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Uniform g-series asymptotics for staircase polygons
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Abstract. We present a wniform asymptotic expansion for the area-perimeter generating
function of staircase polygons by calculating the asymptotic behaviour of the alternating g-
series 1¢1(0; ¥;:4,x) as ¢ ~ 1~ from a new integral representation. This leads to a direct
calculation of the scaling function for this model.

1. Introduction

Recently, we investigated the tricritical behaviour of geometric cluster models [1]. In
this class of models we have the vesicle model of self-avoiding polygons, enumerated
by perimeter and area. Interest in this model resulted from the study of models of closed
fluctuating membranes {or vesicles). The influence of an osmotic pressure difference on such
closed membranes can be studied by a lattice model of closed surfaces. In two dimensions,
this is just the geometri¢ model of self-avoiding polygons, which was investigated by Leibler
et al [2]. Among other parameters, they analysed its scaling behaviour with respect to area
and perimeter fugacities. The general features of this model were established by Fisher
et al [3]. They showed rigorously that the model of self-avoiding polygons on the square
lattice Z? exhibits the singularity diagram displayed in figure 2, characterized by an essential
singularity at unit area fugacity. Moreover, they argued that the same singularity diagram
exists for a suitably defined model of closed hypersurfaces in Z¢ in dimension d > 2. They
also presented numerical estimates for the critical exponents associated with this model.
However, as very little else can be said rigorously about this model, it is desirable to look
for simplified models that might be more amenable to rigorous treatment, hopefully without
destroying the very transition that one intends to study. For geometric cluster models, it is
well known that the introduction of a suitable constraint of (partial) directedness can lead
to exact solvability (see e.g. [4]). Introducing such a constraint into the vesicle model of
self-avoiding polygons leads to various models of partially convex vesicles [5-7). These
models turn out to be solvable, in the sense that an explicit expression for their generating
functions can be given. These expressions can be obtained from recurrence relations or
functional equations, and are generally quotients of alternating g-series. However, the lack
of suitable asymptotic expansions for these series forced us to use indirect methods to
extract the critical behaviour [5-7]. In the discrete case, a perturbation expansion along
with a tricritical scaling ansatz led to the computation of the complete set of critical
exponents from nonlinear functional equations. Alternatively, we considered, as a further
simplification, a semicontinuous version of these models. Here, one can derive nonlinear
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differential equations from which we exiracted scaling solutions via the method of dominant
balance. In particular, it turned out that the semicontinuous versions of the three models
of staircase polygons, directed column-convex polygons, and column-convex polygons all
share the same exponents and scaling function.

In order to calculate the scaling behaviour for the discrete lattice models, we thus
had to either invoke a scaling assumption or a universality argument to bridge the gap.
The aim of this paper is to now close this gap by presenting a direct calculation of the
asymptotic behaviour of the generating function. Following a suggestion of Philippe Flajolet
to Richard Brak [8] we choose to attack the problemt by seeking a suitable contour integral
representation of the g-series. A study of its saddle-point structure then leads us to a suitable
asymptotic expansion via standard techniques. In particular, we come to understand the
{mathematical) origin of the singuIar point in this model: it is caused by the collision of
two saddle points.

The strocture of this paper is as follows. In the remaining part of this section we
briefly introduce the model of staircase polygons and give its generating function. After a
brief description of the singularity structure of this generating function we then present our
main result and read off the critical exponents and the scaling function for this model. In
section 2 we formulate a contour integral representation for the relevant g-Bessel function
and in section 3 we derive some asymptotic expressions for the g-products which appear
in the representation. In section 4 we then use the contour integral to derive a uniform
asymptotic expansion for g-Bessel functions (involving Airy functions) and in section 5
we conclude by applying these techniques to the generating function of staircase polygons.
We point out that these techniques can also be applied to other partially convex polygon
models. Due to the calculations from the semicontinuous models, we expect to get similar
results as for staircase polygons, although the calculations will be more difficult to carry
out in detail.

The set of staircase polygons is defined as the set of all polygons on the square lattice
whose perimeter consists of two fully directed walks with common start and end points (see
figure 1). We denote by ¢, the number of all staircase polygons with 2n, horizontal steps
and 2n, vertical steps which enclose an area of size m, and define the polygon-generating
function G(x, y,qg) to be

G(x,3,9) =D cn " x"y"q™ . (L.1)
In [5] it was shown that the generating function satisfies the nonlinear functional equation
Gx,y,9) ={Glgx,y.q) +gx}{y + G(x, y, )} (1.2)

from which one can derive an explicit expression

_ (Hgx.qy.9) . & (=g
G(x'y’{n_y( H(gx, y, ) _1) with H(x'y’Q)_§(q;q)n(y;q)u

(13)

Figure 1. A staircase po[ygon with width n; = 10, height ny = §, and area
m = 45, having weight x1%y3¢*. The marked sites denate the start and end
of the fully directed walks.
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where we have used the g-product notation

R-1

@)= [J(1~1g4™. (1.4)
m=0

The function H(x, y, g) = 19:(0; v; g, x) is a g-deformation of a Bessel function [9]. One
sees that the limit ¢ — 17 is singular. However, from the functional equation (}.2) it is
clear that in the limit ¢ = 1 the perimeter generating function & (x, ) is, in fact, algebraic,

. -
G(x,y,1)=1‘;"y_\/(1_;“y) —xy. (1.5)

The singularity strocture of this generating function is of particular interest to us. We
briefly sketch the form generally expected for polygon maodels (for details see Brak ez al [1]).
Consider for simplicity the generating function ,

G(x,q) = G(x,x,q9) = Y _chx"q" (1.6
where ¢, is the number of pelygons with perimeter 2n and area m. The finite-area partition
function for polygons with fixed area m is then

Anln) =Y cix". (1.7)

G{x, q) is a power series in g with coefficients A,,(x), and its radius of convergence, g.(x),
is given by

%(x) = lim_ A (xy~t/m, (1.8)

A schematic plot of g.(x) is shown in figure 2. The existence of this limit can be shown
using sub-multiplicative inequalities [3]. There exists a critical value x; such that g.(x) =1
for 0 < x € x. For x < x, the generating function has an essential singularity in g
at g = 1. On the line ¢ = 1, G(x, 1) is finite for x < x; and is singular with an exponent
1 as x approaches x,. At x,, the generating function is singular with an exponent }; as
.q — 1. For x > x;, the generating function has a simple pole as g approaches g.(x) < 1.
The point (1, x;) is an example of a ‘tricritical” point [1], and one expects the singular part
of the free energy to show a crossover behaviour of the form

G"8(x, g) ~ (1 - @) F({1 — g} P — x3) (1.9
with ’
R if 7>
f(Z)N{1 e (1.10)
ir
trieritical’
point

g:(x)

Figure 2. The schematic form of the radius of convergence of
0 Ll ! the area-peritneter generating function for partially convex vesicle
0 el 7 models.
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where ¢ is called the tricritical crossover exponent and 3, = y/¢. Here, f and z may be

rescaled by non-universal factors, but the scaling function f and the exponents are universal.
More precisely, the scaling function f (if it exists) is defined as a limit where the

argument z = {1 — g} %{x, — x} is fixed and x — x, from the appropriate direction, i.e.

F@ = lim ({z — 5}/2)"G5(x. 1 = (fr = x)/0)' /%) . (L.11)

One sees from this definition that such a scaling function is only defined on approaching
the tricritical point, and its validity outside a neighbourhood of that point is not guaranteed.

The calculation presented in this paper will give this scaling function f explicitly. Our
main result implies that

1—x—y Al (oe=2/?) 1—x~y\?
G(x,y. q) 7+ {wm_ iAiee ) > —xy (1.12)
as & = —logg — 0, where « is some complicated function of x and y which simplifies to
4 M1 —x—y\?
a(x,y) ~ ("1""1"(}"—_;;)2) {(T) —xy] (1.13)

for (1 —x ~ y)? & 4xy. Moreover, our result is valid uniformly for a whole range of x and
¥ as £ — (0 and not just in the scaling limit which involves the simultaneous limits ¢ — 0
and ¢ — 0. This can be easily seen from (1.12), as the factor in the last bracket of (1.12)
approaches —1 in the limit £ —> 0, so that we recover (1.5) completely. In order to read off
the scaling function mare easily, we further restrict ourselves to x = y so that we can write

g2 g s AT @R /4 — x}e72)

[ d —l- —
Glx,g)~3—x+ AT/ — ) (1.14)
Ignoring the non-universal factors, this shows that the scaling function i given as
Ai'(z)
Z)=—— 1.15
f(z A0 (1.15)
and that
2. A contour integral representation for g-Bessel series
We are interested in finding a suitable contour integral representation for
o n
(—x)" @
Hix,y,q) =) d @.1)

e ACHAN (T

For the sake of clarity, we first illustrate our reasoning through some elementary
examples. One naturally begins with the standard trick of writing an alternating series
as a contour integral which utilizes the fact that the residue of 7/ sin(wrs) at integer n is
equal to (—1)". Provided that the coefficients of an alternating power series can be extended
to an analytic function in the vicinity of the rea] axis, one can write

S5 n 1 & i
nZ={;(—Jc) = 7— V{éx c(s) Sin0es) ds (2.2)

where the contour is counterclockwise around the zeros of sin(ws). After a suitable
deformation of the contour C, this is usvally amenable to some sort of saddle-point
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approximation in the left half-plane. As a simple example, consider the exponential function
for negative argument, which we can write as

o0 Y
R _ L X w1 f”‘w ,
D =) = I b Te D © T L YT 2D

for some ¢ > 0, where we were able to considerably simplify the integrand by using the
reflection formula

Il —s) =

. 24
sin(zs) 24
In this example, the poles of the gamma function cancel with the zeros of sin{mrs) in the
left half-plane, so that that the integrand is, in fact, analytic for Re(s) < 0. This is a
considerable simplification, as it reduces the restrictions on possible contour deformations.
Naturally, we can use the same trick for, say, the g-exponential, and we get

o0 ) S ;
(=x)" 5] 1 c+ioo i ] o
*i o=, ___.)__q_ ==—7= "'"_g"‘_ - ds (2.5)
= (g @ 2mt oo (5 q)s sin(zms)
where we extended the g-product (x; g}, to complex values via
i l-xg" (59
(_x; ) = = . A 2_6
2 L!, L= xg"" " (X4%; @)oo )

While this representation can be used, for example, to derive nice transformation
formulae [9], it is not that well suited to the derivation of asymptotic exparnsions. What
is required is a suitable g-generalization of (2.4). The g-gamma function is conventionally
defined as

To(s) = (1 = g)'~*(g; g)s—1 ' 2.7)
s¢ that in analogy to the product I'(s)I'(1 — &) we are led to consider

Ag(s) = (g1 9)s—1(g: g)-s - (2.8)
One readily shows from (2.6) that .

Ag(s) = Ag(1 =) ' 2.9

Ag(s) = A, (s 42 ) 2.10)

—logg
Ag(s)=—q A5+ 1). 2.1

A4(s) has simple poles at s = n + m2mi/logq for integer m and n, and a straightforward
calculation gives the residues:

25 ] _ (=1)g®@
logg | logg
A, (s} has no zeros, so that its inverse 1/A4(s) is an entire function. Using Jacobi’s triple
product identity one can find alternate expressions for A, (s) [10], but for our purpose the
knowledge of the singularity structure along with the values of the residues suffices.

Using Ag(s) rather than 7/ sin(zs) provides a much better representation for the g-
exponential

) logg x* logg x\’
; = — —A = —== - Y ) I . 2.13
(i )ee =~ § T A5y s = c(q) (@ Q)memr s @.13)

Res [Aq(s); s=n+m (2.12)
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{a) {5)

2% contour £'

cot

contour C

Figuare 3. The contours of integration used in (a) equation (2.13) and (&} equation (2.14). The
crosses indicate the poles of the integrand.

The integrand is analytic in the left half-plane, but the contour is restricted by the poles
of the integrand at s = n 4+ m2xi/logg for integer m and non-negative integer n. We
choose C to consist of straight-line segments between —xi/logg + oo, —wi/logg — ¢,
7i/logg —c and i/ log g -+ oo for some ¢ > 0 (see figure 3(a)). It is convenient to change
the integration variable to z == g~ so that '

(4: Qoo [ 787/ 1080
2mi 55 {2 Peo
The integrand has poles at g~ for non-negative integer » and a branch cut from zero to
minus infinity. The contour £’ now runs from ico to ie’ for ¢/ = g~°, then in a semi-circle
centred at zero to —ic’ and further to —ioo and can easily be transformed to run along the
straight line (o +i00, p—ico) for some 0 < p < 1 (see figure 3(b)). With these introductory
remarks we have motivated our first lemma.

2.14)

(x; @loo =

Lemma 2.1. For complex x with jarg(x}| < = and 0 < g < 1 we have
(5 Qoo _ L fﬁ+f°° it
@ @oo 271 Jpieo (2 Do
Proof. Define contours Cy = Cjy UCx U C3, where Ci, = {g™V"2exp(it) : |t] < m/2},

CL = {t:q"* < |t] € g7V}, and C* = {g"2exp(it) : [t| < x/2}, and integrate
anti-clockwise over Cy to get

1 f 7~ logx/logq N [z—]ugx,l logg :| N (_Hx)nq(g)
— — dzr = Res —_—z= A = - —_— (2.16
2riJe, (T ¢l ,,;0 (Z5 g)eo ? g (CHEAMC R (2.16)

dz O<p<l. (2.15)

In order to estimate the contribution from C},, we first need a bound on the integrand for
large |z| with |arg(z)] < =:

2
z—logx/logg < Jx]V¥12 exp(_;:,gq)
(Do | (g2 oo [1plg—172 = 1)

as it is dominated by the product in the denominator. Therefore we have

=0{(g""?) @.17

sup
lzl=g X112

—logx/logg —logx/logg
?Q d<mg2 sp || =0("A). (2.18)
¢, @D lef=g=r-112 | (25 §)oo
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Now we can write

— (,) 1 —-logx/lugq
o gy L T
(g Dnla Tloo N 270 Jo, (2 Qoo

—~iglf? —logr/ logg
Zm f_ fcs f G De “Gow - @19

where in the last step we changed the direction of integration. As we have shown that the
integrand decays to zero at infinity we can now deform the contour to (p — ioco, p + ico).
This concludes the proof of the lemma. .

For x = g we get the identity

1 pHoo dz
Ei— p—ico 2(Z; Qe

=1 : (2:20)

witere the integral is independent of g. This identity can be understood as follows, We

transform the contour to a circle around the origin, so that |z| < 1. Now, we are allowed -
to expand (z; g)~! = > 02" /(g; ). and upon exchanging integration and summation we

observe that only the term # = O with a residue of 1 coatributes to the integral.

As the proof shows, it is of course not necessary to proceed via the function A, (s)
to derive the contour integral representation (2.15). In hindsight, there would have been
a more direct way to write down the contour integral representation for the g-exponential
function by simply observing that (z; g)7! has poles at z = ¢g™" for non-negative integer
with residues

(-1rg®
(@: Dnlq: Do

and that these residues already contain much of the structure of the coefficients of the series.
Generalizing the above to H(x, v, g) is now immediate.

Res[(z; )iz =¢""] = - (2.21)

Lemma 2.2. For complex x with Jarg(x)| < 7, complex y with y # g™ for non-negative
integer n, and 0 < g < 1, we have

1 {(7: 9o f PHR (3 /2 @)oo £-log/log
H(x,y, ogx/logq 4, D<p=<li. 222
) = G e i @ Do P @22)

Proaf. We choose contours Cy. Cx, C* and Cy as in the proof of lemima 2.1 and show that
the contribution from the integral over C, tends to zero. For this, we estimate the integrand

as

N;l ? _ N+1/72.
sup z—logx/!agq (/2 Do ’ < %] fzexp (-:[:;gg) (~lylg i 9o
lzl=g—#-1/2 (z: )0 (942 @)ec Hr‘:;o(q-n—l/z —1
= 0(g""). (2.23)

Now, intégration over Cy by computing the residues at ¢~ and taking the limit N — co
completes the proof. d

We now have a sujtable representation of H to consider the ¢ — 1™ asymptotics.



1296 T Preliberg
3. Asymptotics of g-products

In order to get an asymptatic expansion from the contour integrals in the previous section
we first need to derive some asymptotic expansions for the g-products which appear in
the integrand. As these g-products are basically g-deformations of the gamma function,
one needs to derive a g-analogue of Stirling’s formula [11]. For a heuristic derivation, we
simply take the logarithm and expand

log(t; g)eo = Zlog(l —tg") = ZZ (tg™)™ __ | G _

n=0 a=0 m=1 m=1 m 1 -9
. dA\P2
~ —L t}+ s log(l —1¢ —{1 . — 3.1
g i) + 5 1o )+Z(2 Sidesa) (a:) — 6D
where in the last step we have used the expansion t/(e‘ — 1) =372 (Ba/n))t", where B,

are the Bernoulli numbers. Here Liz(#) = 3 o, " /m? is the Euler dilogarithm [12] which
can be extended to complex ¢ by the integral representation

! —
Lis(f) =— f logd ~4) 4, . (3.2)
0 i
Later, we will use the functional equation
Liz(x) + Liz(1 — x) = i=? — log(x) Iog(l — x) (3.3)

which is valid for 0 € x € 1. We want to show that the expansion (3.1} is in fact an
asymptotic expansion for g — 17 uniform in ¢ for some complex domain. To formalize
this, we need to resort to the Euler-Maclaurin summation formula [13], which we state here
for completeness sake.

Lemma 3.1 (Euler-Maclaurin). If f € C*™[0, N] for integer N then

N N m=1
> s = r@a+ s+ Fa+ Z 2 (£ = FEO) + Ry
n=0 0
(3.4)
where .
¥ Bom — Bom(x —
R = fo 2 czﬁ(ﬁ B oy g 3.5)

Here B,(x)} is the nth Bernoulli polynomial, B, = B,(0), and m is any positive integer.

We now apply this lemma to log(f; 4)e with f(x) = log(l —zg"). For 0 <t < | this
has been done in [11]. Generalizing these results we now prove:

Lemma 3.2. For complex ¢ such that Jarg(l —¢)| <w and 0 < g < 1

d\¥2
2 ng(r)+'log(1 r)+Z(2 (log g)**~! (ra) —_ (3.6)

log(z;
0g(t: gleo ~ T—;

is an asymptotic expansion as’'g — 1. This expansion is uniform for ¢ in any compact
domain such that |arg{l — )| < x.

Progf. We use lemma 3.1 with f(x) = log(l — tg*). First, we need a formula for its
derivatives. We write

d n . " d n—I u
(E) log(l —tg*) = —(log g} (udu) -

3.7

u=tq"*
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Inserting this into (3.4) we write

Q0
log(®: glee = f log(1 — tg*)dx + 3 log(1 — 1)
0

+ Z &T( ogg)®’ ( i)%—z — R (38
= 1o;q Lis(t) + § log(l — #)
+§ (f:)’! (log g™~ (:%)M ﬁ + R - (39)
We still have to consider the remainder term
R = (030)™" fow e ?2533 —= (”%)m—] — e

=(qu¢;§r)2”"1 f‘ B B (logu_[iogu u—d- =l oty du
em! Jo 1T T \logg |logg du 1—tu| u

{(3.10)
which we estimate as
21Banl | AN ew |du

R 2] — — .

1Rul < Togg™ 2 | V') T-m (3.11)
Using lemma 1 in [11] we can write for n 2 1 .

-d\" u u .
(ua) T = A P @ (3.12)

where P,(x) is a polynomial of degree n with positive integer coefficients satisfying
P.(0) =1 and P, (1) = (n + 1)!. Therefore,

_1 2| Bop| [£|0e
R < |1 2m—1}
[Rm] < |logg| @t Jo T=1up”
_11Bam] 1122t u -2y
g IO 2m—1 f
|log g1 1= rup

il 2m—1
_ om—1 | Banil x dx
= |logg|*" — f TRepT (3.13)

du
sz-z(ltlu)?

where ¢ = arg(t). Now we see that, if the integration path has distance ¢ from | and ¢ is
bounded, then the integral is uniformly bounded. This is certainly the case if we choose
¢ t0 be in any compact domain such that |arg(1 — r)| < m. Here R, = O((ogg)*™ 1)
uniformly which concludes the proof of the lemma. 0

We can use (3.13) to get more explicit error bounds. For instance, if we set m = | we
can evaluate the integral explicitly to get

1
log(t; @)oo = @Uz(t} + § log(1 — 1) + log(g) R(t, 9) (3.14)

where R(z, ¢) has a bound independent of ¢

) LR Im
ER(t,q)léﬁ(‘O =t g & 1—Re(t))'

(3.15)
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Clearly, lemma 3.2 does not cover the case ¢ = g, which we therefore have to treat
separately. There is the beautiful conjugate modulus transformation which we can utilize
(see e.g. Hardy’s book on Ramanujan [14]):

Lemma 3.3.
(/)| 2
(q:9) 3.16
B = e | —logq 19
where r = exp(— IDE ") and 0 < ¢ < 1.

Using Poisson summation, a similar formula has been arrived at in [11], where one
finds the expression

& 2
. = (r 124 a6ty __  (Gn41)(2r+1) 3.17
(4 D)oo = (/) n;m(r r ) v (3.17)

without the identification of the sum with (r; r)3}.
Therefore, to leading order we have

2

Y = ] 2
log(g; gl = Slosg + 5 log — g4 + O(logg). (3.18)

4. Uniform asymptotics for the g-Bessel function

We now return to the investigation of H(x, ¥, ¢). In this section we provide an asymptotic
expansion via its contour integral representation (2.22). We restrict ourselves to 0 <
x,¥,¢ < 1 and introduce the notation ¢ = —logg.

First, we need to approximate the integral representation from lemma 2.2 to make an
analysis tractable. Using the asymptotic formulae from the previous section we get

Lemma 4.1 Let0 <x,y <l and g =e™F for £ > 0. Then

+ico
H =L Lregeguttis—tior (L= ¥/Z
(*.5.9) e
27 Jpmico lmz

et Liz)—72/6]

e y){ +O(s)} @.n

where y < p < 1.

Proof. From lemma 2.2 we have that

1 p+ico
H(ty, @) = e Q)‘”f O/2 Poo vgxilsag, g <p<t. 42)

27“ (¥; Do o=ica (z: ‘?)co
We can now apply (3.14) to get
(¥/2; oo =108 x/logy __ g4 llog(z) log(x)+Lix@—Liaty/2} | 1= /2 clrea-Riy/zan (4.3)
(z; oo 1—z
Now if we write z = p < it and choose y < p < | then (3.15) implies that
|R{(z, g) — R(y/z, )} = O(max{log [¢], 1}} (4.4)

which is not a uniform bound independent of t so that we have to exercise some care. Now,
expanding the last exponential term into its power series and exchanging the summation
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over powers of e{(R(z, ) — R(y/z, g3} with integration we get an asymptotic series in &,
so that we can write

f priee M —loga/legq g, — f p+me%UOS(Z)!ng(x)+Liz(z)—Liz(yf’Z)! f 1—y/z dz
p=ico (z; Q)oo p—ioo 1=z
P'HDO 1— /
+O(8f {lug(z)Iog(x)+L12(z)—L:2(}’/-.)i 2 T {R(z q) R(}'/Z ‘?)}dz)
p—lOO

4.5)
Now we are left with Laplace-type integrals of the form
I, = j; efD1e £()[h(z, £)]" dz (4.6)
where 2(z, &) = R(z,q) — R(y/z, g}, and
_ 8(z) = log(z) log(x} + Liz(z) — Lia(y/z) . 4.7)
Applying the saddle-point method to the & -+ 0 limit, we see from the derivative
§@ =~ log o @3)

that there are two saddle points. Around the saddle points R(z, g) — R(y/z, g) is bounded
so that in (4.5} the second integral is of the same order of magnitude as the first integral.
Therefore we arrive at

[p+:w M —logx/logq 4,
o—ice {23 Goo

R 1y 17 Lia ()L J’/Z
_ f e (loalzh logCr)+Lia (z)—Liz (y/2)] — 22 dz{14+ 0} - 4.9

pioo ) 1-—
Finally we apply (3.14) and (3.18) to the remaining prefactors picking up further

multiplicative error terms {1 +- O(g)}. This completes the proof. O

Now that we have an asymptotic representation of H(x, y, ¢) as a genuine Laplace-type
integral, we can proceed with the actual calculation of the dominant asymptotic form. The
two saddle points are the zeros z; 2 of the quadrgtic equation

z=Dz=-N+wmx=0. 4.10)
There will be a change in the asymptotic behaviour when the saddles coalesce due to
the discriminant changing sign. For the polygon problem the point of coalescence is the

tricritical point. Thus to obtain the scaling function we need an expansion that is uniform

in both saddle points.

The problem of deriving a uniform asymptotic expansion for the case of two coalescing
saddle points has been investigated in [15, 16]. We briefly summarize their analysis here
(for a very readable account see [17]). Assume that the two functions f and g are analytic
in z in some domain containing a path C, and consider

I(s;d)=[e%3(3:d}f(z) dz. - 4.1
¢

Moreover, assume that g is analytic in 4 and that g has two distinct saddle points of
multiplicity 1 for 4 7 0 which coalesce when & = 0. We first reparametrize locally by a
cubic

gy =141’ —au+p (4.12)
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so that the saddle points of both expressions coincide. Differentiating (4.12) we get
g'(@)& = u? —a so that we identify

==t sz = 212 4.13)
and determine o and S from

g)=-3+8 gz =%+ 8. (4.14)

Selecting the correct branch of the cubic equation, the transformation given by (4.12) with
(4.14) is one-to-one and analytic in a neighbourhood of 4 = 0. In practice, one still has
to show additionally that this neighbourhood extends to a domain containing the path of
integration. Assuming this to be the case, we proceed by expanding

d = m
FOT = (Pn+qu) (" = d)". @.15)

n=0

Denoting the image of C as C' and writing

1 3
Ay = — w f3—=Au d 4.
vy =g [ e “16)
we get the asymptotic expansion
o] o
eI (e;d) ~ PV (@) Y ane™ + 6PV (e HE) Y bpe™ @.17)
m=0 m=0

The function V{A) is expressible using the Airy function Ai(A), the exact relation depending
on the contour C'. We finish this section by presenting explicit formulae for the coefficients

= pp and by = gp of the leading-order terms. Differentiating (4.12) twice and inserting
the saddle-point values we get

d 2112
e = : @.13)
du s gkl +g"(z1,2)

so that we get

2ecl/2 ) 2 1/2
o+ goe'? = f(z) pren i Po —qoet’? = f(za) Tl (4.19)

‘We are now in a position to compute the leading asymptotic behaviour of our contour
integral.

Lemma 4.2 LetO<x,y <1and g =¢® for g > 0. Then

ptico —_
1 e & Mog(2Y Rp(x)+Lix (2) —Liz(5/2)) _I___ilf dz

21 p—ico. 1— Z
= B BN 5o B A e ™) + gos™ AT (ae™ ) {1+ O8)) (4.20)

where

—d
%ozg’/z:log(x)]og(zm vd

m) + 2Lis(zm — Vd) — 2Lia(zm + V) 421)

with

: l+y—-x
Z1a=2m £ d - —%—-—— and d=z,—y (422)
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and
oy 174 : a\'*
p=(3)"a-x-» w= (E) : (4.23)
Proof. The exponential part of the integrand
g(z) = log(z)log(x) -+ Lia(z) — Liz(y/z) {4.24)
has two saddle points at z; », where
i —
te=tntVd =2 ad  d=Z-y. (.25)
Using the reparametrization (4.12) we determine the constants & and £ from (4.14) as
Zm = Nl : : i
£0°/? = log(x) log (J"——) + 2Lig(Zm ~ ~d) — 2Liz (2 + V) (4.26)
Zm +/d

28 = log(x) log(y} - (4.27)

We need fo show that the transformation (4.12) extends to a domain containing the contour
C={p+1it; —oo <t < co}. This can be done by explicitly computing the relevant branch
of #(z) (i.e. the branch that is real for z real)

u(@) = (32 — B) + 4y (3e@) — B)) —a?)”? ’ 4.28)
+a(3(e@ — B+ (e - /) —o?) 7. “.29)

One sees on closer inspection that the mapping is indeed one-to-one in a domain containing
Z = p -+ it with real ¢,
For t —+ o0 the asymptotic behaviour of g(z) is dominated by the dilogarithm

g{p +it) ~ Liz(p + i) ~ —1 log? |z] + ilz log |¢] t — oo (4.30)

so that the asymptotic behaviour of «(z) is given by

u(p +it) ~ exp(kin/3) (2log? e))'” ¢+ > oo, (4.31)

Thus, the path C' runs from coe™™/3 via the origin to coet™/?, whence V(1) is, in fact,
equal to the Airy function Ai(A). Finally, we compute the prefactors pg and go from (4.19)

as
ay 14 d\'"*

n=(3) a-x-» @-= (E) : @32)

Inserting all of this into_ (4.17) gives (4.20). This completes the proof. O

‘We can use the functional equation (3.3) for the dilogarithm to write
$0%/? = log(zn + V@) 10g(1 — 2 + V) = 10g(@n ~ V) log(1 = zn — +/d)
+Lis(zm — V/d) + Liz(1 — 2 — ~/d) — Lia(zy + v'd) — Lia(l = 2 + Vd) .
(4.33)
Using the fact that exchanging x and y transforms z,, into 1 — z,, and leaves & invariant
shows now that & is symmetric in x and y. Therefore, the terms in the asymptotic expansion

(4.20) are symmetric in x and y, as they should be. Moreover, in the limit of small 4 we
can expand

1
oS = md3/2 {1 + O(d)} (4.34)
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so that & is basically just a suitable rescaling of d. Combining lemmas 4.1 and 4.2 we

finally arrive at the main result of this section.
Lemma 4.3. Let0<x,y <1and g =¢e° for £ > 0. Then
H(x,y,9) = | poe'*Ai{ee™?) + goe¥ 3Ai’(oz£'2/ I}

HLip () —r2+Hog(x) loa(y)/2}
Xek b { 1+0

S0/ = log(x) ]og(%f) +2Li2 (2 — Vd) — 2Lig(zn + V)

where

with

1 -x
zl,2=2mﬂ:‘\/6—i zm=++: and d=2z%—y
and

/4 NG
p=(5)"a-x-n  w=(%)

5. Asymptotics for staircase polygons

(4.35)

(4.36)

(4.37)

(4.38)

Using the contour integral representation (2.22) we now present the contour integral

representation for the staircase-generating function.

Lemma 5.1. For complex x with |arg{x)] < 7, complex y with y % g™" for non-negative

integer n, and 0 < ¢ < 1 we have

pico y(1-2) (v/2:4) z—logx/[ogq dz
G(x y q) _ Jdp=ica z(z—y) {(z:g)wo _
» S T et | (Wngle —logx/logg
p—ico (z=p) (Zglw 2 dz

O<p<l,

Proof. Using (2.22), we can write

(SR f ptico (/% Poo_—
H ch, ! , —_ i z Iogx/Ioquz
@xay9) T2 (73 9)eo pmice /T AN (@ Do
O<p<l.

Inserting this into
H(g%x, gy, q)
Gix,y, )=y(—————l
? H(gx.qy.q)

and combining the prefactors results in (5.1).
We again simplify the integrands, resulting in the next lemma.
Lemma 5.2. Let 0 < x,y <1 and g =e™® for £ > 0. Then

pHioo L [log(z) log(x)+Liz(z)= l.utyfz)]}i A=z g
p—ico z{z—y}

o-Hoo l[log(z)Ios;(A:}-!-L:z(r..‘r 1-!20’/2)] -—]—dz
p—ico z(l—z)}(z—¥)

where y < p < 1.

{1+ 0(e)}

Gx,y,9)=

(5.1)

(3:2)

(5.3)

5.4)
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Progf. As in the proof of lemma 4.1, we approximate the integrands using (3.14). The
exponential parts of the involved integrals, as well as the error terms, are identical to the
ones in lemma 4.1 so that the proof carries over directly. O

From the work in the previous section it is clear that we will arrive at an asymptotic
expression of the form

pg])alﬁ V(as—zﬁ) + géI)EZ/S V’(aa‘zﬁ)

Glx,y,q)~ (5.5)
\ pé?-) 813V (oe=23) + q 52) 23V o 8—2/3)
and all that is left is to determine the coefficients involved. We get
Theorem 5.3. Let QO < x,y < 1 and ¢ = e™* for £ > 0. Then
Al (@~ '
=111 —x - —_— - _
Gix,y,q) =3 {1 x—y+ alﬂa-‘ﬁAi(as-zﬂ)‘/(I x - y)* 4xy] {1 +0(e)
(5.6)

is a wniform asymptotic expansion in &, where
202 = log(zm + vd) log(l ~ 2, + Vd) — l0g(zm — V@) log(1 ~ 2, — V/d)

+Liz(Zy — ~/d) + Liz(l = 25 — V@) = Lig (@ + vVd) — Lis(1 — 2y + /d)
(5.7

with
_t4y—x

T2 =imtVd T = —5 and d=z>-7y. (5.8)

Proof. We use the approximation from lemma 5.2. As the exponential part g(z), as well
as the path of the integral, is identical to the one in lemma 4.2, the whole argument casries
over. Equation (4.14) gives the same « and S and we can again identify V{A) with Ai(A).
Moreover, using (4.19) we can compute the coefficients for the leading terms as

1/4
W 11wy {EY m_ (¢4
pp-=z(l—x—y) (d) 7% = (5.9)
for the enumerator and
@ _ (" @ _
Py = (d) g =0 (5.10)
for the denominator. Inserting these into (5.5} results in (5.6). O

In [5] we computed a scaling form from the semicontinuous limit

1 .
Geelx,y.q) = 3% EG(azx,y g9 (5.11)

Taking the same limit in (5.6) we recover that scaling form. We note that the uniform
asymptotic expression presented here is more general and exhibits the symmetry between
x and y, a feature that gets lost upon taking the semicontinuous limit as in [5]. The
same scaling form has also been derived in the semicontinuous models of column-convex
vesicles [6], with the only difference being different non-universal constants, However, this
is the first time that the scaling form has been derived directly for the discrete model.
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