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Abstract: We derive the dominant asymptotic form and the order of the correction terms
of the finite-perimeter partition function of self-avoiding polygons on the square lattice,
which are weighted according to their areaA asqA, in the inflated regime,q > 1. The
approachq → 1+ of the asymptotic form is examined.

1. Introduction

A simple model of a closed, fluctuating membrane in solution (or vesicle), such as those
found in biological contexts, is a self-avoiding surface on ad-dimensional hypercu-
bic lattice. To take account of the effects of factors such as osmotic pressure and pH
differences between the inside and outside of the membrane it is advantageous to sort
the configurations according to their volume and surface area. In two dimensions, self-
avoiding polygons (SAP) weighted by area and perimeter were investigated by Fisheret
al. [9] after the general problem of two-dimensional vesicles was discussed by Leibler
et al.[13]. Exact enumerations of SAP by area and perimeter, and some related rigorous
results on the mean area of polygons of fixed perimeter have also been given [12, 8],
after pioneering work of Hiley and Sykes [11] on their enumeration.

A vesicle in two dimensions will be modelled in this paper by a self-avoiding polygon
on the square lattice, where both the perimeter and area are controlled in some fashion.
To be more precise, one quantity often considered when investigating the behaviour of
lattice vesicles is the finite-perimeter partition function. This is defined as

Zn(q) =
∑
m

cn
mqm, (1.1)

wherecn
m is the number of some set of polygon configurations enumerated with respect

to their perimeter, 2n, and area,m, and the sum is over all possible values ofm. (Since
only the square lattice is considered here, where the perimeter of the polygons contains
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an even number of bonds, we will use the convention thatn denoteshalf of the length of
the perimeter.) It is this quantity that will be the focus of our work here, more precisely,
its asymptotic behaviour asn → ∞ for a fixed value ofq. Moreover, everywhere we
will restrict q to be larger than one, that is,q > 1. In the course of our discussion we will
consider several subsets of self-avoiding polygons on the square lattice: these include
convex polygons, directed convex polygons, Ferrers diagrams and simple rectangles.
The general area-perimeter counting problem for these subsets have been examined
previously [4, 5, 7, 1, 2, 3, 6, 14, 15, 16, 17]. In particular, the definitions, including
diagrams, of the various polygon models can be found in Bousquet–M´elou [2]. However,
their finite-perimeter partition functions’ asymptotics forq > 1 have not been explicitly
examined.

In this paper we prove that in two dimensions for SAP,

Zn(q) = A(q) qn2/4 (1 +O(ρn)) asn → ∞ , (1.2)

for some 0< ρ < 1, whereA(q) = Ao(q) or A(q) = Ae(q) whenn is restricted to
subsequences withn being odd or even respectively. We giveexplicit expressions for
Ao(q) andAe(q). In fact we show that these functions coincide with those obtained if
one only consideredconvexpolygons. Note also that the odd/even dichotomy implies
there is not a unique asymptotic form forZn(q) in the regimeq > 1.

We also deduce that there is an essential singularity in both theA(q) functions asq
approaches 1 from above; in particular

A(q) ∼ 1
4

( ε

π

)3/2
e2π2/3ε asε = logq → 0+ (1.3)

for both even and oddn.
In Fisheret al. [9] there is an argument giving the leading order factor of the finite-

perimeter partition function asymptotics for polygons. The partition functionZn(q) is
bounded forq > 1 by

qM (n) ≤ Zn(q) ≤ qM (n)Zn(1) = qM (n)µ2n+o(n)
saw , (1.4)

whereM (n) is the maximal area of a polygon with perimeter 2n andµsaw is the con-
nectivity constant for self-avoiding walks. From this and the exact value ofM (n) (see
3.1) it follows immediately that

Zn(q) = qn2/4eO(n) asn → ∞ . (1.5)

To refine this result, we show that in fact for allq > 1 the partition function asymptotics
is completely dominated by the convex configurations. This is stated in Theorem 2.1. In
Theorem 2.2 we then discuss the asymptotics for various models of convex polygons.
Taken together these two theorems enable the following explicit expression, described
precisely in Corollary 2.3, for the leading asymptotic behaviour ofZn(q) to be given

Zn(q) =
(1 +O(ρn))
(q−1; q−1)4∞

∞∑
k=−∞

qk(n−k) (1.6)

for some 0< ρ < 1. Here,
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Fig. 1.Pictorial representation of (1.6): the partition function is asymptotically dominated by convex polygons,
which are constructed from rectangles by removing corners made of Ferrers diagrams

(x; q)m
def
=

m∏
k=1

(1 − xqk−1) (1.7)

is the standardq-product notation. This is the main result of our work.
The asymptotic form (1.6) has a straightforward combinatorial interpretation (see

Fig. 1). The infinite sum has its origin in the generating function for rectangles

n−1∑
k=1

qk(n−k) . (1.8)

(A rectangle of perimeter 2n may have sides of lengthk andn−k, where 1≤ k ≤ n−1,
and so an area ofk(n− k).) If the range of summation is extended toZ, the change is of
the order ofO(q−n2/4). Convex polygons can be constructed by removing corner sites
from these rectangles while preserving the perimeter. These “corners” are described by
Ferrers diagrams, whose area-generating function is

F (q) =
1

(q; q)∞
=

∞∏
k=1

1
1 − qk

, (1.9)

which is convergent for|q| < 1.A removal of one corner (ignoring overlaps) corresponds
to multiplication with this area-generating function with the area weight replaced byq−1.
Correspondingly, the simultaneous removal of four corners corresponds to multiplication
with F (q−1)4, leading directly to the expression in (1.6).

The rest of the paper is set out as follows: in Sect. 2 we state the two main theo-
rems, where the first theorem compares the asymptotics of the finite-perimeter partition
functions of all polygons with those of convex polygons while the second gives the
asymptotics of various kinds of convex polygons, and our main result precisely, which
combines these theorems to give the finite-perimeter partition function asymptotics for
all polygons. In the following Sect. 3 we prove the two main theorems. We end with a
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discussion of our results, including the derivation of the asymptotics asq → 1+ of the
dominant asymptotic part (of the right-hand side) of (1.6).

2. Asymptotic Results

Theorem 2.1. Let Zn(q) andZc
n(q) be the finite-perimeter partition functions of poly-

gons and convex polygons, respectively, on the square lattice. Then,Zn(q) ∼ Zc
n(q)

“exponentially fast” asn → ∞: more precisely, for allq > 1 there existC > 0 and
0 < ρ < 1 such that for all integersn > 1,

1 ≤ Zn(q)
Zc

n(q)
< 1 +Cρn. (2.1)

Theorem 2.2. LetZ (s)
n (q) be the finite-perimeter partition function of rectangles (s = 0),

Ferrers diagrams (s = 1), stacks or staircase polygons (s = 2), directed convex polygons
(s = 3), and convex polygons (s = 4) on the square lattice. Then

Z (s)
n (q) ∼ Z (s),as

n (q)
def
=

1
(q−1; q−1)s∞

∞∑
k=−∞

qk(n−k) (2.2)

exponentially fast asn → ∞: more precisely, for allq > 1 there existC > 0 and
0 < ρ < 1 such that for all integersn > 1,

1 − Cρn <
Z (s)

n (q)

Z (s),as
n (q)

< 1. (2.3)

Note that we are using the symbolZ (2)
n (q), for ease of notation, to refer to either the finite-

perimeter partition function of stacks or that of staircase polygons which are different
functions. However, their dominant asymptotics in the case described above are identical.

The main result of our work is the following corollary, which follows directly from
Theorems 2.1 and 2.2:

Corollary 2.3. Let Zn(q) be the finite-perimeter partition function of polygons on the
square lattice. Then

Zn(q) ∼ Zas
n (q)

def
=

1
(q−1; q−1)4∞

∞∑
k=−∞

qk(n−k) = Z (4),as
n (q) (2.4)

exponentially fast asn → ∞: more precisely, for allq > 1 there existC > 0 and
0 < ρ < 1 such that for all integersn > 1,∣∣∣∣ Zn(q)

Zas
n (q)

− 1

∣∣∣∣ < Cρn. (2.5)

Proof of Corollary 2.3.It follows from Theorem 2.1 and Theorem 2.2 (withs = 4)
by multiplying the inequalities (2.1) and (2.3) that forq > 1 there existC > 0 and
0 < ρ < 1 such that

1 − Cρn <
Zc

n(q)
Zas

n (q)
Zn(q)
Zc

n(q)
< 1 +Cρn. � (2.6)
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Remark.In the second theorem and the corollary the infinite sum could have been
replaced by the finite-perimeter partition function of rectangles,

Z (0)
n =

n−1∑
k=1

qk(n−k). (2.7)

However, the form chosen has the advantage that one can write then-dependence more
explicitly:

Zas
n (q) =

qn2/4

(q−1; q−1)4∞

{∑∞
k=−∞ q−k2

n even∑∞
k=−∞ q−(k+1/2)2 n odd

. (2.8)

3. Proofs of Theorems 2.1 and 2.2

In what follows, we denote the maximal area of a polygon with fixed perimeter 2n by
M (n). Clearly,

M (n) =

{
n2/4 n even
(n2 − 1)/4 n odd

. (3.1)

The proof of Theorem 2.1 will utilise two lemmata, the first one comparing polygons
and nearly convex polygons, and the second one comparing nearly convex polygons
with convex polygons. For this, we first define nearly convex more precisely.

Definition 3.1. A polygon on the square lattice is said to haveconvexity index`, if the
difference between its perimeter and the perimeter of the bounding rectangle is equal to
2`. For non–negative integer̀the set ofat-most-̀ -convex polygonsis defined to be the
set of polygons with convexity index ofat most`, and the corresponding finite-perimeter
partition function is denoted byZac

n,`(q) (clearly,Zac
n,0(q) = Zc

n(q)).

Lemma 3.2. For all non–negative integers̀and for all q such thatq`+1 > µ4
saw there

existC > 0 and0 < ρ < 1 such that for all integersn > 1,

1 ≤ Zn(q)
Zac

n,`(q)
< 1 +Cρn, (3.2)

whereµsaw ' 2.638 is the connectivity constant of self-avoiding walks.

Proof of Lemma 3.2.The difference between the set of polygons and at-most-`-convex
polygons is precisely the set of polygons with a convexity index of at least` + 1. These
polygons have a bounding rectangle of half perimeter≤ n − ` − 1, hence an area of
at mostM (n − ` − 1), and their number is clearly smaller thancn, the total number of
polygons with perimeter 2n. Therefore we have the bound

0 ≤ Zn(q) − Zac
n,`(q) ≤ cnqM (n−`−1). (3.3)

Rearranging terms and estimatingZac
n,`(q) > qM (n), this leads to

1 ≤ Zn(q)
Zac

n,`(q)
≤ 1 + cnqM (n−`−1)−M (n). (3.4)
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Now cn grows asymptotically asµ2n
saw and we calculate

M (n − ` − 1) − M (n) ≤ −` + 1
2

n +
(` + 1)2 + 1

4
. (3.5)

Thus, provided thatq
`+1

2 > µ2
saw, we can findC > 0 and 0< ρ < 1 such that

cnqM (n−`−1)−M (n) < Cρn, (3.6)

which completes the proof. �
This lemma seems to suggest that the closerq is to 1, the larger̀ has to be chosen

to get convergence. However, this is just an artefact of the rather simple estimation. One
can sharpen the result with the help of the next lemma.

Lemma 3.3. For all non–negative integers̀and for all q > 1 there existC > 0 and
0 < ρ < 1 such that for all integersn > 1,

1 ≤ Zac
n,`(q)

Zc
n(q)

< 1 +Cρn. (3.7)

Proof of Lemma 3.3.Let Z ′
n,`(q) denote the finite-perimeter partition function of poly-

gons with convexity index̀. ClearlyZac
n,`(q) =

∑`
k=0 Z ′

n,k(q). We first give an upper
bound onZ ′

n,`(q) in terms ofZ ′
n−1,`−1(q), valid for ` > 0. To do this let us consider

any polygon with perimeter 2n and convexity index̀ : we can add cells (faces of the
lattice) to arrive at some polygon with perimeter 2(n − 1) and convexity index̀ − 1
while preserving the bounding rectangle. As` > 0, we can always find an indentation
within the polygon of the form depicted in Fig. 2. Adding the marked faces to the poly-
gon clearly changes perimeter and convexity index as desired. This implies that every
polygon with perimeter 2n and convexity index̀ can be constructed by removing cells
(faces of the lattice) from a polygon with perimeter 2(n − 1) and convexity index̀ − 1
while preserving the bounding rectangle.

By going through this procedure carefully, we will obtain the estimate

Z ′
n,`(q) ≤ 2n

q − 1
Z ′

n−1,`−1(q). (3.8)

To show this, we take any polygon with perimeter 2(n−1) and convexity index̀−1 and
count the number of ways to remove faces. As the convexity index increases by exactly
one, the faces to be removed have to be at the boundary of the polygon and have to be
connected (one can of course get further such polygons by removing other sites that are
not directly at the boundary, but then there is a smaller polygon with which we could
have started the construction). There are less than 2n different faces of the polygon at
the boundary. If we fix one face and start removing this one and additional faces in a
clockwise order, we can remove only a finite number of faces, certainly less than 2n.
Each time we remove a face, the weight of the configuration gets reduced by 1/q, and
summing up the weights of all configurations generated in this way, we get a change of
weight of at most 1/q + 1/q2 + . . . ≤ 1/(q − 1) by the removal of faces. Together with
a multiplicity of at most 2n due to the choice of the first site, this implies the desired
inequality (3.8).
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Fig. 2.This figure shows the construction in Lemma 3.3. Shown is part of a polygon (shaded faces) with the
thick line representing its border. The perimeter of the polygon is decreased by 2 and the convexity index
decreased by 1 by adding the faces marked with× to the polygon. Note that the faces marked with◦ are not
part of the polygon, whereas the unmarked faces can be either

Using this inequality, we get by iteration an upper bound for at-most-`-convex poly-
gons in terms of convex polygons only:

Zac
n,`(q) ≤

∑̀
k=0

(
2n

q − 1

)k

Zc
n−k(q). (3.9)

This leads to the need to estimate the terms in the sum on the right-hand side of

1 ≤ Zac
n,`(q)

Zc
n(q)

< 1 +
∑̀
k=1

(
2n

q − 1

)k Zc
n−k(q)

Zc
n(q)

. (3.10)

With the help of the inequality

Zc
n(q)

Zc
n+1(q)

≤ q−n/2, (3.11)

which follows from (3.16) in Lemma 3.4 withs = 4, we see now that each term of the
sum in (3.10) is of the order of at mostn`q−n/2. As ` is fixed, the sum contains only
finitely many terms. Thus, if we pick aρ such thatq−1/2 < ρ < 1 then there is aC > 0
such that

∑̀
k=1

(
2n

q − 1

)k Zc
n−k(q)

Zc
n(q)

≤ Cρn, (3.12)

which proves the lemma. �
Taken together, Lemma 3.2 and Lemma 3.3 prove Theorem 2.1.

Proof of Theorem 2.1.For anyq > 1 we can choosèfixed such thatq`+1 > µ4
saw. Now

we can write
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1 ≤ Zn(q)
Zc

n(q)
=

Zn(q)
Zac

n,`(q)

Zac
n,`(q)

Zc
n(q)

≤ (1 +C1ρ
n
1 )(1 +C2ρ

n
2 ), (3.13)

where the existence ofC1 > 0 and 0< ρ1 < 1 is guaranteed by Lemma 3.2, and
Lemma 3.3 guarantees the existence ofC2 > 0 and 0< ρ2 < 1. It follows that for any
max(ρ1, ρ2) < ρ < 1 there exists aC > 0 such that

1 ≤ Zn(q)
Zc

n(q)
≤ 1 +Cρn. � (3.14)

The inequality (3.11) used in the proof of Lemma 3.3 is contained in Lemma 3.4
(with s = 4), which we also use in a remark after the proof of Lemma 3.6.

Lemma 3.4. For s ∈ {0, 1, 2, 3, 4} let Z (s)
n (q) be defined as in Theorem 2.2. Then, for

any positiveq and integern > 1 we have the inequality

Z (s)
n+2(q) ≥ qn+1Z (s)

n (q) (3.15)

and the slightly weaker bound

Z (s)
n+1(q) ≥ qn/2Z (s)

n (q). (3.16)

Proof of Lemma 3.4.If we increase the width of each row and then the height of each
column of a convex polygon with perimeter 2n by one (by adding cells appropriately),
we increase the perimeter by 4 and the area byn + 1. This implies immediately the
first inequality. For the second one we have to labour slightly harder. We partition the
set of convex polygons with respect to their bounding rectangles. Letcm,(s)

(k,`) denote the
number of convex polygons of classs with width k, height`, and aream. Then, by
simply increasing the width or height of each row or column, respectively, of a polygon
by one, we get the estimates

cm,(s)
(k+1,`) ≥ cm−`,(s)

(k,`) and cm,(s)
(k,`+1) ≥ cm−k,(s)

(k,`) . (3.17)

(We need to treat both cases, as stacks (s = 2) lack reflection symmetry.) If we define
the partition functionZ (s)

(k,`)(q) =
∑

m qmcm,(s)
(k,`) , then this implies the inequalities

Z (s)
(k+1,`)(q) ≥ q`Z (s)

(k,`)(q) and Z (s)
(k,`+1)(q) ≥ qkZ (s)

(k,`)(q). (3.18)

As Z (s)
n+1(q) =

∑n−1
k=0 Z (s)

(k+1,n−k), we can now estimate

Z (s)
n+1(q) ≥ Z(1,n)(q) +

n−1∑
k=1

qn−kZ (s)
(k,n−k)(q) (3.19)

and

Z (s)
n+1(q) ≥ Z(n,1)(q) +

n−1∑
k=1

qkZ (s)
(k,n−k)(q), (3.20)
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whence it follows that

Z (s)
n+1(q) ≥

n−1∑
k=1

qn−k + qk

2
Z (s)

(k,n−k)(q) ≥ qn/2Z (s)
n (q), (3.21)

where we have used the geometric–arithmetic mean inequality.�
A simple idea of over-ounting gives the upper bound for the partition functionZ (s)

n (q)
in the next lemma.

Lemma 3.5. For s ∈ {0, 1, 2, 3, 4} let Z (s)
n (q) be defined as in Theorem 2.2. Then for

anyq > 1 and integern > 1 we have the bound

Z (s)
n (q) < Z (s),as

n (q) =
1

(q−1; q−1)s∞

∞∑
k=−∞

qk(n−k). (3.22)

Proof of Lemma 3.5.Every configuration in these models can be constructed by remov-
ing s Ferrers diagrams from specified corners of rectangles with the restriction that the
resulting configuration is still a polygon (this procedure does not change the perime-
ter). If one removes this restriction, one clearly over-ounts. As the removal of Ferrers
diagrams of arbitrary size is equivalent to multiplying the weight of the rectangle with
(q−1; q−1)−1

∞ , this implies for the generating function the inequality

Z (s)
n (q) ≤ Z (0)

n (q)
(q−1; q−1)s∞

. (3.23)

ReplacingZ (0)
n (q) =

∑n−1
k=1 qk(n−k) by the infinite sum

∑∞
k=−∞ qk(n−k) proves the

lemma. �
As a consequence of Lemma 3.4 and Lemma 3.5 we can now establish the desired

convergence toZ (s),as
n (q). This is done in Lemma 3.6 in which we also establish the rate

of convergence.

Lemma 3.6. For s ∈ {0, 1, 2, 3, 4} let Z (s)
n (q) be defined as in Theorem 2.2. Then for

all q > 1 there existC > 0 and0 < ρ < 1 such that for all integersn > 1,

q−M (n)
(
Z (s),as

n (q) − Z (s)
n (q)

)
< Cρn. (3.24)

Proof of Lemma 3.6.We first considerZ (s)
2n (q)/qM (n) andZ (s),as

n (q)/qM (n) as series in
q−1 and show that we have convergence for each of the series coefficients. In order to
compare the coefficients, we need to look more closely at the error made by the over-
ounting procedure. The over-ounting results from Ferrers diagrams that touch each other,
or from Ferrers diagrams that do not fit into the rectangle. In either case, this necessitates
a minimal area removal of size min(k, n − k) from ak × (n − k)-rectangle. Thus, the
maximal weight of the excess configurations is

qk(n−k)−min(k,n−k). (3.25)

As bothZ (s)
n (q) andZ (0)

n (q)/(q−1; q−1)s∞ have a leading power ofqM (n), this implies
that they agree in their leadingbn

2 c coefficients, if considered as a series inq−1.
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If we define fork = 0, 1, 2, . . . the positive numbers

d(s),even
k = [q−k]

1
(q−1; q−1)s∞

∞∑
`=−∞

q−`2

, (3.26)

d(s),odd
k = [q−k]

1
(q−1; q−1)s∞

∞∑
`=−∞

q−`(`+1), (3.27)

where [q−k] denotes thekth coefficient ofZ (s),as
n (q)/qM (n) in q−1, then these coefficients

coincide with those ofZ (s)
2n (q)/qM (n), as explained above, for the firstn terms. This

coincidence and the upper bound in Lemma 3.5 imply that

n∑
k=0

q−kd(s),even
k ≤ Z (s)

2n (q)/qn2 ≤
∞∑
k=0

q−kd(s),even
k , (3.28)

n∑
k=0

q−kd(s),odd
k ≤ Z (s)

2n+1(q)/qn(n+1) ≤
∞∑
k=0

q−kd(s),odd
k , (3.29)

which in turn imply that the error is less than the error made by truncating the expansion
of the upper bound inq−1 aftern terms. As the left-hand sides converge exponentially
fast inq−1 to the right-hand sides, we can now write down the rate of convergence for
the middle terms. More precisely, we have shown that for 0< ρ < 1 there exists a
C > 0 such that for allq > ρ−1,

1
(q−1; q−1)s∞

∞∑
k=−∞

q−k2 − 1
qn2 Z (s)

2n (q) ≤ Cρn, (3.30)

1
(q−1; q−1)s∞

∞∑
k=−∞

q−k(k+1) − 1
qn(n+1)

Z (s)
2n+1(q) ≤ Cρn, (3.31)

which implies that for 0< ρ < 1 there exists aC > 0 such that for allq > ρ−2,

q−M (n)

(
1

(q−1; q−1)s∞

∞∑
k=−∞

qk(n−k) − Z (s)
n (q)

)
< Cρn, (3.32)

which proves the lemma. �

Remark.By Lemma 3.4, we have the inequality

Z (s)
n+2(q)/q(n+2)2/4 ≥ Z (s)

n (q)/qn2/4, (3.33)

which implies that the sequences (Z (s)
2n (q)/qn2

) and (Z (s)
2n+1(q))/q(n+1/2)2) are monoton-

ically increasing. Rewriting the upper bound of Lemma 3.5 gives then-independent
upper bounds

Z (s)
n (q)/qn2/4 <

1
(q−1; q−1)s∞

{∑∞
k=−∞ q−k2

n even∑∞
k=−∞ q−(k+1/2)2 n odd

. (3.34)
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Thus, the sequences (Z (s)
2n (q)/qn2

) and (Z (s)
2n+1(q))/q(n+1/2)2) converge. One may be

tempted to use this convergence and the fact that the series coefficients ofZ (s)
2n (q)/qM (n)

andZ (s),as
n (q)/qM (n) coincide for the leadingbn

2 c terms, as shown in the first part of the
proof of Lemma 3.6, to show the sequences,Z (s)

2n (q)/qM (n) andZ (s),as
n (q)/qM (n), con-

verge to the same (odd and even) limits. However, to use this convergence of the formal
power series, and the point–wise convergence of the sequences, to imply equality of the
limits one needs to utilise the positivity of the coefficients of the power series. This is
precisely what was accomplished in the second part of the proof of Lemma 3.6, which
also allowed us to estimate the rate of convergence simultaneously.

Proof of Theorem 2.2.This follows now directly from Lemma 3.6. �

4. Discussion

In this paper we have derived the leading asymptotic behaviour of the finite-perimeter
generating function for polygons on the square lattice for area fugacity larger than one
and have given a combinatorial interpretation of the result.

We conclude this paper by considering the behaviour of the form (1.6) whenq → 1+.
This is clearly far from being enough to determine the asymptotic behaviour ofZn(1),
as one may not interchange the limitsn → ∞ andq → 1.

We define

Ae(q) =

∑∞
k=−∞ q−k2

(q−1; q−1)4∞
(4.1)

and

Ao(q) =

∑∞
k=−∞ q−(k+1/2)2

(q−1; q−1)4∞
. (4.2)

Hence we can write
Zas

n (q) = A(q) qn2/4, (4.3)

whereA(q) = Ao(q) or A(q) = Ae(q) whenn is restricted to subsequences withn
being odd or even respectively. The numerators of the functionsAe(q) andAo(q) can be
identified as limiting cases of the elliptic theta functions [18], that is,

ϑ3(0, q−1) =
∞∑

k=−∞
q−k2

(4.4)

and

ϑ2(0, q−1) =
∞∑

k=−∞
q−(k+1/2)2. (4.5)

This allows the powerful theory of theta functions [18] to be utilised. In particular, the
conjugate modulus transformation relates the theta functions of nomep = e−πη = q−1 <
1 to theta functions of nomep′ = e−π/η. This is useful if we consider the asymptotics
asp → 1− (that is,q → 1+) since thenp′ → 0+. The conjugate modulus transformation
yields

ϑ3(0, p) = η−1/2ϑ3(0, p′) (4.6)
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and

ϑ2(0, p) = η−1/2ϑ4(0, p′) = η−1/2
∞∑

k=−∞
(−1)k(p′)k

2

. (4.7)

Since
ϑ3(0, p′) ∼ ϑ4(0, p′) ∼ 1 (4.8)

asp′ → 0, and since further [10]

(p; p)∞ ∼
(

2
η

)1/2

exp

[−π

6η

]
(4.9)

asp → 1− (η → 0+), the asymptotics of the functionsAe(q) andAo(q) follow after
some algebra. We hence obtain

Ae(q) ∼ Ao(q) ∼ 1
4

( ε

π

)3/2
e2π2/3ε asq → 1+, (4.10)

whereε = log(q).
Lastly, we consider exact enumeration data for these models. Comparing

Zn(q)/
∞∑

k=−∞
qk(n−k) =

∞∑
k=0

an,kq−k (4.11)

and
1

(q−1; q−1)4∞
=

∞∑
k=0

bkq−k, (4.12)

we observe that the coefficientsan,k are monotonically increasing inn and bounded
above bybk for n ≤ 21. Hence, we are led to conjecture thatZas

n (q) from (2.4) may, in
fact, be a strict upper bound forZn(q). We leave this as an open question.
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