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Abstract. We study the dynamics of a particle in a horizontally and
periodically shaken box as a function of the box parameters and the coef-
ficient of restitution. For certain parameter values and initial conditions,
the particle becomes regularly chattered at one of the walls, thereby loos-
ing all its kinetic energy relative to that wall. The number of container
oscillations between two chattering events depends in a fractal manner
on the parameters of the system. Alternatively, the particle can become
trapped on a periodic orbit and follow the period—doubling route to chaos
when the coefficient of restitution is changed. The basins of attraction of
different orbits are strongly interwoven.

1 Introduction and Summary

While vertically shaken granular materials have been the object of intensive
research in the past years, the investigation of horizontally shaken granular ma-
terials has just started [1, 2]. Vertically shaken materials show various cellular
patterns and localized oscillons [3, 4, 5], and their horizontal counterpart was
recently found to display ripple-like patterns [1]. Since these patterns are due to
the collective behaviour of many interacting particles, the one—particle system
shows completely different phenomena that are, however, equally fascinating.
The dynamical evolution of a bouncing ball on a vibrating platform was studied
extensively [6, 7, 8]. As long as the coefficient of restitution is smaller than one, a
particle that hits the platform with sufficiently small relative velocity bounces off
the platform infinitely often during a finite time and looses its memory of earlier
dynamics. Luck and Mehta [8] argue that this “chattering” is the fate of generic
trajectories, which therefore become periodic. They conclude that true chaos
cannot be observed in this system. Other authors, however, find that a trajec-
tory can become trapped on a strange attractor with a nonvanishing probability
[9].

In this article, we study the dynamics of a singe particle in a horizontally
shaken box. While chattering occurs for part of the parameter values and initial
conditions, we find as well other generic scenarios like periodic orbits without
chatter, the period—doubling route to chaos, and strange attractors. The inter-
play between these different modes of behaviour makes this apparently simple



system astonishingly rich and fascinating. The main results of this article have
been published earlier [10].

The outline of this article is as follows: In the next section we define the
system used in our simulations. In Section 3 we discuss the limiting case of
a completely inelastic particle that assumes the velocity of the wall at each
collision. When the particle hits the wall during the half period where the wall
accelerates toward it, it sticks to the wall until the end of the half period. The
number of reflections until this locking occurs depends in a fractal manner on the
parameter of the system. The physically more relevant case of a partially elastic
particle is then studied in Section 4. Increasing the coefficient of restitution from
zero, the period—-doubling route to chaos is observed in many cases. Ultimately,
the strange attractor becomes so large that it includes the chattering region, thus
making the orbits again periodic. Whether a trajectory starting in the chattering
region leads back to it, depends sensibly on the parameters, since basins of
attraction of different orbits are strongly interwoven. Section 5 concludes the
article.

2 The Model

The left and right wall of a horizontally shaken container of length L are de-
scribed by the equations

Tleftwall = Asin(wt)
a‘"rightwall =L+ A sin(wt) .

w is the frequency, and A the amplitude of shaking. We denote position and
velocity of the particle by x and v respectively, and introduce the relative position
and velocity with respect to the container walls

l=z—-Asin(wt) , u=v— Awcos(wt) . (1)

Between collisions, the particle moves with constant velocity. (The influence of
friction between the particle and the container bottom will be discussed shortly
in the conclusion.)

The collisions with the wall are partially inelastic, and the relative velocity
u changes according to

u' = —nu (2)
at each collision, where 7 is the coefficient of restitution.

It is convenient to measure the particle position in units of the amplitude A,
time in units of the inverse frequency w™?!, and velocity in units of Aw. Then
the system can be described by the dimensionless parameters a« = L/A, and 7.
We denote the dimensionless time, length, and velocity again by ¢, [, and u. We
also introduce the phase of the container oscillation ¢ = wt mod 27.

The motion of the particle can be written down immediately. It is customary
to describe the particle dynamics in terms of a map that gives the phase of the



container oscillation and the particle velocity immediately after an impact as
function of their values immediately after the previous impact. Let the particle
leave the left wall (I = 0) after an impact at ¢t = ¢; with a relative velocity ug.
The particle moves according to

Lig,uo (t) = sintg — sint + (ug + costo)(t — to) , (3)

the corresponding velocity being w = dI/dt. The next collision occurs at the
smallest solution t. > ¢y of

Lig,ug(tc) =0 impact at same wall (4a)
Lig,uo (te) = @ impact at other wall (4b)
at which the velocity is u. = w40 (tc)- If the particle impacts again the same
wall, the new velocity is now u; = —nu.. On the other hand, if the particle

collides with the right wall, it is convenient to use the symmetry between left
and right wall to map the right wall to the left wall viat - t—mw andl — a —1,
so that now u; = nu.. The velocity is thus always measured with respect to the
wall at which the last impact has occurred.

Given an initial phase ¢g = to and velocity ug, we thus arrive at the map

¢1 =t. mod 27, w1 = —nu,

impact at same wall (5a)
¢1 = (t —7) mod 27w, uy = Nu,

impact at other wall (5b)

3 The Completely Inelastic Particle

3.1 Modelling by a One-Dimensional Map

We now discuss the case n = 0 in detail. The particle moves freely between the
walls, and after an impact the relative velocity ug with respect to the wall is zero.
This means that the two—dimensional mapping defined above is in fact reduced
to a one-dimensional mapping. The subsequent fate of the particle depends only
on the phase ¢y at the moment of impact.

For ¢ € [0,7/2[ mod 2w, the particle is reflected from the wall with (abso-
lute) velocity cos(¢o) and is headed for the other wall. For ¢g € [, 27[ mod 2,
the particle sticks to the wall until ¢9 = 27, and then leaves the wall with (ab-
solute) velocity 1. In the intermediate region ¢g €]m/2, [ mod 2, the sign of
the particle velocity is not reversed during the collision, and the particle hits the
same wall again at a later phase ¢; which is determined by the Equations (3),
(4a), and (5a), leading to

sin ¢ — sin ¢1 + (¢1 — ¢o) cos o = 0. (6)

For ¢g > ¢° = 1.79.., the phase ¢ is in the locking interval [r,2n[. As we are
interested in the dynamics between impacts at opposite walls, we can extend
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Fig. 1. The map for a = 9.

the locking interval to include ¢°, i.e., to the interval [¢,27]. For ¢g < ¢°,
the phase ¢; is in the interval [0,7/2[ mod 27 and the particle is immediately
reflected towards the other wall, where it arrives at a phase ¢ now given by
(4b) and (5b), i.e.,

sin ¢y +singz + (g2 — 7 — ¢1) cos g1 = a. (7)

From now on, let ¢; denote the phase of a wall at the moment where the
particle is reflected towards the other wall for the ith time. We do not count
reflections that lead to a subsequent reflection at the same wall. Then, the map
that gives ¢;+1 as function of ¢; is a map of the interval [0,7/2[ into itself,
dependent only on the dimensionless parameter « = L/A. The map ¢iy1 =
D, () is given implicitly by Equations (6) and (7), and is shown in Fig. 1 for
the value a = 9. Branches with positive slope correspond to a particle arriving
at the other wall at a phase in the interval [0, /2], from where it is immediately
reflected back, while branches with negative slope indicate a twofold reflection
at the other wall, the first reflection being in the phase interval ]r/2, ¢¢]. For
values of ¢; for which the particle hits the other wall in the locking region, the
map has an horizontal branch with ¢;;; = 0. The dashed line is the diagonal
¢ir1 = ¢;. For m/2 > ¢; > m — ¢°, the velocity of the particle is so small that it
cannot hit the other wall in the locking region. A small interval A¢; maps onto
an interval Ag; 1 proportional to the flight time, which is of the order a/ cos ¢;.
For this reason, the density of branches in the map increases with increasing «
and ¢; and diverges when ¢; approaches the value 7/2, where the initial velocity
decreases to zero.



3.2 Periodic Trajectories

The phase &,(0) at which a particle starting at phase zero will be reflected from
the other wall depends on a. It is zero for a € [(2n —1)m + ¢ +sin ¢°, (2n+ 1)7],
for any nonnegative integer n. In this case, a particle that starts in the locking
region will hit the locking region at the other wall, and the periodicity of such
a trajectory is one, as in Fig. 1. A period—doubling bifurcation sequence occurs
when « is decreased below (2n — 1)w + ¢¢ + sin¢°. In Fig. 2, this scenario is
sketched. Since it involves only the first two branches of the map, the other
branches are not shown. As soon as the map starts with a nonzero value, the
period of a trajectory that starts in the locking region becomes two, as shown
in Fig. 2 for a = 5.8. With decreasing a, the endpoint of the trajectory moves
to the right, and finally hits the foot of the second branch, leading to a second
period—doubling bifurcation. For a = 5.743, one observes therefore a cycle of
period 4. When « is decreased further, the end point of the 4—cycle moves to
the left and hits the foot of the first branch, leading to another period doubling.
The last part of Fig. 2 shows an 8—cycle for a = 5.7406. This period—doubling
scenario continues as the end point of the 8—cycle moves to the left, etc., and the
period becomes infinite when the trajectory hits the unstable fixed point on the
first branch. For even smaller values of «, other periodicities are observed that
are not powers of 2.

Fig. 2 shows also that the map intersects the vertical axis with a slope zero.
This is true for any value of a, since the initial velocity does not change with ¢;
for ¢; = 0. For values a only slightly above (2n + 1), the phase ¢;1(0) is small,
and the map intersects the diagonal ¢;11 = ¢; with a positive slope smaller than
one, leading to a stable fixed point ¢* close to zero. This fixed point vanishes
with increasing o via a saddlenode bifurcation, and for values of a slightly
beyond the bifurcation, a particle trajectory can be trapped for a long time in
the neighborhood of the former fixed point, before it escapes and hits ultimately
the locking region where ¢;11 = 0. When « increases further, the number of
reflections in the neighborhood of the former fixed point (or, more precisely, on
the first branch that has positive slope), decreases in steps of size one. Close to
such a decrease, a trajectory that leaves the first branch goes through the upper
right—-hand corner of the map and can therefore have an arbitrarily large period-
icity. Further away from it, a trajectory can hit the locking region immediately
after leaving the first branch. In general, very complex trajectories can occur.
In particular when &,(0) is close to /2, the trajectory will spend some time in
the upper right-hand corner of the map, and a slight change in a may lead to a
large change in the periodicity of the trajectory. However, there exist no chaotic
trajectories. Since the absolute value of the slope of the map is larger than one
everywhere except for small phases, a small phase interval is stretched at each
reflection, until in either hits the absorbing region, or becomes trapped in the
region of small slope and attracted to a fixed point. In both cases, the trajectory
becomes periodic.

Fig. 3 shows the period of a trajectory originally starting in the absorbing
region as function of a. (There may exist other periodic orbits that do not
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Fig. 2. A series of bifurcations when « is decreased.



go through the absorbing region and that coexist with the trajectories studied
here.) All the above-mentioned features can be seen: the large plateaus of period
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Fig. 3. Period of trajectories originally starting in the absorbing region as function of
a.

1 that extend beyond (2n + 1)7 because of the existence of stable periodic orbits
outside the locking region; the stepwise decrease of the number of subsequent
reflections at the first branch as «a increases, and a high periodicity in between
these subsequent plateaus; the period—doubling sequence at the left end of the
period-1 plateaus (due to the finite resolution in « only the 2— and 4-cycles
can be seen. The 3—cycle lies beyond the period—doubling sequence). At the
edges of plateaus of periods larger than one, period-doubling bifurcations and
saddle-node bifurcations can also be seen. The reason is that powers of the
map have properties similar to the ones of the map itself. Fig. 3 therefore has
similar structures on all scales. This type of fractal dependence of the period of
a trajectory on the system parameter is also found for a particle bouncing on a
vibrating platform [7].

4 The Partially Inelastic Particle

The dynamics of the partially elastic particle (0 < n < 1) show a very intricate
structure. The particle velocity is no longer determined by the phase of the
last reflection, and phase space becomes therefore larger. Consequently, we do
now also observe chaotic orbits, in addition to periodic orbits and chattering
orbits. ”Chattering” means that the particle undergoes an infinite number of



reflections at the same wall during a finite time interval thereby loosing all its
kinetic energy with respect to the wall. The latter is also a periodic orbit, and
it is the equivalent of a locking orbit in the completely inelastic case. In the
following subsections we discuss all these phenomena and the interplay between
them as the parameter values are varied.

4.1 Chattering

When the particle hits the wall with sufficiently small relative velocity, it is
reflected infinitely often from that wall during a finite time interval and looses
all its energy, as described for the vertically shaken particle [8]. It subsequently
sticks to the wall until the phase is ¢ = 0, and then leaves the wall with relative
velocity u = 0. Of course, in reality a collision takes a nonvanishing time, and
it is therefore impossible to have an infinite number of reflections during a finite
time interval, but when the collision time is much smaller than the period of
the container oscillation, the number of subsequent reflections at the same wall
can be very large. More importantly, as a result a ”permanent” contact is made
between the wall and the particle, which lasts until the acceleration of the wall
reverses its sign.

In order to understand the chattering phenomenon, let us consider first a
particle colliding with a wall that is accelerated at a constant rate a. This situa-
tion is equivalent to a ball bouncing in a gravitational field, where it experiences
a constant acceleration toward the ground. If the initial relative velocity of the
particle is ug, the relative velocity becomes zero after the time

T = 2nup/a + 2n*ug/a + .... = 2uen/a(l — n)

after the first collision. In our system, the wall acceleration is of the order Aw?,
and chattering can occur if the time 7 is no larger than of the order of the
oscillation period w™!, leading to the condition ug < Aw(1—n)/n for chattering.
For 7 close to 1, ug must be very small, which is only possible if the particle hits
the wall at a phase ¢ within a distance A¢y < /1 — 5 of =, or, equivalently,
if the particle’s trajectory hits the (absolute) position z = 0 (or z = L) within
a time interval of the order At ~ ugAgpy o (1 —n)?/2. The phase space volume
ugAt for which chattering occurs shrinks consequently as (1 — 5)%/2, when g
approaches 1.

The authors of [8] believe that chattering is the generic fate of a parti-
cle bouncing on a vibrating platform, just as in the completely inelastic case,
with the number of reflections between two chattering events diverging as 7
approaches 1. In our system, however, a particle that leaves the wall at phase
¢ = 0 and with relative velocity © = 0, returns to the chattering region only
for certain combinations of a and 7, and is otherwise trapped on a periodic or
chaotic orbit. Even in those cases where a chattered particle is chattered again,
there may exist other trajectories that never enter the chattering region.



4.2 Shrinking of Phase Space Volume, and Periodic Orbits

Due to dissipation, a given phase space volume shrinks with time. In particular,
regions with large initial velocity are depleted, since the energy of a particle
decreases exponentially fast until it reaches the regime where the time between
impacts is of order unity, i.e. where its velocity is of order a. The change of u
with the impact number n is approximately given by

duf/dn = —u(1 — 7).

Using the relation d¢ ~ (a/u)dn, we find
Q

R () ®
for the decrease of u with ¢, with a constant C' that is determined by the initial
conditions. A small initial velocity interval consequently increases rapidly with
increasing ¢, leading to a strong shear of an initial domain of phase space, and
interweaving different domains of attraction, as we shall see below. In fact, every
domain of attraction contains points with arbitrarily large velocity.

Another consequence of the shrinking phase space volume is that all stable
periodic orbits are attractive. It can easily be shown that the product of the two
eigenvalues of the stability matrix is A\; A2 = 2, leading to |\;| = 7 < 1. In the
following, we derive conditions for the existence and stability of periodic orbits
of period one. Writing

1+7
=2n-1 9
p=(on=Vry ] (9)
with some positive integer n, these fixed points are given by
200 — p\/4+ p? — a? 2
sing = ApVELP and u= 1 Cos ¢ . (10)

44 p? 1—19

A stable fixed point can vanish by merging either with an unstable fixed point, or
it can become unstable. The merging of stable and unstable fixed points occurs
when the square root in (10) becomes imaginary, leading to the condition

a2 —4—(2n—-1)m
n>
vaZz—-4+2n-1)r

for the existence of the fixed point. On the other hand, a stability analysis gives
a stable fixed point for

(11)

1 2 1- 2
| <tang < ——

T 1—-p@2n-1)r 1+np@2n—-1)7" (12)

The violation of the left-hand side of condition (12) corresponds to a period
doubling bifurcation (one eigenvalue becomes —1), the violation of the right—
hand side corresponds to a saddle-node bifurcation (one eigenvalue becomes
+1).



4.3 Period Doubling and Strange Attractors

As we have seen in Section 3, every trajectory is periodic for = 0 and may
or may not go through the chattering region ¢ € [m,27[ mod 27. Both types
of orbits can coexist for small 7 if the trajectory that starts in the chattering
region is not trapped by the other periodic orbit. Since the basins of attraction
of the chattering orbit and the normal periodic orbit are strongly interwoven, a
small change in 7 can induce or remove such a trapping. When 7 is increased,
normal periodic orbits typically go through a period—doubling scenario and then
become a strange attractor. This attractor may be a global attractor, or it may
coexist with other attractors, e.g., periodic orbits. Due to the large dissipation,
the attractors are rather flat and seem almost one—dimensional in Poincaré-like
plots, as also known from other systems with large dissipation, like the Lorenz
attractor [11]. Fig. 4 shows the strange attractor for & = 10 and 5 = 0.142. The
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Fig. 4. The strange attractor for « = 10 and n = 0.142.

lower arches of the attractor correspond to the second, third, and fourth reflection
at the same wall and are not present for smaller 1. When 7 increases further, the
number of arches diverges, and the attractor is replaced by a chattering orbit.
As in the Feigenbaum scenario, one can distinguish intermittent periodic
regimes that undergoes in turn a period-doubling scenario. Even after the at-
tractor has been destroyed due to chattering, such intermittent periodic regimes
and subsequent period—doubling cascades can still be observed when 7 is fur-
ther increased. The strange attractor emerging from this last period-doubling



sequence is not destroyed by being chattered, but because its edge points ap-
proach an unstable periodic orbit that ultimately diverts the trajectory from the
attractor and leads it on a periodic orbit.
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Fig. 5. The set of attractors for a = 2 as 5 changes from 0 to 1. The colour changes
are at n =0.5208, 0.6825, 0.6888, 0.7992.

For other values of «, different scenarios may occur. There may be several
period doubling cascades, which can occur for increasing as well as decreasing
values of 7. Period—doubling cascades for increasing n are usually initiated by an
eigenvalue of the stability matrix of a periodic orbit becoming equal to —1, while
cascades for decreasing 7 occur when a periodic trajectory starts to experience
several reflections at the same wall. Moreover, there can be intervals of 7 for
which all trajectories experience chattering, i.e., where the only attractor is the
periodic orbit with chattering. Period—doubling cascades are also observed when
« is varied for fixed 7. Figure 5 shows the various attractors for a = 2 as 5 is
increased from 0 to 1. Different colours indicate different intervals of 7 values.
Increasing 1 from zero (blue part), we see a stable fixed point emerging from
the chattering domain which dominates the dynamics at n = 0. This fixed point
undergoes a complete period doubling scenario as 7 increases further. At the
end of the period doubling scenario we have a chaotic attractor which continues
to grow until it disappears when the particle trajectory becomes chattered. The
latter part of the period doubling scenario exists simultaneously with the stable
three—cycle that is also shown in the figure (red part). This three—cycle moves to
the left as 7 increases, and it survives to n = 1 (green part). Close to = 1, more
periodic orbits exist that are not shown in the figure. Moreover, there are other
small attractors which appear for intermediate values of 5 (the black “dust” in



the figure).

4.4 Ghost Attractors and Domains of Attraction
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Fig. 6. The two domains of attraction for @ = 10 and n = 0.61578. The attracting
fixed point is at ¢ ~ 5.7 and u = 2.7. The domain of attraction of the fixed point is
yellow and green, the domain of attraction of the chattering orbit is white. The red
circles and blue crosses indicate two nearby trajectories.

Since the size of strange attractors increases with increasing n until they become
absorbed by the chattering orbit, strange attractors become rare for higher val-
ues of 7. Nevertheless, the “ghosts” of these attractors still continue to influence
the dynamics by trapping trajectories for a transient time, which can last sev-
eral hundred or thousand reflections. Consequently, the domains of attraction
for normal periodic and chattering orbits become strongly interwoven, as shown
in Fig. 6 for « = 10 and n = 0.61575. There is a fixed point sitting in the center
of the curl, and there is a chattering orbit. White dots belong to trajectories
that will become chattered, yellow and green dots will become attracted to the
fixed point and reach some small neighbourhood after and even resp. odd num-
ber of reflections. The large yellow and green areas belong completely to the
domain of attraction of the fixed point, the white areas belong to the domain of
attraction of the chattering orbit. For two nearby starting points in the region
with the irregularly spaced green, yellow, and white dots, the trajectories follow
a “ghost attractor”, by which they are trapped for quite some time. The release



of the trajectories to either the attracting fixed point or the chattering domain
is seemingly random due to the influence of the attractor, as can be seen from
the blue and red trajectories. Since the two domains of attraction are so strongly
interwoven in this region, a small change in 7 or a can change the fate of the
trajectory that starts in the chattering region and can either lead this trajec-
tory back to the chattering region, or to the periodic orbit. When the trajectory
returns to the chattering region, the period depends strongly on the parameter
values, as in the completely inelastic case. Ghost attractors similar to the one in
Fig. 6 are also observed in the case of a vertically shaken particle and trap the
chattering orbit for a long time [6].

5 Conclusion and Outlook

In this article, we have shown that a particle in a horizontally shaken box has a
very rich behaviour. While chattering, i.e., the loss of all kinetic energy during a
finite time, may occur for any value of the coefficient of restitution smaller than
one, other scenarios like period—doubling and strange attractors are observed as
well. The interplay between chattering, periodic, and chaotic orbits has rarely
been studied before. One example is the forced oscillator impacting on a wall
[12].

We have not discussed the case of a completely elastic particle. For n = 1,
no energy is dissipated during a reflection, and phase space volume is perserved.
Consequently stable periodic orbits are neutrally stable (i.e. both eigenvalues of
the stability matrix are equal to one), and chaotic regions occupy a nonvanishing
phase space volume [13, 14, 15, 10].

We have also neglected the influence of friction between the particle and
the container bottom. Particles that are so slow that they cannot reach the
other wall become trapped in the region between the walls, where they perform
a low—amplitude periodic oscillation. trajectories. This will in particular affect
long orbits like chattering orbits and strange attractors. For sufficiently large
container sizes, this is the fate of all particles [10].

When N > 1 particles are placed in the container, new phenomena will
arise. Three or more particles with a sufficiently small coefficient of restitution
7 < 1—1/N are known to undergo an inelastic collapse, where they loose all
their relative kinetic energy due to infinitely many collisions during a finite time
[16, 17], a phenomenon similar to chatter. But even for parameter values that
do not allow for an inelastic collapse, clustering phenomena occur. The Chicago
group [18] studied a system with one elastic and one thermally moving wall for
approximately ten particles. Most of the particles form a cluster almost at rest,
while a few remaining particles travel between the boundaries at a much higher
speed. We have seen a slightly different phenomenon in the periodically shaken
box, namely the formation of two clusters travelling between the boundaries and
the center of the system, similar to Newton’s cradle.
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