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ABSTRACT

We review the methods and results achieved recently for some lattice models of vesicles in
two dimensions, which are defined by the restriction of partial convexity. These models
provide an alternate testing ground for the scaling and universality hypotheses to the
more intricate Ising model. The scaling functions can be calculated, in addition to the
exponents, and we conclude that all the most complex models fall into one universality
class. We also present, as a pedagogical example of the methods, the scaling behaviour
of a model not previously studied in this fashion. {

Interest in two dimensional lattice models of closed fluctuating membranes (or ves-
icles) has come from at least two primary sources: the first physical and the second
combinatorial. One was stimulated by the work of Leibler, Singh and Fisher! which,
from a physical perspective, investigated, amongst other things, the critical phe-
nomena (scaling behaviour) associated with such a model2, The geometric model
underlying this study was that of self-avoiding polygons, where the scaling of quant-
ities in perimeter and area was sought. (There are other properties, excluded in
this review, such as rigidity, that affect the behaviour of model vesicles.)

One method of attack on self-avoiding walk problems in general has been to
simplify the model so as to give a system that is mathematically tractable. It is
this approach, and the outcomes, that are the subjects of this review. In particular,

we are focussed upon self-avoiding polygon models that have been restricted by
imposing some degree of convexity.
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As is usual in science this group of models has also been investigated for a
completely unrelated reason: they represent geometrically many formal languages
of computer science® and are basic objects of study in combinatorics®. Of course,
the motivations stem from a different view of the problem but nonetheless similar
functions are sought. The enumeration of the number of such objects of given area
and perimeter is the goal here and the associated asymptotics are not considered.
However, the search for the most compact solution of the associated generating
functions has provided important impetus for new methods of solution.

Further interest in these models comes from an association with low temperature
approximations to correlations in the Ising model®® and, from one member of the
group, in relation to wetting transitions”8.

The models considered are classes of (partially) convex polygons on the square
lattice. We call a polygon partially convex if any line of a given orientation intersects
the polygon at most twice. By choosing the orientation to be vertical we define the
class of column-convex polygons, and we call a polygon convex if it is column- and
row-convex? Equivalently, a polygon is convex if it has the same perimeter as its
bounding rectangle.

Clearly, the largest class of partially convex polygons is given by column-convex
polygons, and all partially convex polygons can be seen as “directed”, a property
that will be essential for their theoretical analysis. In order to put further re-
strictions onto the partially convex polygons, we first use this “directedness” to
decompose any such polygon into an upper and a lower walk. These walks are
partially directed, and restricting the allowed upper and lower walks defines new
subclasses. We shall in particular be interested in the cases in which the upper and
lower walks are restricted to be either

(1) horizontal walks (only steps to the right),
(ii) fully directed walks (being either, only steps to the right and up (NE) or
alternately, only steps to the right and down (SE)), or
(iii) partially directed self-avoiding walks (no steps to the left).

These walks already generate various classes of polygons. Naturally, one can define
numerous other directed walks, for instance by allowing only one vertical step at a
time, leading to commonly called restricted models, or by using alternating partially
directed walks, where subsequent vertical segments of steps have to point in the
opposite direction.

We now list a few examples of the classes of polygons we can generate, see
figure 1. For example, joining two horizontal walks with two vertical lines leads
to rectangles, joining a horizontal walk with a fully directed walk leads to Ferrer
diagrams, and joining a NE-fully directed walk with a SE-fully directed walk gives
stack polygons. More complex classes of polygons are

%The notion of partial convexity is a bit unusual, as diagonal convexity is an even stronger restric-
tion leading to the class of staircase polygons (a proper subclass of “convex” polygons) and the
only truly convex polygons are rectangles.
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Fig. 1. Typical configurations for a selection of partially convex vesicle models. (1) Ferrer diagrams , ‘
(2) stack polygons, (3) staircase polygons, (4) bar-graph polygons, (5) directed column-convex §
polygons, (6) column-convex polygons. \

(a) staircase polygons (skew-Ferrer diagrams), (ii) with (ii)
(b) bar-graph polygons, (i) with (iii)

(c) directed column-convex polygons, (ii) with (iii)

(d) column-convex polygons, (iii) with (iii)

All the polygons in this list are in the same universality class. The simpler mod- ]
els of Ferrer diagrams, stack polygons and, even simpler, rectangles, lie in other §
universality classes. / ;
For each of these models, we define the generating function as follows. Let ¢ §
be the number of polygonswith 2n, horizontal steps and 2n, vertical steps which '
enclose an area of size m. (Clearly the numbers of horizontal and vertical steps are
even.) We then define the polygon generating function G(z,y,q) to be :

G(x, v, q) — chmx,nyxnzynqu ] (1) .

In the case of staircase polygons, for example, one can now write the generating A
function as a sum over the height of each column r; and the allowed overlap s
between the columns,

G(z,9,9) = »_ 2" Y (yo)" Zl vy > (v)”

n=1 ry=1 s1=1 ro=s,
Tn-2 o0
LYy (yg)™ (2)
3n—-1=1 fan=8n—-1

By introducing a variable vertical lattice spacing a and formally taking the limit ¢ —
0 one can define a semi-continuous version of each of these models, where the length
of the vertical steps is allowed to assume positive real values. For example, the
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generating function Geont for the semi-continuous version of the staircase polygons
can be written as

g 0o ri 00
Gcont(x) Y, Q) = Z z" '/(; drl (yq)n /0 d81 y“’l / dr2 ('.l,/q)r2
n=1 L3

n-2 00
L /0 dsp_yy~ 't dry (yg)™ (3)
LE T
Formally, we have .
Gcmt(z; Y, q) = ll_l;l'(l) EG(azx) ya’ qa) (4)

It is the singularity structure of these generating functions that shall interest us.
We will now briefly sketch its general form for this class of models (for details see
Brak et al®). For simplicity, consider the generating function

G(z,q9) = G(z,z,9) = Zc’,,ﬁz"qm (5)

m,n

where ¢ is the number of polygons with perimeter 2n and area m. We further
write
Am(z) =) cha® and  Pu(g) =) chg™ (6)
n m

so that A, (y) and P,(q) are the generating functions for polygons with fixed area
and perimeter respectively. '

Let us consider ¢ as a parameter and z the variable. Then G is a power series
in = with coefficients P,(g) and its radius of convergence, z.(gq), is given by

ze(g) = Jim Pale) ¥, ™

The existence of this limit can be shown using sub-multiplicative inequalities!®1.
A plot of the radius of convergence z.(g) as a function of ¢ is of the generic form
shown in figure 2.

Alternatively one can fix z and consider G as a function of ¢ with radius of
convergence ¢.(z). For polygon models, the generating function is singular along
the line ¢ = 1 between z = 0 and some point z; = z.(1). The point (g, z:) is an
example of a “tricritical” point®, at least mathematically, where ¢; = ¢.(z:). For
polygon models ¢; = 1.

The generating function G(z, 1) only generates the polygons by perimeter. For
all the above models it is an algebraic function and hence has a branch point- with
exponent 7, at z, that is

G(z,1)~ A(zy — )™ ™ as T —z; . (8)

For z = z;, the generating function has a branch point-like singularity in ¢ at g,
but with a different exponent, 4; where 7; is defined through

Glzy,q)~B(l—¢)™" as q¢—gq; . (9)

g‘\é«;ﬁ/
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Fig. 2. The schematic form of the radius of convergence of the area-perimeter generating function
for vesicle models.

These two different asymptotic behaviours can be combined into a scaling function
f, where

Glz,q) ~ (1— )~ f ({1 — g} H{ze — 2}) (10)
with
27" ifz—o00
f(z)”{ 1 ifz—0. (11)
where ¢ is called the tricritical crossover exponent and Yu = 1:/9-
One further behaviour of G begs attention: the shape of the z.(g) curve in the

neighbourhood of the tricritical point. For zc(q) < ¢ it is just a straight line,
however for z.(g) > ot it is expected that

z(@) —zi~ (@ -9 a4 (12)

with a shape exponent ¥ which is related to the crossover exponent ¢ via Y =
1/¢. Moreover, identification of ¥ with the singularity 2 — « in the free energy
(—limp oo Llog Pn (), where o is the specific heat exponent, leads to the tricritical
scaling relation linking this exponent to the crossover exponent via®

1
5

In what follows, we will describe the various methods used to enumerate the number

2—a=

(13)

of configurations of these polygon models by deriving expressions for their generat-
ing functions.

Temperley12 introduced a recurrence relation method to find the generating
function of these polygon models which has been successfully utilised 1n recent
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years!1411 Zwanzig and Lauritsen investigated an interacting walk model of al-
ternating vertical segments in discrete and continuous forms with transfer mat-
rix and integral equation methods. The semi-continuous systems for walks!® and
vesicles!® have been now successfully tackled with an extension of Temperley’s
method to semicontinuous systems. Given that it is now recognised that all these
methods are similar we shall only describe the method for the discrete model expli-
citly.

Essentially, the configurations are partitioned into configurations with fixed
height to their left. Then, one can easily derive an infinite recurrence relation by
constructing configurations G, of height r by concatenating a column of height r in
all possible ways to configurations of heights r’. In the case of staircase polygons,
where we denote G, by S, we get '

Sr(z,9,9) =z¢" (y +Zy' ) Z Sri(2,y, q)) (14)

ri=s

By expanding in z it is possible to view this equation as a transfer matrix equation,
so one could now proceed by studying its spectrum. However, it turns out that one
can in fact solve for the generating functions S, explicitly, by using an Ansatz which
leads to g-series. In the semi-continuous case this equation is an integral equation.
The type of Ansatz necessary is more easily seen when one transforms this equation
into a difference equation,

Sr+2 - (I(l + y)Sr+1 + qzySr = _zqr+25r+1 . (15)

Either equation can be solved using a generalisation (needed since these equations
do not have constant coefficients) of an exponential Ansatz (u"):

Sr=p"Y em(9)g™ (16)
m=0

Summing S = 5. S, leads after some transformations to the solution

z T ( )
S(x’y’Q):y(‘;((qz,,;j,’qq))d) with - J(En0) = Z((qqqy,g)n » (17

where we have used the ¢-product notation

(21,22, -, Zk;Q)n = H (1—21¢™)(1 —z2¢™)...(1 — zxq™) . (18)
m=0
The difference equation becomes a differential.equation in the semi-continuous ana-
logue. This differential equation is none other than Bessel’s and the function
J(z,vy,q) is a g-generalisation of a Bessel function. This calculation generalises
for the other models, although it gets more and more cumbersome, leading to a
full-page formula in the case of column-convex polygons!®.
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However, if one considers the generating function

% r
G =G(Xz,9,9) =) _ Gr(z,v, q)(R - (19)

r=1

one can write down functional equations instead of recurrence relations and it turng
out that this is a unifying way of solving all these models!”. The functional equations
are all linear and of the general form

G\ ==z {a(,\) +b5(N)G(1) + c(A)G(Aq) + d(A) (1)} (20)

for which the general solution can be given explicitly. In the case of column-convex
polygons, the most compact solution so far reads!”

(1-y)H(z,y,9)

G(z,y,9) = ¥ R(G.3,0 4 vH(z.7.2) (21)
with
_ zq (-1)"+zn(1 - ) ~44("3) (429)5 5
100 = T30 ¥ 2 Dm0 G P 2
and

_ 5 G071 - )23 ) ()00
K(=v.9) —,§ (D (¥0)3_1(¥2)n (¥ On—1 (23)

Clearly this solves the combinatorial problem of giving a closed form solution of
the generating function (and thus a polynomial time algorithm to compute the
coefficients). However, it is almost unfeasible to extract from these g-series the
singular behaviour of the generating functions. One could think of working directly
with the functional equations, but they become singular at A = 1 and ¢ = 1. On
the other hand, it is known that at ¢ = 1 the generating functions are algebraic. It
turns out that there is an alternate approach of deriving functional equations which
leads to non-linear equations!®.

The technique for deriving the functional equations is to use a geometrical par-
tition of the set of all polygons into disjoint subsets. These subsets are chosen
such that they enable one to give construction rules that can be transformed into
equations for the corresponding generating functions. A related method for the
derivation of functional equations based on the theory of algebraic languages has
been developed!9:20:21,

These equations can then in principle be used to solve for the generating func-
tion. As we shall see, one can also extract information about the singularity struc-
ture of the generating function directly from the functional equations. As they are
well behaved near ¢ = 1 one can employ a singular perturbation expansion.

The partition is constructed as follows: one set of the partition will be a set
Py of “inflated” polygons, i.e. polygons which are generated from the set P of all
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polygons by increasing the height of each column by one (replacement of z by gz)
and thereby increasing the number of vertical perimeter bonds by 2 (multiplication
by y), leading to the equation

Pi(z,y,9) = P(qz,9,9)y - (24)

Pl Al PR

F(z) y F(gz) v 757 Flge) y 7=

Fig. 3. The diagrammatic form of the functional equation for Ferrer diagrams.

As an example, let us consider Ferrer diagrams. The partition due to the in-
flation process is represented in figure 3. If we inflate Ferrer diagrams we have to
correct by adding a row of height one to the left, leading to the functional equation

F(z,3,9) = 725, (50 + F(z4,4,9)) (25)
which for ¢ = 1 reduces to

Ty
F(z,y,1) = ———— 26
( )y) ) 1 _—p = y ( )
Now we assume the existence of an asymptotic expansion of P at ¢ = 1~, and we
get as the first correction term

oF _zy(l - y)(1 - =z)
6q( 1) = (1-z-y)?

This is already enough information to give us the critical exponents for this class of
polygons. Firstly, we note that at ¢ = 1 the generating function diverges with an
exponent v, = 1. Secondly, it follows from tricritical scaling that the partial deriv-
ative diverges with an exponent v, + A, with a gap exponent A = 1/¢. Therefore
we have a complete set of thermodynamic exponents,

1 1
Tu =1, T =g ¢=§, a=0. (28)

(27)

In order to get the complete scaling behaviour, we can now take the semi-continuous
limit as described above, resulting in a differential equation for f(z) = Feont(z, ¥, q),

zef'(z)=(z—7)f(z)+z with e=—logg, 7=—logy, (29)

3
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which has as solution
T T z T z
f@) = exp (T + T1og()) 7 +1,%) (30)

where y(a, z) = for' e~*t%~1dt is the incomplete Gamma function. From this solution
the exponents above can be confirmed. This solution could also be extracted from
the Temperley-like method described previously.

Alternatively, one can extract the complete scaling function directly from the
differential equation'®, using the method of dominant balance. We first transform
the critical point to the origin,

1
—e(t+ 7)p'(t) = tp(t) + (t + T)p*(t) where p(t)= —— 31
(t+ 7)p'(t) = tp(t) + (t + 7)p’(2) p(t) ) (31)
Substituting p = €°p and t = %7, we now look for the dominating terms in this
equation for € — 0. This yields § = ¢ = —;—, and we get a differential equation for
the asymptotically dominant part as

— 70/ (t) = tp(¥) + (7). (32)

Solving this equation and fixing the arbitrary constant by using asymptotic match-
ing with the solution for € = 0 results in the scaling solution

F(z,y,q) ~ % exp ((72;8:)—2) erfc (:/;g_ﬁ (33)

Again this result could have been found, via the Temperley-like method, directly
from the solution itself with greater effort!

This has been a particularly simple example, with the functional equation being,
in fact, still linear. For the more complicated models, however, one gets non-linear
equations. The simplest case is for staircase polygons, .

S(z,y,9) = {S(9z,v,9) + gz} {y + S(z,v,9)} , (34)

with the complexity of the equations growing as one proceeds to more complicated
models.

The introduction of the non-linearity changes the universality class of the gen-
erating function, which leads to another set of exponents and a different scaling
function. However, it turns out that a large group of models, containing bar-graph,
staircase, directed column-convex, and column convex polygons, are all in the same
universality class. These exponents and scaling function are therefore generic for
directed models. In particular, we get for the exponents at the tricritical point

1 1 2 1
7u—~_§) 7t———§, d’—g, 04—5- (35)

For staircase polygons, we found!® the scaling function is

_1/3 Ai'(cv¥3(1 - o))

S(z,z,9) ~ a+bv Ai(cr?/3(1 = 7))

(36)
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where
__ vz _log(=)
" log(z-1/2) ' log(q) ’

Ai(z) is the Airy function and the prime denotes differentiation. The value ¢ =1
defines the tricritical point and note that as ¢ — 1 we have v — oo.
The amplitudes of the scaling function for staircase polygons are

o

(37)

a =log(z~?), b=2"3log(z"'/?) and c = 27231 4+ ) . (38)

For column-convex polygons it was found!® that the identical scaling form holds
with

a= (65— 22 log(z™/%), b= 55(19-+ 62) log(a/%), e = (1+0)/2 (39)

with
2z

7~ Tog(z177)

(40)
and v unchanged.

In summary, all the models listed in the introduction ((a) to (d)) have this
scaling solution around their tricritical-like points. We therefore conclude that
they all fall into one universality class. We point out that the solutions of the
staircase and column-convex models are in terms of different functions while their
scaling solutions are essentially the same. All the models can be solved for their
generating functions using the Temperley-like method while the scaling solution can
be extracted, as described above, from functional/differential equations. (The semi-
continuous staircase generating function can be found explicitly in terms of Bessel
function which, in turn, can be shown directly to give the scaling solution'®.)

The simpler Ferrer diagram and stack polygon models lie in a different universal-
ity class. (The semi-continuous and scaling solutions of the generating function for
Ferrer diagrams have not been previously given.) Rectangles and convex polygons
lie in further universality classes. (Rectangles have the exponents v, =2, ¢ = 1/2
or 74 = 1, ¢ = 1 depending on whether the fugacities are symmetric or asymmetric
respectively.)

We have presented a class of models that can be solved completely around
a tricritical-like point with non-trivial results. The scaling form, in addition to
the exponents, can be extracted. Several interrelated methods of solution have
been summarised which include recurrence, differential, and linear and non-linear ¢-
functional equations. These models are then some of the only non-trivial statistical
mechanical models that can be solved to give scaling functions as in the Ising model.
Also, since several different models can be solved, the universality hypothesis has
been tested.

Future work lies in at least two directions. The first is the solution of the end-
to-end distance generating functions and related scaling solutions. The second lies
in an attempt to see how the models might be altered to change the universality
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class. We note however that the full self-avoiding polygon vesicle model also has
a crossover exponent ¢ — 2/3. Moreover, rooted self-avoiding polygons?? haye
precisely the exponents given in (35). This intriguing observation begs the question:
‘Is the scaling function for rooted self-avoiding polygons the same as in the partially
convex class?’
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