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Winding angles for two-dimensional polymers with orientation-dependent interactions

Thomas Prellberg* and Barbara Drossel†

Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, United Kingdom
~Received 11 April 1997!

We study winding angles of oriented polymers with an orientation-dependent interaction in two dimensions.
Using exact analytical calculations, computer simulations, and phenomenological arguments, we succeed in
finding the variance of the winding angle for most of the phase diagram. Our results suggest that the winding-
angle distribution is a universal quantity, and that theu point is the point where the three phase boundaries
between the swollen, the normal collapsed, and the spiral collapsed phases meet. The transition between the
normal collapsed phase and the spiral phase is argued to be continuous.@S1063-651X~98!13402-5#

PACS number~s!: 05.70.Fh, 61.41.1e
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I. INTRODUCTION AND SUMMARY

The study of polymers is one of the most fascinati
fields of current research, because of its relevance not
for material sciences, but also for the understanding of p
teins. Depending on the chemical and physical environm
a polymer in a dilute solution can be either swollen or c
lapsed, or at theu point, which is the boundary point be
tween the two. Such polymers can be modeled by interac
self-avoiding random walks~SAWs! with an interaction en-
ergye between~nonconsecutive! bonds that are on the sam
plaquette of the underlying lattice. As the temperature is
creased, the SAW undergoes the above-mentioned trans
at a u temperature, provided thate,0. The value of the
exponentn that characterizes the relation between the po
mer lengthN ~monomer number! and its radius of gyration
R, is n5 3

4,
4
7, and 1

2 above, at, and below theu temperature
in two dimensions.

The phase diagram for the polymer collapse becom
more complex when the polymers areoriented, i.e., when
they look different in the two directions along the chain,
e.g., forA-B polyester@1#. In this situation, the interaction
energy between nearby monomers depends in genera
whether their relative orientation is parallel or antiparall
When the attractive interaction between parallel monomer
sufficiently strong, the collapsed polymer winds up to form
spiral. A phase diagram, based on numerical work and e
results, was suggested in Ref.@2#. It contains three phas
boundaries, separating the swollen, the normal collap
and the spiral phases~the latter also being a collapsed phas!,
and meeting at one point.

In that phase diagram, the line along which parallel a
antiparallel interactions are equally strong plays no spe
role. If this is correct, the values of the critical exponents
not fall into universality classes that are determined by sy
metries. In fact, conformal field theory@3# suggests that the
exponent associated with the partition function~usually de-
notedg) may depend continuously on the parallel interact
energy in the swollen phase, while the exponentn remains
constant. This supposed nonuniversality ofg in the swollen
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phase is complemented by the observation that at the
lapse transitiong assumes different values on different la
tices: Its value on the square lattice is different from that
the so-called Manhattan lattice, where each bond of the
tice has a preassigned orientation, thus naturally exclud
parallel contacts. Numerical studies of the swollen ph
@2,4–6#, however, show little indication of a variation ofg
with the parallel interaction strength. These studies invo
exact enumeration@2#, Monte Carlo simulation@4,5#, and
transfer-matrix calculation on a strip of finite width@6#. In all
these studies, as well as in our own exact enumerations
~very small! variation of g with the parallel interaction
strength decreases with increasing polymer length, makin
unlikely thatg should show nonuniversal behavior for muc
larger polymer length.

Furthermore, transfer-matrix calculations on the collap
line @6# suggest that, whenever the antiparallel interactio
energy is lower than the parallel one,g has the same value a
on the Manhattan lattice, and that theu point ~where parallel
and antiparallel interactions are equally strong! is the point in
the phase diagram where the three phase boundaries me
this scenario is correct, the exponentg is a universal quan-
tity, and its value at the collapse transition depends only
whether the symmetry between parallel and antiparallel
teractions is broken.

In this paper, we study thewinding-angle distributionfor
polymers in two dimensions with orientation-depende
short-range interactions. Two monomers that have a par
contact are connected by a loop that encloses one of the
points of the polymer, i.e., their winding-angle differs by 2p.
Since the winding-angle is so closely related to the occ
rence of parallel contacts, it should be equally sensitive t
change in the parallel interaction strength as the exponeng.
In fact, we find analytically a different winding-angle distr
bution at the collapse transition on the Manhattan lattice
on the square lattice. As for the exponentg, the question
arises whether the winding-angle distribution is determin
by simple universality criteria. Usually, winding-angle distr
butions depend only on universal features like symmet
and interaction range, when the length of the polymer
sufficiently large@7#. The important conclusion of this pape
is that the winding-angle distributions for oriented intera
ing polymers are also universal. The main evidence com
from the collapsed phase. Minimizing the free energy,
2045 © 1998 The American Physical Society
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2046 57THOMAS PRELLBERG AND BARBARA DROSSEL
find that the winding angle distribution in the collaps
phase depends only on whether the symmetry between
allel and antiparallel contact energies is broken. Just like
transfer-matrix calculation of Ref.@6#, this modifies the
phase diagram suggested in Ref.@2# and moves the phas
boundary between the normal collapsed and the spiral ph
on the symmetry line, where parallel and antiparallel int
actions are equally strong. Our argument also shows tha
phase transition along this line is continuous, although
merical evidence@2,6# seems to be in favor of a first-orde
transition. Theu point is the point where the three pha
boundaries meet. Due to its special role, it can have an
ponentg and a winding-angle distribution that is differe
from all other points, without leading to nonuniversal beha
ior.

Certainly, this phase diagram is very appealing due to
simplicity. Remarkably, we arrived at our results indepe
dently of Ref. @6#, and prior to learning about that work
While Ref. @6# provided stronger numerical evidence for t
special role of theu point, our work gives insights into the
underlying physics of oriented polymers: Whenever the
tiparallel interaction energy is more negative than the pa
lel one, the winding angle of the polymer decreases dur
the collapse. It is confined in the collapsed phase and
comes zero in the ground state, where the end points mu
at the surface. When the two interactions are equal, howe
the variance of the winding angle increases during the
lapse, and is always proportional to lnN. When the parallel
interaction is stronger than the antiparallel one, the collap
phase has an overall spiral shape, the number of par
contacts being proportional to the length of the polymer.

The outline of this paper is as follows: In Sec. II, w
describe some basic properties of self-avoiding interac
walks, introducing and discussing the partition function a
the general form of the winding-angle distribution. In Se
III, we derive an exact expression for the winding-angle d
tribution at the collapse transition in the absence of para
contacts between monomers. We also show results o
Monte Carlo simulation that agree well with this analytic
result. In Sec. IV, we conjecture the variance of the wind
angle for most of the phase diagram, and we argue that
transition from the normal collapsed to the spiral state occ
when parallel and antiparallel interactions become equ
strong. We compare to the phase diagram obtained from
act enumeration and explain the origin of the discrepanc
Section V summarizes and discusses our results.

II. GENERAL PROPERTIES OF INTERACTING
SELF-AVOIDING WALKS

A. Partition function and the critical exponent g

We model a polymer in two dimensions by a SAW on
two-dimensional square lattice, as shown in Fig. 1.~In some
cases, also a hexagonal lattice is chosen.! The steps of the
walk, which coincide with lattice bonds, can be viewed
monomers. Each site of the lattice can only be visited on
This condition models the excluded volume effect of t
polymer. Starting at one end point and stepping along
trajectory of the SAW, each bond can be assigned the di
tion in which it is passed. By this procedure, the polym
obtains an orientation. Short-range interactions betw
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monomers are taken into account by assigning an energea
or ep to each pair of~nonconsecutive! monomers that lie
on the same plaquette and that have an antiparalle
parallel relative orientation. The weight for each paral
~antiparallel! contact is given by vp5exp(2ep /kBT)
@va5exp(2ea /kBT)#, whereT is the temperature andkB is
the Boltzmann constant.~Some authors@2,6# prefer to pa-
rametrize the model usingba5 lnva andbp5 lnvp instead of
the Boltzmann weightsva andvp .)

The partition function for a polymer ofN steps is then

ZN5 (
ma ,mp

gN~ma ,mp!va
mavp

mp , ~1!

wherema andmp are the number of antiparallel and parall
contacts, andgN(ma ,mp) is the number of configuration
~starting at a given point! with these contact numbers.

For va5vp51, one has a normal SAW without any in
teraction except the self-avoidance, and the partition func
is identical to the total number of SAWs starting at a giv
point, which is known to be

ZN'AmNNg21, ~2!

with A'1.771,m'2.638 @8#, and g5 43
32 @9#. This form of

the partition function is believed to hold also forva ,vp
Þ1, as long as the polymer is in the swollen phase, w
different values ofA andm.

The mean number of antiparallel and parallel contacts
the swollen phase is

^mi&5v i

] lnZN

]v i
'v i S ] lnA

]v i
1N

] lnm

]v i
1 lnN

]g

]v i
D , ~3!

with i 5a or i 5p. While A can depend on bothvp andva ,
the free energy per monomerm does not change withvp .
This was exactly proven in Ref.@2# for vp<va with va51,
and—assuming the scaling form Eq.~2!—it implies that the
number of parallel contacts increases not faster than loga
mically with N. This is not surprising when one realizes th
a SAW can have antiparallel contacts anywhere along
trajectory~i.e., ^ma&}N), while the average number of pa

FIG. 1. An oriented self-avoiding path on a square lattice.
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57 2047WINDING ANGLES FOR TWO-DIMENSIONAL POLYMERS . . .
allel contacts should not increase faster than the numbe
windings, which in turn increases logarithmically inN.

On a more phenomenological level, one can make
following entropy consideration: as long asvp<va , there is
no energetic disadvantage for the polymer to have its
points at the surface, in which case it has no parallel c
tacts. Such configurations correspond to the casevp50. We
can therefore assume that the probability that a rando
chosen configuration~for va>vp.0) has both end points a
the surface is not smaller than the square of the ratio of
surface area to the volume, proportional toR22}N22n. The
entropy loss per monomer due to the restriction of the
points to the surface is of the order 2n lnN/N, and vanishes in
the thermodynamic limitN→`, and so does the change
free energy per monomer. This argument is not restricte
the swollen phase. Consequently, the phase boundary
tween the swollen and collapsed phases cannot depen
vp .

Whenvp is increased beyondva , there must be a poin
where the free energy becomes dependent onvp , as proved
in Ref. @2#. This point, which is a nonanalyticity of the fre
energy, marks the phase transition to the spiral phase~if one
assumes the simplest scenario of only one phase trans
along a lineva5const!. The qualitative phase diagram
shown in Fig. 2.

So far, we have not yet discussed the last term in Eq.~3!.
It seems implausible that a critical exponent, which is a u
versal quantity, should vary within one phase, and this te
should therefore vanish. In particular, a repulsive interact
between monomers~i.e., vp,a,1) is nothing else than an
increased excluded volume, which can hardly modify
value of a critical exponent. If]g/]vp vanishes, the mean
number of parallel contacts is independent ofN for largeN,
i.e., it saturates, in agreement with the above-mentioned
merical results@2,4–6#. If ]g/]vp did not vanish, as sug
gested by the conformal field theory@3#, the number of par-
allel contacts would increase logarithmically inN. An
increase in the excluded volume forparallel contacts, i.e., an
increase invp by dvp , would then have a similar effect a
an increase in polymer length fromN to N1a lnN in the
expression forZN above, witha5(]g/]vp)(dvp / lnm).

FIG. 2. Qualitative phase diagram of interacting self-avoid
walks.
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The following argument suggests that the number of p
allel contacts saturates in the limitN→`. We consider the
caseva5vp51 ~i.e., no interaction!, and assume that th
polymer is radially scale invariant, i.e., that it is statistica
mapped onto a polymer of lengthbN, when the coordinates
rW of all monomers are scaled tobnrW with b.1 ~the starting
point of the polymer being the origin of the coordinate sy
tem!. Under such a radial rescaling, a parallel contact
tween two monomers becomes a ‘‘close encounter’’ a
~mean! distanceb, which means that the contact survive
under rescaling only with a probability 1/b. On the other
hand, a single monomer becomes a chain ofb1/n monomers
under rescaling, and~assuming largeb) thus might have a
number of}bx multiple parallel contacts instead of a sing
one. If we make the very plausible assumption thatx,1, we
find that the number of parallel contacts within a narrow ri
between radiir and r (11e) is proportional toe/r 12x. The
total number of parallel contacts is then proportional
*0

n lnN(1/r 12x)d(lnr) and converges forN→`. This argument
is in agreement with the numerical observation in Ref.@5#
that the total number of ‘‘loops’’ saturates for largeN. It
might be that the conformal field theory in Ref.@3# does not
correctly capture the difference between parallel contacts
‘‘close encounters.’’

At the u point vp5va[vu , the value ofg ~denotedg t)

is known to beg t5
8
7 @10#. It is also known thatg t5

6
7 for a

self-avoiding walk that is part of a percolation cluster h

and therefore has no parallel contacts@11#. Sincen5 4
7 for

these walks, they are at the collapse transition. The aut

of Ref. @6# argued thatg t5
6
7 for all vp,va5vu . If this is

correct, the partition function contains a crossover term cl
to theu point vp5va5vu ,

ZN'mNN1/7f ~DvNC!, ~4!

where f (x)'const for smallx, f (x)}x22C/7 for large x,
andDv5va2vp . C is a crossover exponent. A calculatio
analogous to Eq.~3! gives then^mp&}NC at the u point.
Since the mean number of parallel contacts saturates in
swollen phase and increases asAN in the collapsed phase

~see below!, we expect 0,C, 1
2. For a related problem, the

adsorption of a self–interacting polymer at a surface,

corresponding exponent has the valueC5 8
21 @12#. Since the

adsorption of a polymer at its own surface~i.e., spiral forma-
tion!, is somewhat different, the two crossover expone
need not be the same.

In the low-temperature phase, the polymer has a fin

density. Thereforen5 1
2, and surface effects become impo

tant. The partition function is assumed to have the gen
form @13#

ZN'AmNkANNg221. ~5!

We will argue below that, forvp5va , the number of par-
allel contacts is proportional toAN, while it saturates for
vp,va .
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2048 57THOMAS PRELLBERG AND BARBARA DROSSEL
B. Winding-angle distributions

For self–avoiding walks, the winding-angle distribution
generally described by a Gaussian

p~u!}exp~2u2/2C lnN!, ~6!

with a varianceC lnN @14,15#. Such Gaussian distribution
with a variance proportional to lnN occur generically for ra-
dially scale invariant polymers, given that the winding cen
is visited only a finite number of times@7#. The value ofC is

C52 in the swollen phase, andC5 24
7 at theu point of a

polymer with no orientation dependence in the interact
@15#, as obtained from an analytical calculation on an h
agonal lattice. The valueC52 is nicely confirmed by an
exact enumeration on a square lattice, where we ob
C52.0005(6) for polymers up to lengthN526, using a dif-
ferential approximant analysis@16#.

The value ofC in the collapsed phase~for vp5va) is not
known, but it is larger than the previous two values, since
winding angle apparently increases during the collapse.
dense SAWs,C is known to beC54 @15#. Since they have
no self-interaction apart from self–avoidance, dense po
mers have their finite density due to an external pressure
are ‘‘hot,’’ in contrast to collapsed polymers, where the
traction between monomers determines the density. For
reason, the density of monomer-monomer contacts is dif
ent in both cases, and it is not clear whetherC can be the
same.

In the next section, we will deriveC5 6
7 for a self–

avoiding walk that is part of a percolation cluster hull, a

therefore, has no parallel contacts. Sincen5 4
7 for these

walks, they are at the collapse transition. The value ofC in
most other parts of the phase diagram will be discusse
Sec. IV.

III. WINDING-ANGLE DISTRIBUTION
AT THE COLLAPSE TRANSITION

In this section, we calculate the winding-angle distrib
tion for a SAW on a Manhattan lattice at the collapse po
Fig. 3 shows such a walk. The Manhattan lattice is an ar
of alternating one-way streets, thus not allowing parallel c
tacts and always keeping the way back to the origin op
SAWs on this lattice can be grown kinetically in a very e
ficient way, since they are trapped only through loop form
tion. One starts at the origin and constructs a path by goin
each step in one of the allowed directions. When the p
closes to a loop, it is canceled. Since this procedure g
contacts a higher statistical weight than free steps, the p
mer has an effective interaction. In fact, one can show
the path can be mapped onto the perimeter of a percola
cluster @11#, which in turn is known to have an expone

n5 4
7 @17#. This means that the polymer is at the collap

point.
In order to find its winding-angle distribution, we have

calculate the winding-angle distribution of parts of perco
tion cluster hulls. The procedure is similar to the one in Re
@15,17#, and is conveniently performed using theO(n)
model on an hexagonal lattice. We start with theO(n)- loop
model @18# with the partition function
r
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ZO~n!5E )
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dNSk)̂
i , j &

~11bSW i•SW j !5(
G

b lnP. ~7!

i , j , andk are lattice sites,̂i , j & are nearest neighbors, andSW

is an n vector: uSuW 25n. In the second line, the sum is pe
formed over all graphsG of P nonintersecting polygons o
total lengthl . For nP@22,2#, the loop model has a critica
point bc5@21(22n)1/2#21/2. For n51 and b51, each
loop has the same weight. These loops can be interprete
percolation cluster hulls for site percolation on the dual
angular lattice at the percolation thresholdpc51/2. In fact,
the scaling indices at this point are identical to those co
puted for the Manhattan latticeu point @19#, which therefore
is in the same universality class.

We are interested in the winding-angle distribution of
segment of a loop. Figure 4 illustrates the following calcu
tion. We look at the function

GO~n!~XW 2YW ,e1 ,e2!5(
G1

WO~n!~G1!exp@ ie1p~n11n18!

1 ie2p~n21n28!# . ~8!

FIG. 3. An interacting self-avoiding walk on the Manhattan la
tice at the collapse transition.
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57 2049WINDING ANGLES FOR TWO-DIMENSIONAL POLYMERS . . .
G1 are like the graphsG above, but with both pointsi and j
lying on the same loop. Both partsS andS8 of the loop are
given the same orientation fromi to j . n1 (n18)andn2 (n28)
count the number of intersections of the oriented pathS
(S8) with L1 and L2, respectively, crossing in different d
rections having a different sign. Without the phase fac
GO(n) is a four-spin correlation function, with two spins ati
and two spins atj .

To calculate Eq.~8!, we transform it into a solid-on-solid
~SOS! model. Height variablesf are defined on the center
of the hexagons, such that two adjacent heights are equ
different by 6p. The polygons, once arbitrarily oriented
become domain walls with a step of1p on the left of any
oriented line. Along the straight line connectingXW to YW , the
height changes by 2p. In the SOS language, this correspon
to a dislocation line with a vortex atXW and an antivortex atYW
@17#. At the vertices of the honeycomb lattice, the SOS wa
turn by 6p/3. The SOS weightWSOS is calculated as the
product along the walls of local factorsb exp(iu)
@b exp(2iu)# at each left~right! turning vertex. Summing
over the two independent orientations of each polygon~ex-
cept, of course, the special polygon connectingi and j ) gives
a phase factor 2 cos6u for each polygon. The SOS weight o
a graphG1 is then

WSOS~G1!5b lnPexp@ iu~n12n2!1 iu~n18 2n28 !

16iu~P12P2!#.

n1 and n2 (n18 and n28 ) are the total number of local lef
and right turns of pathS (S8). P1 and P2 are the total
number of right and left polygons surroundingi and j . In the
asymptotic limit, we have n12n256(n11n2) and
n18 2n28 56(n181n28). Let us define the SOS correlator

GSOS~XW 2YW ,e18 ,e28!

5(
G1

WSOS~G1!exp@ ie18f~XW !1 ie28f~YW !#.

Equating this correlator with Eq.~8! above givesn52 cos6u,
ande185e11e0, e285e21e0, ande11e250. The new con-
stante0 is e0526u/p.

FIG. 4. Illustration of the calculation of the winding-angle di
tribution.
r,

or

s

Now, atb51, the SOS model renormalizes onto the lo

temperature phase of the Coulomb-gas model forg5 2
3 ~if

n51) @18#, and

GSOS~e18 ,e28!5uXW 2YW ue18e28/g1gm1m2. ~9!

The magnetic chargesm1 andm2 arem152m15 1
2 @17#, due

to the vortex pair.
The winding angle is finally extracted from

^exp@ iep~n12n21n182n28!#&O~N!5exp~2e2g21lnuXW 2YW u!.

Fourier transformation yields immediately a Gaussian dis
bution forn12n21n182n28 . Each of the two pathsS andS8
has the same number of intersections withL and L8, and
thereforen15n18 andn25n28 . ~In certain situations,n1 and
n18 differ by one, but this effect can be neglected in the th
modynamic limit, where the number of intersections b
comes very large.! In terms of the angle
û5p(n12n21n182n28) the resulting distribution reads

P~ û !5~16pg21lnuXW 2YW u!21/2exp~2gû2/16lnuXW 2YW u!.

Since both paths make exactly the same contribution toû,
the winding angle of one path is given byû/2. For large
distancesuXW 2YuW , the windings aroundXW andYW are indepen-
dent of each other, and have the same probability distri
tion. ReplacinguXW 2YuW by Nn (N being the length of the
polymer!, we arrive at the winding-angle distribution of pa
S around pointXW ,

P~u!5~4png21lnN!21/2exp~2gu2/2n lnN!. ~10!

Insertingg5 2
3 andn5 4

7, we findC5 6
7.

Our numerical simulations confirm this result nicely. Fi
ure 5 shows the winding-angle distribution for polymers
length up to 105, and the variance of the winding angle fo
length up to 106. The solid line is the analytical result.

In the swollen phase, we believe that the constantC is
C52 for a SAW on the Manhattan lattice, i.e., the windin
angle distribution is the same as for the normal SAW. T
above calculation cannot be repeated in the swollen ph
sinceb,1 in Eq. ~7! above. Although there exist still two
paths connectingi and j , they now have different weight. A
path ofN steps will close to a loop after a mean number
steps that diverges, and therefore the second path has in
no weight at all. We expect to arrive at the same situation
for a normal SAW, which was discussed in Ref.@15#. Con-
formal field theory@3# suggests also thatC does not depend
on the strength of the parallel interactions. Only the magn
charges in Eq.~9! are affected by it, and these drop out wh
the winding-angle is calculated.

The calculation of this section can easily be generalized
‘‘watermelon configurations,’’ where the pointsi and j are
connected byL paths. The constantC characterizing the
winding-angle distribution for one of these paths is th
CL54n/L2g.



e
r

as
at
a
on
x
t

es
t
iv

th

g

e

le
ll
r,
d

ne
2
n

r-
t-

ort
the
-
-

ion
the
a

-
the

ts

l-
ne
s

aks

on
ps

t

2050 57THOMAS PRELLBERG AND BARBARA DROSSEL
IV. WINDING ANGLES FOR COLLAPSED POLYMERS,
AND THE PHASE DIAGRAM

The above resultC5 6
7 was obtained in a situation wher

the polymer could not make any parallel contacts. We the
fore suggest that this corresponds to the c
vp50, va5vu . However, a SAW on a square lattice th
has no parallel contacts is different from a SAW on a M
hattan lattice, since it can be trapped without loop formati
Only if the range of the repulsive parallel interaction is e
tended to next-nearest neighbors does the way back to
origin always remain open. If one assumes that all th
situations are equivalent to each other, one must draw
conclusion that the precise range and form of the repuls
interaction between parallel bonds is not important, and

C5 6
7 holds on a finite part of the transition line. Assumin

only one nonanalyticity on this line, we conclude thatC5 6
7

on the entire linevp,va , and that it jumps toC5 24
7 at the

u point. The u point is consequently the point where th
three phase boundaries meet.

Of course, other interpretations are in principle possib
e.g., that the interacting SAW on the Manhattan lattice fa
into a separate universality class. Our argument, howeve
supported by our exact enumeration data. Although they
not allow a good estimate of the value ofC, they show
clearly that for both casesvp51 and vp50 the winding

FIG. 5. Winding-angle distribution at the collapse transition
the Manhattan lattice. When rescaled, the distributions colla
onto a Gaussian. The unit lengthN0 is determined from a linear fi
of ^u2& vs lnN ~see inset!. c is a constant.
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angle decreases during the collapse~i.e., with increasing
va), while it increases during the collapse along the li
vp5va . The constantC should therefore be smaller than
for vp,va5vu , and assuming universality, the conclusio

C5 6
7 follows naturally. It is the equivalent of the transfe

matrix result that the exponentg assumes its Manhattan la
tice value6

7 for all vp,va5vu , and that it jumps to8
7 at the

u point vp5va5vu .
Our universality conjecture finds its strongest supp

when one studies the collapsed phase of the polymer. In
following, we argue thatC50 in the collapsed phase when
ever vp,va (C50 should also hold for a collapsed poly
mer on the Manhattan lattice!, andC5` whenvp.va . We
start with the assumption that the winding-angle distribut
does not change when one goes slightly to the right or to
left of the line vp5va , and we lead this assumption to
contradiction.

On the diagonalvp5va , the winding-angle distribution
is Gaussian with some unknown but finite constantC. Since
C increases when going from the swollen phase to theu
point, it certainly becomes even larger in the low
temperature phase. A polymer in the collapsed phase on
diagonalvp5va has a finite density of contacts along i
trajectory, leading todmp}Rdu, and ~with du}dlnN and
R}N1/2) to mp}N1/2.

Let us first consider the casevp.va , with
vp2va5Dv!1. We compare the free energy of a co
lapsed polymer in a globule configuration similar to the o
on the linevp5va to the free energy of a spiral that i
composed of globules ofn monomers~see Fig. 6!. The dif-
ference in internal energy between the two is~neglecting
constant coefficients!

DU.TDv@AN2~N/n!An#.

When one transforms a globule to a spiral, one bre

e

FIG. 6. A spiral composed of globules.
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O(AN) parallel contacts, and one createsO(N/An) new par-
allel contacts. The leading contribution to the difference
entropy is

DS.2~N/n!lnn.

This is the number of globules times the entropy loss
globule when the end points of the polymer are restricted
the surface of the globule~see Sec. II A!. The entropy dif-
ference between one large globule ofN monomers andN/n
globules ofn monomers~without any constraint for the en
points! increases more slowly thanO(N), since the entropy
is an extensive quantity. For anyDv, the gain in binding
energy 2U is larger than the loss in entropy, whenn is
sufficiently large. By minimizing the free energ
DF5DU2TDS, we find ~to leading order!

n}Dv22. ~11!

The correlation lengthj}An, which is proportional to the
globule radius, diverges asj}(Dv)24. These results are
correct forN@n@1.

Spirals have a considerable entropy close to the transit
However, it is difficult to see the continuous character of t
phase transition in simulations. The spiral shape can only
seen when the polymer length is much larger than the g
ule sizen. The transition appears to be shifted to the right
a distanceDv5O(1/AN), as in Ref.@2#.

Now, we consider the case vp,va , with
va2vp5Dv!1. We compare the free energy of a co
lapsed polymer in a configuration similar to the one on
line vp5va to the free energy of a polymer that has its e
points at the surface. Bringing the end points at the surf
replacesO(AN) parallel contacts by antiparallel contact
decreasing the internal energy by an amount proportiona
DU.DvAN. The entropy loss due to this restriction is
the order lnN, as shown previously. Having the end points
the surface means always a decrease in free energy in
thermodynamic limitN→`. This means that the winding
angle and the number of parallel contacts must saturate in
thermodynamic limit. Only initial and finite segments
length n}(Dv)22 of the polymer may behave like a poly
mer at the transition line. As for the spiral phase, the co
lation length diverges asj}(Dv)24.

Thus we have shown that the constantC of the winding-
angle distribution in the collapsed phase has the same v
C50 for all vp,va . It would be rather surprising if this
universal feature did change at the collapse transition o
the swollen phase, where contacts play a less important
The study of the collapsed phase therefore provides conv
ing support for the hypothesis that the winding-angle dis
bution is a universal quantity. The constantC characterizing
the winding angle distribution can now be given for most
the phase diagram, as indicated in Fig. 7.

We have also seen that the number of parallel cont
saturates in the collapsed phase forvp,va . This result
should also hold in the swollen phase, where contacts
less important, leading to a universal exponentg.

Finally, let us discuss the phase transition between
swollen and the spiral phase. Numerical results indicat
first-order transition@4,5#. The following argument support
r
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these findings: Assume again that a spiral near the trans
line is composed of finite–entropy ‘‘balls’’ of a certai
monomer numbern and a radius proportional tonn. When
the parallel interaction is sufficiently strong to induce a c
lapse, we can expect that the number of parallel conta
between two neighboring balls increases with some powe
the ball radius.~For a parallel interaction strength that cann
induce a collapse this power is zero.! Performing a calcula-
tion similar to the one above, we again find the optimal b
size that minimizes the free energy. In contrast to the ab
calculation, the internal energy difference between the t
phases does not vanish at the transition line, leading now
a finite optimal ball size. It diverges only when theu point is
approached.

The shape of the phase boundary between the swollen
spiral phases is not easy to guess. When one assumes@2,4,5#
that the spiral has no or little entropy, the transition from t
swollen to the spiral phase occurs for smaller values ofvp
whenva decreases. However, we have shown earlier in
section that the spiral state has considerable entropy clos
theu point, and the argument in Refs.@2,4,5# cannot be used
for that part of the phase diagram. An alternative argum
follows from comparing the adsorption of a self-interacti
polymer at a surface with spiral formation~i.e., adsorption of
the polymer at its own surface!. It is known @12# that the
adsorption of a polymer at a surface becomes more diffi
when the attractive interaction within the polymer increas
Similarly, one can expect that the spiral formation becom
more difficult when the antiparallel interactions within th
polymer are stronger, thus confirming the shape of the ph
boundary suggested in Ref.@2#.

V. SUMMARY AND DISCUSSION

In this paper, we have studied oriented polymers w
orientation-dependent interaction. We have argued that b
the winding-angle distribution and the exponentg are uni-
versal quantities, in agreement with transfer-matrix calcu
tions for the exponentg @6#. This result is closely tied to the
observation that theu point is a special point in the phas
diagram, where three phase boundaries meet. When pa

FIG. 7. Value of the constantC in most parts of the phase
diagram.
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contacts have a different energy than antiparallel contac
symmetry is broken, and a phase transition takes place.
predict that this phase transition between the collapsed
the spiral phase is continuous. The existence of this ph
transition is particular to two dimensions, since in high
dimensions a parallel contact can locally be transformed
an antiparallel contact, without changing the conformation
the polymer at a large scale.

We succeeded in obtaining the winding-angle distribut
for the case where antiparallel contacts dominate, at the
lapse transition as well as in the low-temperature phase.
have also argued that the number of parallel contacts s
rates in the thermodynamic limit whenever the antipara
energy is larger than the parallel one.

There are three challenges left: The winding-angle dis
bution along the phase boundary between the collapsed
the spiral phase is still unknown. As mentioned in Sec. II
collapsed polymers are different from dense polymers,
which C54. Second, the crossover exponentC introduced
, a
e

nd
se
r
to
f

n
l-
e

tu-
l

i-
nd
,
r

in Eq. ~4! needs to be determined. Only if theu point is a
special point in the phase diagram, does the number of
allel contacts increase withNC at theu point. Otherwise, it
increases logarithmically inN, i.e., C vanishes. Finally, the
transition from the swollen phase to the spiral phase is
very well understood. In particular, the precise shape of
transition line and the laws by which the ‘‘ball’’ size di
verges at theu point, are unknown.

Note added. After submission of this paper, a report b
Barkema, Bastolla, and Grassberger~cond-mat/9707312,
submitted to J. Stat. Phys.! appeared, where polymers wit
orientation-dependent interactions are studied numerica
The results are in full agreement with the conclusions of t
paper.
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