards model with two and three body forces [4,5] and the n → 0
limit of the magnetic (tricritical) (�2)2–(�2)3 O(n) �eld theory [6–8]. The analysis of
these theories is subtle and predicts that d=3 is the upper critical dimension of the
�-state, and therefore the critical behaviour of this state is given by mean-�eld (Flory)
theory predictions modi�ed by logarithmic factors. On the other hand, the canonical
model of polymer collapse in lattice statistical mechanics has been self-avoiding walks
(SAW) on a regular lattice interacting via nearest-neighbour attraction, or ISAW. This
model manifestly includes the ‘excluded volume’ condition of real polymers as well
as the attraction necessary for collapse. There has not been a direct demonstration that
the behaviour of this model around its collapse point is given by the Edwards model,
although it is widely accepted as such [9].
Little consideration has been given to four-dimensional polymer collapse. However,

several points make it worthwhile for study, especially as it points to the correct de-
scription of the lower-dimensional systems. As far as we are aware there is no clear
understanding of the Edwards model with respect to collapse in four dimensions. This
is the upper critical dimension for the excluded volume problem: the two parame-
ter Edwards model predicts that excluded volume dominated polymers should scale
as a random walk modi�ed by multiplicative logarithmic factors. The two parameter
Edwards model also implies that a crossover to a collapse state, if it exists, has
crossover exponent 0. This presumably implies via scaling arguments [10] a speci�c
heat exponent of �=−∞ which is di�cult to interpret. In fact there is a long standing
conjecture [11] that the collapse transition disappears in four dimensions, at least at
�nite temperature. On the other hand, given that the collapse transition has an upper
critical dimension of three, one might expect from experience with other critical phe-
nomena, such as the ferromagnetic Ising model, that the collapse transition exists but
does so with some sort of mean �eld behaviour. In this case we assume the mean �eld
behaviour to imply a pure random walk state for the �-state. Whether the associated
thermodynamic transition would give a simple jump in the speci�c heat or some other
simple singularity varying with dimension is unclear. To look at these questions we
have embarked on several studies. The �rst of these we report here.
Another lattice model of polymer con�gurations studied extensively is that of self-

avoiding trails (SAT) or trails for short [12–15]. These are paths on a lattice which
have no two steps on the same bond of that lattice but may occupy the same site.
This restriction is sometimes referred to as bond-avoiding, in contrast to self-avoiding
walks (SAW) which are site avoiding (that is, no two vertices of the walk may occupy
the same site on the lattice). Clearly walks are, by default, also bond-avoiding. Trails
possess an excluded volume e�ect and it is believed that trails and SAW are in the same
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universality class [16,17] which describes good solvent polymers. (For more recent
discussion of the subtle di�erences between walks and trails regarding corrections to
scaling see [18].) It has been shown [13] that there should exist a collapse transition
when contact attraction is added to the trail model. Moreover, Shapir and Oono [13]
have argued that this point should be tricritical in nature, as it is at the ISAW collapse
point. However, they predict that ISAW and ISAT are in di�erent universality classes.
Importantly, while the upper critical dimension for ISAW is expected to be du=3,
the Shapir–Oono �eld theory gives du=4 for ISAT. Therefore, this implies generically
that logarithmic corrections occur at the �-point in four dimensions, which presumably
should occur at a �nite temperature.
On the other hand, three other scenarios have since been suggested for ISAT, de-

duced from the results of di�erent Monte Carlo simulation techniques. Firstly, some
Monte Carlo work [19] has suggested that ISAT and ISAW are in fact in the same
universality class, so collapse in ISAT would then have an upper critical dimension of
three. The behaviour in four dimensions is unknown for ISAW so no inference can be
made about ISAT. A second scenario is that the upper critical dimension for ISAT is
three but that the universality class is di�erent to that of ISAW. This scenario would
give no prediction of the type of behaviour expected at the collapse point by ISAT.
Support for this scenario comes from studies of kinetic growth trails (KGT) [20,21],
which are dynamic versions of these lattice paths that can be mapped onto the static
problem at one particular temperature. In each case, the simulations of kinetic growth
trails demonstrate the behaviour intermediate between the excluded volume state (as
in SAW) and the collapsed one (which has fractal dimension 1=d for d dimensions).
This has been used to argue that the temperature of the mapping is also the collapse
temperature. Later [22] it was suggested that the exponents derived from the kinetic
trail simulations were not the correct exponents for the ISAT collapse transition even
though the temperature of the mapping is the collapse value: this is a subtle argument
based on renormalisation considerations of the Edwards model. It was also suggested
[22] from numerical work that the transition for ISAT in three dimensions is, in fact,
�rst order rather than second order. Presumably, the same arguments could be used to
imply the same situation in four dimensions. This gives us a third possible scenario.
One caveat in all of the above on ISAT is that we are assuming there is only

one transition in the ISAT model. Evidence strongly suggests that this is the case for
ISAW [23] and no other transition has been suggested from previous numerical work
on ISAT [14,19] but early workers on polymer collapse sometimes suggested that two
transitions may take place, and recent work [24] on ISAW suggest that a second non-
thermodynamic transition may take place in two dimensions. We shall not comment
further on this possibility as the simulations presented here do not allow this.
So we have at least four di�erent theoretic scenarios for ISAT. Firstly, the Shapir–

Oono �eld theory where ISAT have an upper critical dimension of four. Secondly,
that ISAW and ISAT have the same scaling behaviour at any temperature and thirdly
that the upper critical dimension of ISAT is three but its collapse critical behaviour is
di�erent from that in ISAW in dimensions two and three. Finally, it is suggested that
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transitions in ISAT models (described by the kinetic growth trail algorithm) are �rst-
order ones [22]. Note that this last suggestion would invalidate the exponents inferred
for the ISAT model from the kinetic growth simulations.
Now given that in four dimensions little is known about ISAW, ISAT or KGT we

�rst thought it appropriate to discover the behaviour of KGT in four dimensions and
see what we can infer about ISAT. Hence we have simulated kinetic growth trails
in four dimensions. This allows us to �nd a collapse temperature in the ISAT model
and predict that the �-state for ISAT in four dimensions is Gaussian. In further work
we shall simulate ISAT and ISAW in four dimensions with standard Monte Carlo
algorithms.

2. Models

We de�ne the ISAT model on the four-dimensional hypercubic lattice in the fol-
lowing way. The lattice has coordination number 8 and we consider con�gurations
’N of trails, or bond-avoiding walks, of length N starting from a �xed origin. Let
mk; k =1; : : : ; 4 be the number of sites of the lattice that has been visited k times by
the trail. The partition function of a very general interacting trail model is

ZN (!2; !3; !4)=
∑

’N

!m22 !
m3
3 !

m4
4 ; (2.1)

where !k is the Boltzmann weight associated with k-visited sites. The canonical model
is one where every segment of the trail at some contact site interacts with every other
segment at that site, so that

!k =!(
k
2) for k =2; 3; 4 ; (2.2)

with ! ≡ !2. Now, two other reasonably natural models are de�ned by

!k =!k−1 for k =2; 3; 4 (2.3)

and

!k =! for k =2; 3; 4 : (2.4)

It would be expected that each model possesses a collapse transition at some value of
!, and that the transitions fall into the same universality class. Of course, if rather the
coordination number of the lattice had been 4 then the only possibility is a single con-
tact and all three models are isomorphic. The canonical model has been investigated in
two and three dimensions using exact enumeration [14,25,15] and Monte Carlo tech-
niques [26–28,19]. In two dimensions, recent work [20] provides a body of evidence
that reinforces the hypothesis that ISAT and ISAW are truly in di�erent universality
classes. This work was accomplished using a kinetic growth algorithm.
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The growth model of kinetic trails was introduced by Lyklema [29] for reasons
similar to those that led to the introduction of kinetic walks. It is de�ned on a four-
dimensional hypercubic lattice as follows: choose a starting site on the lattice and
dynamically construct a trail by adding steps at integer time intervals, choosing at each
time step equally from the available nearest-neighbour sites that do not violate the bond-
avoiding condition. This produces trails of any length, with a particular distribution
di�erent to that of non-interacting (static) trails. A trail can visit a particular site up to
four times. Except for the �rst step, if the kinetic trail is on a site that has not visited
previously, there are seven choices (coordination number 8 lattice) of the next step and
the probability of each is simply 1

7 . If the trail has previously visited the site j (which
can be 1, 2 or 3) times, the choice of next step is restricted to 7− 2j possibilities and
the probability of that step taken is 1=(7− 2j). If one associates the step probabilities
with the site from which it emanates then the associated probability of a site that has
been visited k times in total is

pk =
1

7 · 5 · · · · · (9− 2k) for k =1; 2; 3; 4 : (2.5)

A kinetic trail on this lattice can hence be mapped onto a static ISAT model with �xed
weights !k =7kpk , whence

!2 = 7
5 ; !3 = 49

15 ; !4 = 343
15 : (2.6)

Note that every static open trail con�guration occurs as a kinetic trail. On the other
hand, it is possible for kinetic trails to revisit the origin three times and so form a
four-dimensional ‘loop’. These loops are discarded from the kinetic algorithm after they
form. We show later that in fact, as in three dimensions but unlike two dimensions, a
�nite proportion of the kinetic growth trails stay open no matter how long one grows
them. This implies that the connective constant of the partition function of the static
problem at this set of weights is �=7.

3. Simulations and analysis techniques

We have generated kinetic growth trails of various lengths up to 216 steps. The
occupied sites of the trail were stored by means of a hash table [30], with the hash index
being computed from the coordinates. This enables e�cient testing of self-avoidance
without having to store the whole lattice, so that the generation of a walk of length N
requires time O(N ) only. The size of the hash table needs to exceed the maximal
walk length only slightly, so that the memory requirement is also O(N ). When a walk
reaches the desired maximal length or gets trapped, a new one gets generated, thereby
ensuring the statistical independence of the walks sampled at �xed length.
We have calculated the proportion left open at various stages PN , the root-mean-

square end-to-end distances RN , and the ratio AN of the fourth moment to the square
of the end-to-end distances and information on the number of contacts for the calcu-
lation of the internal energy UN and the speci�c heat CN with estimates of statistical
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Table 1
Table of raw data I

N PN �PN UN �UN CN �CN

512 0.99329477 0.000025721 0.0130715437 0.0000012118 0.00751909 0.00000389
1024 0.99321554 0.000025870 0.0133482172 0.0000008780 0.00789431 0.00000385
2048 0.99318546 0.000025927 0.0135047162 0.0000006309 0.00815235 0.00000383
4096 0.99327182 0.000040737 0.0135946853 0.0000007121 0.00830802 0.00000604
8192 0.99323631 0.000040843 0.0136428697 0.0000005061 0.00839417 0.00000602
16384 0.99318526 0.000040994 0.0136690690 0.0000003591 0.00845215 0.00000602
32768 0.99325711 0.000066595 0.0136839184 0.0000004152 0.00847338 0.00000981
65536 0.99316701 0.000105987 0.0136913748 0.0000004647 0.00848987 0.00001550

Table 2
Table of raw data II

N RN �RN AN �AN

512 26.286900 0.002927 1.496073 0.000980
1024 37.186147 0.004148 1.497788 0.000983
2048 52.605768 0.005874 1.498731 0.000985
4096 74.392461 0.013144 1.499451 0.001560
8192 105.193926 0.018590 1.499698 0.001560
16384 148.766555 0.026309 1.500396 0.001563
32768 210.368791 0.060654 1.498771 0.002542
65536 297.544818 0.136080 1.501988 0.004047

errors. To be extra careful we did independent simulations for each N we collected
data for. While this is not strictly necessary and time consuming it dismisses any pos-
sibility of correlated data in these type of variable length Monte Carlo simulations. We
simulated a �xed number of lengths N exponentially spaced. The raw data are given
in Tables 1 and 2.
We simulated the model on an unbounded lattice to investigate the bulk behaviour.

The simulations took approximately 10CPU days on an Dec Alphastation 250=4=266.
We have simulated 1×107 independent samples of lengths 512, 1024, and 2048, 4×106
independent samples of lengths 8192 and 16384 and 1:5× 106 independent samples of
length N =32768 and �nally 6× 105 independent samples of length N =65536.

4. Results and analysis

We now present the analysis of the simulations of the kinetic trails. These simulations
were carried out on the simple hypercubic lattice (4d-hc).
Our most important and convincing pieces of evidence arise from the study of the

distribution of the end-to-end distances of our trails. We considered the behaviour of the
mean-squared end-to-end distance R2N =

〈
R2e
〉
N . We �rst recall that in four dimensions

in the swollen phase one has R2N ∼ RsN (logN )1=4 [31], whereas in the collapsed
phase one expects R2N ∼ RcN 1=2. Attempting to �t the raw data to a power-law N 2�
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Fig. 1. R2N =N is plotted against 1=N . Here, as in the next pictures, the error bars, which represent single
standard deviations, are indicated explicitly.

gives an exponent close to 1, that is 2�=1:0002(2). Hence we have considered R2N =N .
We have plotted R2N =N versus 1=N in Fig. 1. We have used this default scale 1=N
for convenience as the values of R2N =N are essentially constant for N¿2000 within
our error estimates. One sees that the ratio R2N =N approaches 1:351(1) as N→∞.
We conclude that

�KGT = 1
2 : (4.1)

Given that the factor (logN )1=4 is only a weak multiplier, that is di�cult to rule out
completely, we have also calculated the amplitude ratio

AN =

〈
R4e
〉
N

〈R2e 〉2N
(4.2)

which we estimate approaches the value A∞=1:500(2). The value for a random walk
for this universal amplitude ratio is 3

2 . We conclude that our kinetic growth trails also
approach 3

2 . Hence, given that �=
1
2 and this amplitude ratio is given by

3
2 it is a fair

indication that kinetic growth trails in four dimensions are Gaussian (Fig. 2).
Next, we considered the probability PN of generation of trails of length N (or larger).

In Fig. 3 we plotted this quantity versus 1=N . PN does not decay to zero, but to a �nite
number P∞ relatively close to one, showing that a kinetic trail grows inde�nitely with a
�nite probability 0:9932(1), i.e. only about one in 300 trails gets trapped. The partition
function for open con�gurations, with the weights given by Eq. (2.6), is related to
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Fig. 2. The amplitude ratio AN is plotted versus 1=N .

Fig. 3. The probability that a path has not yet been trapped, PN , is plotted against 1=N .
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Fig. 4. The �nite size internal energy UN is plotted against 1=N .

PN by

ZN =
∑

’N

!m22 !
m3
3 !

m4
4 = 7

N
∑

’N

pN−2m2−3m3−4m41 pm22 p
m3
3 p

m4
4 ∼ 7NPN ; (4.3)

where the ∼ is needed because the end-point contacts are not counted properly by the
KGT. Since PN →P∞¿0 this equation implies an exponent


KGT =1 (4.4)

and the reduced free energy is equal to log(7). We were unable to adequately analyse
the trapping rate

QN =PN − PN+1 (4.5)

which is equal to the probability of loop-formation.
The scaling of the internal energy UN is depicted in Fig. 4. The internal energy is

a weighted combination of the mean number of 2-times, 3-times, and 4-times visited
sites per step. We see a very slight curvature of the plot of UN versus 1=N . Thus,
it is not possible to con�dently extract a singular correction term of the form N−�u ,
as it is not su�ciently di�erent from a 1=N correction. Of course even if one had
estimated this correction exponent it is unclear whether this would allow one to infer
the crossover or speci�c heat exponents. This is not only because of the possibility
that the transition is �rst order but that the appropriate scaling relations [10] may not
hold above the upper critical dimension.
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Fig. 5. The �nite size speci�c heat CN is plotted versus 1=N .

In a similar manner, we have collected data for the speci�c heat CN . As we see in
Fig. 5, the speci�c heat converges, and there is a very slight curvature of the plot of
CN versus 1=N , making any further analysis of singular behaviour di�cult.
Our results certainly imply that the temperature given by the mapping from the

kinetic model to the static one produces walks that are like random walks with respect
to their geometric behaviour. The precision of the results for the internal energy and
speci�c heat do not allow further analysis.
However, the results imply that there is a collapse transition in four dimensions

and that the upper critical dimension is du=3. This concurs with the previous kinetic
growth studies in lower dimensions.

5. Conclusions

We have conducted simulations of kinetic trails in four dimensions. Our kinetic
model can be mapped to a static self-interacting model of trails. Given the working
hypothesis, now tested in several dimensions and lattices, that kinetic growth trails at
least identify the collapse temperature correctly, and perhaps also provide a description
of the collapse point of the corresponding static problem, we have shown that there
exists a collapse temperature in four dimension. This refutes a long standing hypothesis
[11] that the collapse transition disappears above four dimensions. We have shown that
the critical ISAT collapsing state is Gaussian, given that the usual scaling assumptions
can be made.
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