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Abstract

We present a method for the derivation of the generating function and computation of

critical exponents for several cluster models (staircase, bar-graph, and directed column-

convex polygons, as well as partially directed self-avoiding walks), starting with non-

linear functional equations for the generating function. By linearising these equations,

we first give a derivation of the generating functions. The non-linear equations are further

used to compute the thermodynamic critical exponents via a formal perturbation ansatz.

Alternatively, taking the continuum limit leads to non-linear differential equations, from

which one can extract the scaling function. We find that all the above models are in the

same universality class with exponents: γu = −1/2, γt = −1/3 and φ = 2/3. All models

have as their scaling function the logarithmic derivative of the Airy function.
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1 Introduction

Steady progress is being made in the mathematical analysis of certain geometric cluster mod-

els. These objects can be considered as combinatorial objects to be enumerated, or as models

of physical systems such as vesicles or polymers. A selection of these models is illustrated

in figure 1. Traditionally only the square lattice objects have been studied, although the

generalisation to other lattices is straightforward. Combinatorialists have generally studied

the polygon models and call these objects polyominoes. A short review of the history of the

solutions of the various types of polyominoes can be found in M. Delest [1].

The two-variable generating functions for the area and perimeter (polygon models), or

length and interactions (walk models), have been solved by a variety of methods. It is

frequently possible to prove a bijection between words of an algebraic language and the

combinatorial objects of interest [2], an idea going back to Schützenberger [3]. An alternative

method of solution involving recurrence relations goes back to Temperley [4]. This method

has been subsequently extended to solve several more models [5, 6, 7, 8]. Some of the walk

models can also be partially solved using transfer matrix techniques [9].

All these models possess the characteristic feature that their single variable generating

functions are algebraic, whilst the two variable generating functions are expressed in terms

of q-series. These are generally q-Bessel functions [10, 11] or q-hypergeometric functions [12].

The q-series solutions to this class of models have been obtained by several techniques. A

method developed by Temperley [4] leads to a recurrence relation which is solved by a q-

series [5]. The recurrence relation is directly related to a linear functional equation which

can also be solved by q-series methods [8]. In algebraic language theory the q-series appear

as q-extensions or q-grammars [13].

We will use the language and notation of the polygon models in what follows, but mutatis

mutandis the same results apply for the walk models.

The q-series solutions are satisfactory representations of the combinatorial problem in

that the numbers of configurations of a given length and area can be computed in polynomial

time (compared with the exponential time required for explicit enumeration). However, it is

still not possible to easily extract the asymptotic behaviour of the generating function from

the q-series.
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Figure 1: Typical configurations for a selection of directed geometric cluster models. a)

staircase polygons, b) directed column-convex polygons, c) column-convex polygons, d) bar-

graph polygons, e) alternating bar-graph polygons and f) ZL walks

The principal purpose of this paper is to ‘solve’ this asymptotic problem without a direct

assault on the q-functions. If only the asymptotics of the generating function is required then

a direct assault on the q-functions is a wasted effort as a large part of the leading asymptotic

function cancels and only the subdominant factors contribute to the generating function.

We approach the asymptotic problem using two different methods: i) A formal pertur-

bation theory. This method has the advantage of giving several critical exponents for the

lattice models. For this, the asymptotic form has to be assumed in order to identify the

exponents. ii) Non-linear differential equations. This method has the advantage of deriving

the asymptotic function and hence the critical exponents exactly, however it only applies to

the semi-continuous version of the lattice model. If one accepts that the continuous version

of a model has the same asymptotic behaviour as the lattice model then of course one has

the lattice exponents as well.

We now outline the general form of the asymptotic behaviour of this class of models
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(for more details see Brak et al [14]). The principal object of study is the area-perimeter

generating function G(y, q), defined as

G(y, q) =
∞∑

m=1

Am(y)qm =
∞∑

n=2

P2n(q)yn, (1.1)

where

Am(y) =
∞∑

n=2

c2n
m yn , P2n(q) =

∞∑
m=1

c2n
m qm , (1.2)

and c2n
m is the number of polygons of the required type with perimeter 2n and area m. Thus,

Am(y) and P2n(q) are the generating functions for polygons with a fixed area, respectively

perimeter.

If we consider q as a parameter and y the variable, then G is a series in y with coefficients

P2n(q). If G converges then its radius of convergence, yc(q) is given by

yc(q) = lim
n→∞P2n(q)−

1
n . (1.3)

It is usually straightforward to prove the existence of yc(q) using super- or submultiplicative

inequalities [15, 6]. For the polygon models a plot of the radius of convergence yc(q) as a

function of q is of the general form shown in figure 2. Alternatively one can fix y and consider

G as a function of q with radius of convergence qc(y). Then for polygon models the generating

function is singular along the line q = 1 between y = 0 and some point yt = yc(1). For other

models this line may be more complicated. The point (qt, yt) is an example of a “tricritical”

point [14] where qt = qc(yt). For polygon models qt = 1. Elucidating the singularity structure

of the generating function around this point is the principal interest of this paper.

When q = 1, G only generates the polygons by perimeter. For all the above models

G(y, 1) is an algebraic function and hence has a branch point with exponent γu at yt, that is

G(y, 1) ∼ A (yt − y)−γu , y → y−t . (1.4)

For y = yt, the generating function has a branch point-like singularity in q at qt, but with a

different exponent, γt where γt is defined through

G(yt, q) ∼ B(qt − q)−γt , q → q−t . (1.5)

These two different asymptotic behaviours can be combined into a scaling function f , where

G(y, q) ∼ (qt − q)−γt f
(
{qt − q}−φ {yt − y}

)
(1.6)
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Figure 2: The schematic form of the radius of convergence of the area-perimeter generating

function for the polygon models

with

f(z) ∼




z−γu if z → ∞
1 if z → 0+.

(1.7)

where φ is called the tricritical crossover exponent and γu = γt/φ.

What exactly does (1.6) mean? The righthand side is the asymptotic behaviour of G as

q → q−t but is uniform in the variable y in some neighbourhood of yt. The uniformity is

essential, as it enables one to interchange the order of the two limits q → q−t and y → y−t

and hence obtain the two different asymptotic behaviours (1.4) and (1.5). This uniformity

will be explicitly shown for the staircase model.

One further behaviour of G is of interest: the shape of the yc(q) curve in the neighbourhood

of the tricritical point. For these polygon models, unlike some walk models, it is just a straight

line for yc(q) < yt, however for yc(q) > yt it is expected that

yc(q) − yt ∼ (qt − q)1/ψ , q → q−t (1.8)

with a shape exponent ψ which is related to the crossover exponent φ via ψ = 1/φ [14].

Considerable success at calculating the critical exponents was achieved by solving a semi-

continuous model related to the lattice model. In particular, the ZL walk model, where the
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configurations are alternating partially directed self-avoiding walks [16], has been solved on

the lattice [8] and in semi-continuum [16]. The semi-continuous model is exactly the same

as the lattice model except that the length of the vertical steps of the walk can take any

positive real value instead of being constrained to integer values. The exponents for the

semi-continuous model are easily computed for ZL walks, as the solution is expressible in

terms of Bessel functions whose asymptotics are well documented. For the lattice model the

situation is quite different. Here the solution is expressible in terms of q-Bessel functions, and

very little is known about their asymptotics. Because of this problem we have concentrated

on obtaining the asymptotics along a route that does not depend on the q-Bessel functions.

By using a formal perturbation expansion it has been shown in the case of IPDSAW [8]

that the exponents for the lattice model and the semi-continuous model are exactly the

same. Furthermore, renormalisation group arguments show that a lattice model and its semi-

continuous version should have the same asymptotic behaviour. Accepting this argument

means that it is sufficient to find the asymptotic behaviour of the semi-continuous model to

have it for the lattice model as well.

It has also been shown for the ZL walk model that the semi-continuous model can be

obtained from the lattice model by taking the continuum limit [8]. The continuum limit for

this model corresponds to letting the lattice spacing in the vertical direction tend to zero

whilst the ‘physical’ height is held fixed. In this limit the q-Bessel functions of the lattice

model become the Bessel functions of the semi-continuous model [8]. In this sense one can

think of the lattice model as the q-extension of the semi-continuous model.

The idea of using the continuum limit to compute the critical exponents is extended in

this paper. The essential new ingredient of this paper is the starting point. Previous solutions

have been obtained via recurrence relations or equivalently via linear functional equations.

In this paper we use non-linear functional equations. This form of the functional equation is

more suited to the limit q → qt.

We will show that the generating function for all the models in this class satisfy a quadrat-

ically non-linear functional equation, or set of coupled non-linear functional equations. All

the non-linear functional equations obtained in this paper are solved by a linearising trans-

formation. The linear functional equation can then by solved with a q-series Ansatz. This

gives a new and elegant derivation of results obtained elsewhere [22].
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Starting from the non-linear functional equation we take the continuum limit. This gives

rise to a non-linear differential equation or a coupled set of non-linear differential equa-

tions. Solving the differential equation gives the solution to the semi-continuous version.

For the all the models we study in this paper the differential equation is a generalised Ric-

cati equation[17]. A k-th order generalised Riccati equation can be linearised by a simple

transformation and always lead to a solution of the form

g(t) =
∑k

i=1 ciw
′
i(t)∑k

i=1 ciwi(t)
, (1.9)

where wi(t) are solutions of the linearised equation (the prime denotes differentiation). Even

though the column-convex model does not appear to be of an exact Riccati form (1.9) [18],

it is amenable to the methods presented here.

Having obtained the non-linear differential equation one has two immediate methods to

obtain the asymptotic behaviour. Either one attempts to solve the equation explicitly and

extracts the asymptotics from the resulting solutions, or one works directly with the non-

linear differential equation. For the simpler models we will use both methods whilst for the

more complex models we use only the latter method.

The asymptotics can be obtained directly from the differential equation by using the

method of dominant balance [19]. We show that asymptotically the non-linear differential

equations for all the models have a generalised homogeneous or scaling solution. The scaling

function (i.e. f(z) of (1.7)) satisfies a Riccati equation of the form

df

dz
= c f2 − b z , (1.10)

where b and c are model dependent constants. This equation can be linearised by the trans-

formation

f(z) = − 1
c h(z)

dh

dz
(1.11)

if h(z) satisfies the linear equation

d2h

dz2
− bc z h(z) = 0 . (1.12)

This is the Airy equation. Thus, after changing back to the original variables and inserting

initial conditions, we find that asymptotically all the area-perimeter generating functions
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have the scaling function

f(z) = +
(

b

c2

)1/3 Ai′
(
{cb}1/3z

)
Ai

(
{cb}1/3z

) (1.13)

and the critical exponents are

γu = −1
2

γt = −1
3

φ =
2
3

ψ =
3
2

. (1.14)

2 Models

The particular models we consider are subsets of column-convex polygons. A polygon is called

column-convex if the intersection with any vertical line is convex, i.e. the intersection consists

of only one connected line segment. Equivalently, column-convex polygons are generated by

two mutually self-avoiding partially directed self-avoiding walks with common start and end

points. (Partially directed walks are self-avoiding walks in which no steps into the negative x

direction are allowed.) By putting several restrictions on these walks, we can define various

models (see figure 1).

If the lower and upper walks are fully directed (i.e. only steps into the positive x and y

directions are allowed), we get the model of staircase polygons S (figure 1a).

If the upper walk is partially directed and the lower walk is fully directed, we get the

model of directed column-convex polygons D (figure 1b). If both walks are partially directed

without restrictions, we get the model of column-convex polygons (figure 1c).

If the upper walk is partially directed and the lower walk is restricted to be horizontal,

we get the model of bar-graph polygons B (figure 1d). A particularly simple subset is given

by the additional restriction that the upper walk reverse direction after every horizontal step,

leading to alternating bar-graph polygons R (figure 1e).

For each of these models, we extend the definition of the generating function from the

introduction as follows. Let c
nx,ny
m be the number of polygons with 2nx horizontal steps and

2ny vertical steps which enclose an area of size m. (Clearly the numbers of horizontal and

vertical steps are even.) We then define the polygon generating function G(x, y, q) to be

G(x, y, q) =
∑

cnx,ny
m xnxynyqm . (2.1)

We further consider models of interacting partially directed self-avoiding walks (IPDSAW)

which are enumerated with respect to their length and the number of nearest-neighbour

7



bonds. A particular subset is given by walks which reverse direction after every horizontal

step (ZL), see figure 1f.

Let c
nx,ny
m be the number of walks with nx horizontal and ny vertical steps and m the

number of nearest-neighbour bonds. Then we define the walk generating function

H(x, y, ω) =
∑

cnx,ny
m xnxynyωm . (2.2)

3 Functional Equations

The technique for solving these models is to use a geometrical partition of the set of all

polygons into disjoint subsets. These subsets are chosen such that they enable one to give

construction rules that can be transformed into equations for the corresponding generating

functions. A related method for the derivation of functional equations based on the theory

of algebraic languages has been developed in [20, 21] .

These equations can then in principle be used to solve for the generating function. As we

shall see, one can also extract information about the singularity structure of the generating

function directly from the functional equations.

We start this section by presenting an example with a particularly simple partition to

illustrate the method. In general, the partition will be more complicated. The partitions of

all of the following models have, however, one feature in common with this example. One

set of the partition will be a set P1 of “inflated” polygons, i.e. polygons which are generated

from the set P of all polygons by increasing the height of each column by one (replacement of

x by qx) and thereby increasing the number of vertical perimeter bonds by 2 (multiplication

by y), leading to the equation

P1(x, y, q) = P (qx, y, q)y . (3.1)

To start with the example, assume that we would like to describe the generating function

C(x, y, q) for the set C of all columns of width 1. In an abuse of notation, we will use the

same symbol for a set and its associated generating function. A partition of the set C of all

columns into two sets is given by collecting all columns of height larger than 1 into the set

C1, leaving the set C2 = C \ C1 which contains only the unit square. The set C1 can easily
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Columns

C(x)

=

C(qx)y

+

qxy

Figure 3: The diagrammatic form of the functional equation for single columns together with

its generating function representation

be seen to be constructed from the set of all columns by increasing their height by one area

element. This is shown symbolically in figure 3.

In terms of generating functions, we can write this as

C1(x, y, q) = C(qx, y, q)y . (3.2)

The generating function for C2 is simply

C2(x, y, q) = qxy , (3.3)

and summing up C = C1 + C2 leads to a functional equation for C,

C(x, y, q) = C(qx, y, q)y + qxy (3.4)

which can be immediately solved by iteration to give

C(x, y, q) =
qxy

1 − qy
. (3.5)

Bar-graph polygons

Our next example will be bar-graph polygons, that is column-convex polygons with a hori-

zontal lower boundary. We can partition the set B of all bar-graph polygons by first splitting

off the set B1 of inflated bar-graph polygons. If B(x, y, q) denotes the generating function

for the set of all bar-graph polygons, then the generating function B1(x, y, q) of the subset

B1 is given as

B1(x, y, q) = B(qx, y, q)y . (3.6)
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Alternating Bar-graph Polygons

R(x)

=

R(qx)y

+

R(qx)qxR(x)

+

qxy

Bar-graph Polygons

B(x)

=

B(qx)y

+

B(qx)qxB(x)

+

B(qx)qxy

+

qxy

+

qxB(x)

Figure 4: The diagrammatic form of the functional equations for bar-graph polygons and

alternating bar-graph polygons

The further decomposition is shown symbolically in figure 4. The remaining bar-graph poly-

gons in the set B \ B1 have at least one column of height 1. In general, to the left of the

leftmost column of height 1 there is an inflated bar-graph polygon from the set B1, whereas

to the right of this column the remaining bar-graph polygon is a simple bar-graph polygon

from the set B. We now define the set B2 to be the set of bar-graph polygons generated by

concatenating inflated bar-graph polygons with a bar-graph polygon to the right by a single

column of height 1. The generating function for the set B2 therefore fulfills

B2(x, y, q) = B1(x, y, q)y−1qxB(x, y, q) = B(qx, y, q)qxB(x, y, q) , (3.7)

where division by y takes care of the reduction of perimeter due to concatenation. The

remaining bar-graph polygons in the set B \ (B1 ∪ B2) have the property that the leftmost
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column of height 1 is at the right or left end of the polygon, symbolised by the remaining

configurations in figure 4. They can be uniquely partitioned into the set B3 of bar-graph

polygons generated by concatenation of inflated bar-graph polygons with a single square to

the right, the set B4 containing only the single square, and the set B5 of bar-graph polygons

generated by concatenation of bar-graph polygons with a single square to the left, leading to

the following equations for the respective generating functions

B3(x, y, q) = B(qx, y, q)qxy (3.8)

B4(x, y, q) = qxy (3.9)

B5(x, y, q) = qxB(x, y, q) . (3.10)

Thus, we have partitioned the set B of all bar-graph polygons into five disjoint subsets.

Therefore the generating function for B is the sum of the individual generating functions,

B = B1 + B2 + B3 + B4 + B5, and we get the functional equation

B(x, y, q) = B(qx, y, q)y + {1 + B(qx, y, q)} qx {y + B(x, y, q)} . (3.11)

This equation can be solved for B(x, y, q) and leads to a continued fraction representation of

the generating function, given by iteration of

B(x, y, q) =
y

qx

{
1

1 − qx − qxB(qx, y, q)
− 1 − qx

}
. (3.12)

At this point one can of course easily generate related models, for example, the set of alter-

nating bar-graph polygons (the subset of bar-graph polygons with an upper boundary whose

vertical components alternate in direction) can be obtained by prohibiting the concatenations

which lead to the sets B3 and B5 because these concatenations generate the non-alternating

segments in the upper boundary. Denoting the generating function by R(x, y, q), we therefore

get immediately

R(x, y, q) = R(qx, y, q)y + R(qx, y, q)qxR(x, y, q) + qxy (3.13)

which also leads to a continued fraction expansion.

Staircase polygons

For staircase polygons, one can employ a rather similar method of partitioning (see figure

5). Here it is more convenient to consider the overlap between neighbouring columns rather
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Staircase Polygons

S(x)

=

S(qx)y

+

S(qx)S(x)

+

qxy

+

qxS(x)

Directed Column-Convex Polygons

D(x;µ)

=

D(qx;µ)yµ

+ ❄

✻

Dµ(qx; 1)qxD(x;µ)

+

D(qx; 1)D(x;µ)

+ ❄

✻

Dµ(qx; 1)qxyµ

+

qxyµ

+

qxD(x;µ)

Figure 5: The diagrammatic form of the functional equations for staircase polygons and

directed column-convex polygons

than the height of the columns, as the columns can be shifted against each other. One again

splits the set S up into the set S1 of inflated staircase polygons and the set S \ S1 of the

remaining staircase polygons. These polygons share the property that they have at least

one overlap of height 1, so that we can consider the leftmost overlap of height 1. Generally,

this overlap splits the staircase polygon into two parts, an inflated one (S1) and a regular

one (S). Directedness of the staircase polygon ensures that these parts are joined by their

respective corners. We therefore define the set S2 to consist of those staircase polygons

that are generated by concatenating to the right all inflated polygons of the set S1 with all

polygons of the set S by their respective corners. The remaining set S \ (S1 ∪ S2) contains

degenerate cases which arise when the height of the first column is 1 (see figure 5 for details).
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The complete partition leads to the functional equation

S(x, y, q) = {S(qx, y, q) + qx} {y + S(x, y, q)} (3.14)

(this is exactly equation (6.1) in [24], where it has been derived using Schützenberger’s

methodology).

Directed column-convex polygons

We now turn to a more complex model, directed column-convex polygons [21]. The additional

degree of freedom in the construction necessitates the introduction of another variable in the

generating function. As in the case of staircase polygons, the set D of all directed column-

convex polygons is partitioned by first splitting off the set D1 of inflated directed column-

convex polygons. The set D \ D1 of the remaining polygons is further partitioned by again

considering the leftmost overlap of two neighbouring columns of height 1. As above, this

overlap splits the polygon into two parts. To the left of the overlap is an inflated directed

column-convex polygon (D1) which is joined to another polygon (D) by a single square. This

single square is attached to the bottom corner of the right polygon but can be joined to the

inflated polygon on the left everywhere along its right height. We define the set D2 to be the

set of all directed column-convex polygons generated in just such a way, however we exclude

the case when the single square is attached to the inflated polygon in the top-most position.

Here the polygons can be joined directly as was the case for staircase polygons, leading to

the set D3. Naturally, we also have a few degenerate cases, which we partition further into

the sets D4, D5, and D6 (again, see figure 5 for details).

In order to write down a functional equation for this model, we need to keep track of the

height r of the rightmost column of these polygons. We write

cnx,ny
m =

∞∑
r=1

cnx,ny ,r
m (3.15)

and define

D(x, y, q;µ) =
∑

cnx,ny ,r
m xnxynyqmµr . (3.16)

The first term in the functional equation for D is again given by inflation

D1(x, y, q;µ) = D(qx, y, q;µ)yµ . (3.17)
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The next term describes the concatenation of an inflated polygon to another one. There

is a multiplicity due to the arbitrary position of the middle square with respect to the left

polygon (i.e. if the height of the left column is r units then the single square can be attached

at r − 1 locations). This gives rise to a factor of r − 1 in the generating function and thus

can be written as

∂

∂µ

1
µ

D1(x, y, q;µ)
∣∣∣∣
µ=1

=
∂

∂µ
D(qx, y, q;µ)y

∣∣∣∣
µ=1

= Dµ(qx, y, q; 1)y (3.18)

where we denote differentiation with respect to the parameter µ with a subscript. The

generating function for the second diagram can therefore be written as

D2(x, y, q;µ) = Dµ(qx, y, q; 1)qxD(x, y, q;µ) . (3.19)

If the polygons get joined directly at the corners, we set µ = 1 for the left polygon and

write

D3(x, y, q;µ) = D(qx, y, q; 1)D(x, y, q;µ) . (3.20)

The remaining terms can be written as

D4(x, y, q;µ) = Dµ(qx, y, q; 1)qxyµ (3.21)

D5(x, y, q;µ) = qxyµ (3.22)

D6(x, y, q;µ) = qxD(x, y, q;µ) , (3.23)

and summing up D = D1 + D2 + D3 + D4 + D5 + D6 leads to the

D(x, y, q;µ) = {1 + Dµ(qx, y, q; 1)} qx {yµ + D(x, y, q;µ)}

+D(qx, y, q;µ)yµ + D(qx, y, q; 1)D(x, y, q;µ) (3.24)

We can transform this functional-differential equation to a set of functional equations by

partially differentiating (3.25) with respect to µ and setting µ = 1. This leads to

d = {1 + Dµ} qx {y + d} + D {y + d} (3.25a)

dµ = {1 + Dµ} qx {y + dµ} + D {y + dµ} + Dµy (3.25b)

where now

d(x, y, q) = D(x, y, q; 1) dµ(x, y, q) = Dµ(x, y, q; 1) (3.26)
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and

D(x, y, q) = d(qx, y, q) Dµ(x, y, q) = dµ(qx, y, q) (3.27)

We can simplify this system of two functional equations further to get one equation in D(x) =

D(x, y, q; 1),

0 = D(q2x)D(qx)D(x)

+ yD(q2x)D(qx) + yD(q2x)D(x) − (1 + q)D(qx)D(x)

+ y2D(q2x) − y(1 + q)D(qx) + q(1 + qx(y − 1))D(x)

+ yq2x(y − 1) , (3.28)

and in the next sections it is merely a matter of taste that we choose to continue to work

with the system (3.25) instead.

ZL-walks

Finally, the functional equation for the ZL-walks is,

H(x) = xy + xqH(x) + (1/ω + xy)H(qx) + xqH(xq)H(x) (3.29)

where q = ωy. This functional equation is very similar to the bar-graph equation. In fact in

the continuum limit the same form of differential equation is obtained leading to the same

scaling function and critical exponents. The only real difference between the ZL-walks and

the bar-graph polygons is the process of inflation. For ZL-walks the process corresponds to

adding on edge to each vertical segment of the walk (as opposed to adding one square to each

column of the polygon).

4 Solution of the Functional Equations

We now present an explicit solution of the above mentioned functional equations. First we

note that the functional equations for bar-graph polygons, alternating bar-graph polygons,

staircase polygons, and ZL-walks can all be linearised, as they are of the form

G(x)G(qx) + a(x)G(x) + b(x)G(qx) + c(x) = 0 , (4.1)
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which can be linearised by use of the transformation

G(x) = α
H(qx)
H(x)

− b(x) , (4.2)

where α has to be chosen to match the initial condition. This leads to a linear functional

equation in H(x),

α2H(q2x) + α[a(x) − b(qx)]H(qx) + [c(x) − a(x)b(x)]H(x) = 0 . (4.3)

Due to the special structure of the coefficients in this equation, we can now give explicit

solutions to each of the above models as well as to the model of directed column convex

polygons. As we will encounter a similar equation below, we shall state the solution for this

type of equation in a slightly more general way.

Assume that we have a linear functional equation of the form

0 = xH(qx) +
N∑

k=0

αkH(qkx) with
N∑

k=0

αk = 0 . (4.4)

with αk independent of x. The solution of (4.4) which is regular at x = 0 is then given by

H(x) =
∞∑

n=0

(−x)nq(
n
2)∏n

m=1 Λ(qm)
with Λ(t) =

N∑
k=0

αkt
k . (4.5)

We reiterate that it is crucial that Λ(1) =
∑N

k=0 αk = 0.

We now apply this method in the case of staircase polygons. We use the transformation

S(x) = y

(
T (qx)
T (x)

− 1
)

, (4.6)

as only the choice of α = y leads to the needed cancellation of the x0 coefficient. This

transforms equation (3.14) into

0 = yT (q2x) + (qx − 1 − y)T (qx) + T (x) . (4.7)

Therefore, we have

Λ(t) =
1
q
− 1 + y

q
t +

y

q
t2 . (4.8)

The condition Λ(1) = 0 holds, so that we can solve equation (4.8) using (4.5). We get the

solution

T (x) =
∞∑

n=0

(−qx)nq(
n
2)

(q, qy; q)n
, (4.9)
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where we have used the q-product notation

(x1, x2, . . . , xk; q)n =
n−1∏
m=0

(1 − x1q
m)(1 − x2q

m) . . . (1 − xkq
m) . (4.10)

The function T (x) = T (x, y, q) is a q-deformation of a Bessel function. This calculation easily

generalises for the other models with quadratic functional equations.

In the case of directed column convex polygons, we have a “cubic” equation, and there is

no general way of linearising it. Surprisingly, it turns out that the same transformation, i.e.

D(x) = y

(
E(qx)
E(x)

− 1
)

, (4.11)

transforms equation (3.28) into a linear one,

y2E(q3x) − y[q + y + 1]E(q2x) + [y + q + qy + q2x(y − 1)]E(qx) − qE(x) = 0 . (4.12)

Moreover, this linear equation is of the desired form (4.4). Using (4.5) results now in

E(x) =
∞∑

n=0

((y − 1)qx)nq(
n
2)

(q, qy, y; q)n
. (4.13)

Transformations (4.6) and (4.11) are the discrete analogue of the transformation (5.14) used

to linearise the non-linear Riccati equation. The method presented in this section thus gives

new and simple derivations of results previously calculated via the Temperley method (which

leads to linear functional equations with an auxiliary parameter [22]).

It is remarkable that both models have generating functions which can be expressed in

the form

G(x, y, q) = y

(
H(qx, y, q)
H(x, y, q)

− 1
)

, (4.14)

where the function H fulfills a linear functional equation In the case of staircase polygons,

this structure can also be explained via a bijection with heaps, which indicates that in the

case of directed column-convex polygons there might be a similar bijection [23].

Finally, it is worth mentioning that in [24] a related class of convex polygons (as opposed

to column-convex) has been studied via systems of q-differential equations. There, the authors

first looked at the associated differential equations (these are constructed in a purely formal

way and don’t have the continuum limit interpretation of the differential equations in this

paper). Upon finding the solution of the differential equations, a q-analogue had to be

“guessed”.
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5 Continuum Limit

In this section we define the semi-continuous staircase polygon and semi-continuous directed

column-convex polygon models. We use this definition to explicitly construct a transforma-

tion which will allow us to take the continuum limit of the lattice model and hence obtain

its corresponding semi-continuous version. The precise details of this formal method of con-

structing the continuum will be model dependent.

Taking the continuum limit on the level of the lattice model functional equations, we find

that they reduce to non-linear differential equations. From these equations we deduce the

asymptotic behaviour of the two models either by solving the differential equation explicitly

and working with the solution or by extracting the asymptotics directly from the equation.

The semi-continuous model corresponds to allowing the lengths of the vertical segments

of the corresponding lattice model to take on positive real values rather than only positive

integer values. Mathematically this can be achieved in two ways: either by writing the

generating function immediately allowing for continuous length segments, or by inserting the

lattice spacing, a, explicitly into the lattice generating function and then taking the limit

a → 0. We will illustrate these two equivalent approaches using the staircase model.

Semi-continuous Staircase Model

We can explicitly introduce the constraint using two length variables for each column of the

staircase as shown in figure 6. The semi-continuous generating function is then defined by

S(x; τ, ε) =
∞∑

n=1

xn
∫ ∞

0
dr1

∫ r1

0
ds1 · · ·

∫ ∞

sj−1

drj

∫ rj

0
dsj · · ·

∫ ∞

sn−1

drn exp(−Hn) (5.1)

with

Hn =
n∑

i=1

{τ(ri − si−1) + εri} . (5.2)

Note, there are two integrals for every column except for the last, and the limits on the first

pair are slightly different to those on the intermediate pairs. This expression can be evaluated

by Temperley’s method [18].

On the other hand, the lattice generating function can be written in an analogous form

S(x; y, q) =
∞∑

n=1

xn
∞∑

�1=1

�1∑
m1=1

· · ·
∞∑

�j=mj−1

�j∑
mj=1

· · ·
∞∑

�n=mn−1

Bn (5.3)
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Figure 6: The continuous staircase polygon model showing the length variables

with

Bn =
n∏

i=1

y�i−mi−1q�i . (5.4)

Clearly Bn is equivalent to Hn if we let y = exp(−τ) and q = exp(−ε) and consider - and

m as continuous. This can be done explicitly as follows. Insert the vertical lattice spacing

a into the lattice generating function by replacing x by a2x, y by ya and q by qa, so that

S(x, y, q) becomes

Sa(x) = S(a2x, ya, qa) . (5.5)

This gives one factor of a for each sum (with one to spare). Thus, as a → 0 we then have

lim
a→0

1
a
Sa(x) = S(x; τ, ε). (5.6)

Equation (5.6) is a transformation which takes the lattice model to the semi-continuous

model and hence defines the “continuum limit” for the staircase model. Note that we have

Sa(x) = O(a). The way the factors of a have to be inserted varies from model to model and

generally depends on the number of length variables associated with each column.

We now apply the above defined continuum limit to the staircase functional equation.

The functional equation will become a non-linear differential equation. The process consists

of two stages: first the lattice spacing is inserted explicitly, then the limit a → 0 is taken.
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Thus, upon inserting the lattice spacing in the staircase model the functional equation

(3.14) becomes

Sa(x) = a2xyaqa + a2xqaSa(x) + yaSa(qax) + Sa(qax)Sa(x). (5.7)

Letting y = exp(−τ), q = exp(−ε) and using the result

Sa(xe−aε) = Sa(x) − εax
∂

∂x
Sa(x) + O(a2) (5.8)

gives

0 = a2x − τaSa(x) + Sa(x)2 − εax
∂

∂x
Sa(x) + O(a3). (5.9)

Thus, dividing by a2, taking the limit a → 0, using (5.6), gives

λt
∂

∂t
Ŝ(t) = t − Ŝ(t) + Ŝ(t)2 (5.10)

where

λ =
ε

τ
, t =

x

τ2
and Ŝ(t) = Ŝ(t;λ) =

1
τ
S(x; τ, ε) . (5.11)

This differential equation is a Riccati equation (with initial condition Ŝ(0) = 1). It is easily

solved for the perimeter only generating function (which corresponds to q = 1, or equivalently,

λ = 0) as the equation reduces to a quadratic whose solution is

Ŝ(t;λ = 0) =
1
2

{
1 −

√
1 − 4t

}
. (5.12)

Hence we see that the perimeter generating function has a square-root singularity at t = 1/4

and thus we have

γu = −1
2

and tc =
1
4

. (5.13)

For λ �= 0 the Riccati equation can be solved by the substitution

Ŝ = −λt
h′(t)
h(t)

, (5.14)

where the prime denotes differentiation with respect to the functions argument. The function

h(t) satisfies the linear differential equation

λ2th′′ + λ(λ + 1)h′ + h = 0 . (5.15)

20



A few simple changes of variable reduces this equation to Bessel’s equation. The general

solution is

h(t) = t−
1
2λ

{
c1J 1

λ
(2
√

t/λ) + c2Y 1
λ
(2
√

t/λ)
}

. (5.16)

Inserting the initial condition and back substituting gives

Ŝ =
1
2

+
√

t
J′1

λ

(2
√

t/λ)

J 1
λ
(2
√

t/λ)
. (5.17)

This is the explicit solution of the semi-continuous model. In section 7 we consider its

asymptotic behaviour.

Semi-continuous directed column-convex model

For the directed column-convex polygons we have two coupled functional equations. An

analogous expression to (5.1) for the semi-continuous generating function, D(x; τ, ε), shows

that

d(a2x; ya, qa) = O(a),

but that

dµ(a2x; ya, qa) = O(1).

Thus the continuum limit of (3.25) gives

λt
∂

∂t
D̂(t) = t{1 + Dµ(t)} + D̂(t)2 − D̂(t) (5.18)

λt
∂

∂t
Dµ(t) = {1 + Dµ(t)}{D̂(t) − 1} + 1 , (5.19)

where

λ =
ε

τ
t =

x

τ2
D̂(t) =

1
τ
D(x; τ, ε) (5.20)

and Dµ(t) is the semi-continuous analogue of Dµ(x).

As for the staircase model, we can find the perimeter only generating function by putting

λ = 0. Eliminating Dµ(t) from the two equations (5.18) and (5.19), gives a cubic equation

for F̂ = D̂ − 1, where

F̂3 + F̂2 − t = 0 (λ = 0) . (5.21)

For t → 4/27, the relevant solution of (5.21) gives

F̂ ∼ −2
3
−

√
4
27

− t. (5.22)
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Thus the perimeter generating function for directed column-convex model has a square-root

singularity at t = 4/27, and hence

γu = −1
2

tc =
4
27

. (5.23)

For λ �= 0, Dµ can be eliminated from the coupled equations (5.19) to give a single

non-linear differential equation for H(t) = F̂/λt, where

H′′ +
(
−3H +

2
t
− 1

λt

)
H′ + H3 +

(
1
λt

− 2
t

)
H2 − 1

λ3t2
= 0. (5.24)

This is a generalised Riccati equation which is linearised by the transformation H(t) =

w′(t)/w(t), where w(t) satisfies the third order equation

λ3t2w′′′ + λ2t(1 − 2λ)w′′ − w = 0 . (5.25)

Now, this equation can be explicitly solved by Frobenius series. However, to obtain the

asymptotic behaviour as λ → 0 would require the asymptotic analysis of the resulting series.

These series are not conveniently available in the literature. Furthermore, doing the asymp-

totics this way involves a lot of unnecessary work as a large part of the asymptotic expression

of w(t) cancels upon back-substitution to get H(t). Thus, in order to avoid this unnecessary

work, we develop a method of analyzing the Riccati equation directly based on the method

of dominant balance. This latter method also generalises to non-linear equations that cannot

be linearised, as appears to be the case for column-convex polygons [18].

6 Formal Perturbation Theory

One can use the functional equations (3.11), (3.13), (3.14), and (3.25) to derive the critical

exponents for these models via singular perturbation theory around q = 1. We will describe

this method in detail for staircase polygons, and then apply it to directed column convex

polygons.

The method rests on two assumptions. Initially, it is assumed that an asymptotic expan-

sion in ε = − log q exists. Then, the results of the perturbation expansion are interpreted in

terms of a tricritical scaling ansatz [14] in order to get the crossover exponent.

On the other hand, one can study the asymptotics of the semi-continuous limit, which

we shall do below. In this limit it turns out that the scaling behaviour can be calculated
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explicitly without the need to resort to additional assumptions. Needless to say, both methods

give consistent results. However, as it is not rigorously shown that the semi-continuous limit

preserves the critical structure of the generating functions concerned, it is still useful (and

instructive) to directly work within the discrete model.

We now turn to the investigation of the critical structure of staircase polygons. Firstly,

we note that eqn. (3.14) can be solved explicitly for q = 1, resulting in the well-known result

for the perimeter generating function for S0(x, y) = S(x, y, 1),

S0(x, y) =
1
2

{
1 − x − y −

√
1 − 2x − 2y + x2 − 2xy + y2

}
. (6.1)

Setting x = y, we get

S0(x, x) =
1
2

{
1 − 2x −

√
1 − 4x

}
, (6.2)

which has a square root singularity at xc = 1/4, leading to an exponent γu = −1/2.

In order to get information about the critical structure around this singularity for q < 1,

we now assume that S(x, y, q) has an asymptotic expansion in ε = − log q. For practical

purposes, we choose an (equivalent) expansion in the variable ε = q−1 − 1 instead,

S(x, y, q) =
∞∑

n=0

Sn(x, y)εn (6.3)

and insert this expansion into (3.14). This leads to eqn. (6.1) and, for all n > 0, to

Sn(x, y) = {1 − x − y − 2S0(x, y)}−1 (6.4)

×
{

(y + S0(x, y))
n∑

m=1

S
(m)
n−m(x, y)

xm

m!
+

n−1∑
k=1

Sk(x, y)
n−k∑
m=0

S
(m)
n−m−k(x, y)

xm

m!

}
.

If we look at the behaviour of Sn(x, x) at xc = 1/4 we see that the prefactor causes a square

root divergence at xc. Further divergences are caused from the derivatives in the sums, and

closer inspection reveals that Sn(x, x) diverges with an exponent

γ(n)
u = γu + n∆ with γu = −1

2
and ∆ =

3
2

. (6.5)

This constant increase of γ
(n)
u by a gap exponent ∆ can now be interpreted within the setting

of tricritical scaling theory, which is assumed to describe the vicinity of the critical point [14].

The assumption of a scaling form,

S(x, x, q) ∼ (xc − x)−γu ŝ(ε(xc − x)−1/φ) with ŝ(t) → 1 for t → 0 , (6.6)
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implies that

Sn(x, x) ∼ (xc − x)−γu−n/φ for x → xc (6.7)

so that we can identify

φ =
1
∆

. (6.8)

Using the relation γt = φγu , this leads to a complete set of tricritical exponents for staircase

polygons,

γu = −1
2

γt = −1
3

φ =
2
3

. (6.9)

Applied to bar-graph polygons, this method gives identical results. The situation is a little

more complicated for directed row-convex polygons, as we have to deal with two coupled

equations. Firstly, setting q = 1 gives the perimeter generating function D0(x, y) = D(x, y, 1)

as well as E0(x, y) = Dµ(x, y, 1) as solution of

D0 = {1 + E0}x {y + D0} + D0 {y + D0} (6.10a)

E0 = {1 + E0} qx {y + E0} + D0 {y + E0} + E0y . (6.10b)

This can be further reduced to cubic equations for D0 and E0,

0 = D3
0 + 2(y − 1)D2

0 + (y − 1)(y + x − 1)D0 + (y − 1)yx (6.11a)

0 = xE3
0 + (y + 2)xE2

0 + (2xy − y2 + 2y + x − 1)E0 + yx . (6.11b)

D0(x, x) has a square root singularity at

xc =
3
√

100 − 4
3

≈ 0.21386 (6.12)

implying that like for staircase polygons,

γu = −1
2

(6.13)

holds. We now apply the above described method to compute the crossover exponent φ.

Expanding to first order in ε = − log q we write

D(x, y, q) = D0(x, y) + εD1(x, y) (6.14a)

Dµ(x, y, q) = E0(x, y) + εE1(x, y) (6.14b)

D(qx, y, q) = D0(x, y) + ε(D1(x, y) − x
∂

∂x
D0(x, y)) (6.14c)

Dµ(x, y, q) = E0(x, y) + ε(E1(x, y) − x
∂

∂x
E0(x, y)) , (6.14d)
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which results in the set of equations

D1 + x
∂

∂x
D0 = (1 + E0)x(D1 + x

∂

∂x
D0) (6.15a)

+E1x(y + D0) + D0(D1 + x
∂

∂x
D0) + D1(y + D0)

E1 + x
∂

∂x
E0 = (1 + E0)x(E1 + x

∂

∂x
E0) (6.15b)

+E1x(y + E0) + D0(E1 + x
∂

∂x
E0) + D1(y + E0) + E1y .

These equations are linear in D1 and E1. On solving these equations for D1 and E1 one can see

on closer inspection that the determinant in the denominator gives a square root divergence

and the derivatives of D0 and E0 in the numerator give an additional exponent increase of 1,

similar to the behaviour of eqn. (6.4) above. Alternatively, inserting the expressions for D0

and E0 gives the following cubic equation for D1(x, x)

0 = (x − 1)(x4 + 4x3 + 6x2 − 4x + 1)x2

− (x − 1)(x7 + 8x6 + 31x5 + 54x4 + 34x3 − 27x2 + 8x − 1)D1

+ (x − 1)(3x3 + 12x2 + 16x − 4)(x3 + 3x2 + 6x − 2)D2
1

− (3x3 + 12x2 + 16x − 4)2D3
1 . (6.16)

This implies that D1(x, x) diverges at xc with an exponent of γ
(1)
u = 1, leading to a gap

exponent ∆ = 3/2 which in turn gives the same set of tricritical exponents for directed

row-convex polygons as for staircase polygons,

γu = −1
2

γt = −1
3

φ =
2
3

, (6.17)

with the only difference being a shift in the location xc of the phase transition.

7 Asymptotic Analysis

For the staircase model the explicit solution of the semi-continuous model and the subsequent

asymptotic analysis is possible because of two, equally important, factors. Firstly, the dif-

ferential equation can be linearised and secondly, the asymptotic forms of the solutions (i.e.

Bessel functions) to the linear equation can be readily found in the literature. Unfortunately

this not possible with the directed column-convex or more complex models. Thus we develop

25



a technique that works directly with the non-linear equation. The technique uses the method

of dominant balance [19], similar to that used in WKB calculations.

We use the dominant balance method and see that the same result is obtained as from the

asymptotics of the explicit solution [18]. Not only does this provide a check on the method

but is also sheds light on the uniformity of the dominant balance result. The dominant

balance method is then applied to the directed column-convex model.

Staircase model

We can now recall [18] the asymptotic behaviour of the staircase generating function (5.17)

in the limit λ → 0. This corresponds to an asymptotic behaviour of the Bessel function.

Using Olver’s result [25] gives

Ŝ ∼ 1
2

+
(

1 − 4t

4ζ

) 1
2

λ
1
3

Ai′
(
λ− 2

3 ζ
)

Ai
(
λ− 2

3 ζ
) λ → 0 (7.1)

where
2
3
ζ

3
2 = log

(
1 +

√
1 − 4t

2
√

t

)
−

√
1 − 4t . (7.2)

As shown by Olver this result is certainly uniform for t > 0. In the neighbourhood of t = 1/4,

ζ ∼ 2−2/3(1 − 4t) (7.3)

and thus (7.1) becomes

Ŝ ∼ 1
2

+
{

λ

4

} 1
3

Ai′
({

λ
4

}− 2
3 {1

4 − t}
)

Ai
({

λ
4

}− 2
3 {1

4 − t}
) λ → 0. (7.4)

Note, (7.4) is no longer uniform for all t > 0, as was (7.1), but only applies in the neighbour-

hood of t = 1/4, which is a turning point. Comparing (7.4) with the scaling form (1.6) shows

that

f(z) =
Ai′(z)
Ai(z)

γt = −1
3

φ =
2
3

. (7.5)

The uniformity of the result (7.4) is important as it allows us to interchange the asymptotic

limits λ → 0 and t → 1/4. Interchanging the limits shows the asymptotic behaviour (7.4) is

consistent with (5.12), as is seen by using the result

Ai′(x)
Ai(x)

∼ −x
1
2 x → ∞ . (7.6)
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We now rederive the asymptotic behaviour directly from the differential equation using

dominant balance. The technique consists of three stages. Firstly a change of variables is

made to shift the singular point to origin, then we look for a generalised homogeneous or

scaling solution to the differential equation which, finally, is obtained asymptotically using

dominant balance.

Thus, for the staircase model the singular point occurs at t = 1/4 where Ŝ = 1/2 and so

letting 4s = 1 − 4t and Ŝ = S̃ − 1/2, and substituting into (5.10) gives

λ(
1
4
− s)

∂

∂s
S̃ = S̃2 − s . (7.7)

Now we look for a generalised homogeneous solution by scaling both the dependent and

independent variables. Trying s = λφs̄ and S̃ = λθS̄ gives

λ1−φ+θ(
1
4
− λφs̄)

∂

∂s̄
S̄ = λ2θS̄2 − λφs̄ . (7.8)

A simple analysis shows there are no real values of φ and θ which would provide a generalised

homogeneous solution. However as λ → 0, the equation is asymptotically dominated by those

terms for which the exponent of λ is smallest. Thus we look for values of φ or θ which give rise

to terms having an equally smallest exponent of λ. In general there may be several different

values of φ and θ that satisfy this condition. In this situation we choose that solution which

asymptotically matches the λ = 0 solution.

Thus, for (7.8) there are the four terms with exponents

r1 = 1 + θ − φ r2 = 1 + θ r3 = 2θ r4 = φ . (7.9)

Having all four exponents equal (ie. r1 = r2 = r3 = r4) produces an inconsistent set of

equations, we thus look for sets of three equal exponents. Inserting r1 = r3 = r4 produces

the solution

φ =
2
3

θ =
1
3

. (7.10)

As will be shown below, this solution leads to the correct asymptotic matching. Furthermore

the values of the exponents are r1 = r3 = r4 = 2/3 and r2 = 4/3, thus the elements of the

set {r1, r3, r4} are equally smallest. Hence by the principle of dominant balance the term

corresponding to r2 may be dropped as it does not contribute to the dominant asymptotic
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behaviour. We are thus left with the λ independent equation

1
4

∂

∂s̄
S̄0 = S̄2

0 − s̄ (7.11)

for the asymptotically dominant part of S̄, S̄0. Note, we have divided out the common factor

of λ2/3. Equation (7.11) is another Riccati equation which is linearised by the transformation

S̄0 = −z′(s̄)/4z(s̄) (7.12)

if z(s̄) satisfies
d2z

ds̄2
− 16s̄z = 0 . (7.13)

A further change of independent variable to s̄ = 16−1/3s̃ gives an Airy equation

d2z

ds̃2
= s̃z. (7.14)

Hence, the general solution is

Ŝ ∼ 1
2
−

{
λ

4

} 1
3 Ai′

(
{λ

4}−
2
3 {1

4 − t}
)

+ cBi′
(
{λ

4}−
2
3 {1

4 − t}
)

Ai
(
{λ

4}−
2
3 {1

4 − t}
)

+ cBi
(
{λ

4}−
2
3 {1

4 − t}
) λ → 0 (7.15)

where c is an arbitrary constant. Now, this form must asymptotically match (5.12). This is

only possible if c = 0, giving

Ŝ ∼ 1
2
−

{
λ

4

} 1
3 Ai′

(
{λ

4}−
2
3 {1

4 − t}
)

Ai
(
{λ

4}−
2
3 {1

4 − t}
) λ → 0 . (7.16)

which is the same result as going via the exact solution. The asymptotic matching of this

solution to the λ = 0 solution also shows that the solution φ = 2/3, θ = 1/3 is correct. Note

for this choice of θ and φ that S̃0 = O(1) whilst the order of the remaining term appearing

in (7.8) is λ2/3, and hence dropping the r2 term is consistent as it is of higher order than the

retained terms.

Directed column-convex model

We now repeat the technique for the directed column-convex model omitting most of the

details. First, the singular point is shifted to the origin by t = s̄ + 4/27 and H = H̃ − 2/3.

This is followed by the change of variables to s̄ = λφs and H̃ = λθW which results in

λ2+θ−2φ(λφs + 4/27)2W ′′ − 3λ1+2θ−φ(λφs + 4/27)WW ′ + λ1+θ−φ(λφs + 4/27)W ′

+λ3θW3 − λ2θ(1 − λ)W2 − 1
3
λ1+θW − 2

9
λ − λφs = 0 . (7.17)
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If we further assume that θ and φ are positive then only five of the exponents can possibly

be in a set of equally smallest. The five exponents are

r1 = 2 + θ − 2φ

r2 = 1 + θ − φ

r3 = 2θ

r4 = φ

r5 = 1.

We now systematically search for sets of equally smallest exponents. One set is r2 = r3 =

r4. Solving this set of equations gives the same result as the staircase model, ie

φ =
2
3

θ =
1
3
. (7.18)

Omitting the seven subdominant terms in (7.17) gives the Riccati equation

4
27

H̄′
0 = H̄2

0 + s̄ (7.19)

which again leads to Airy’s equation and hence to

H̃ ∼ −2
3

+
{

4
27

λ

} 1
3

Ai′
({

4
27λ

}− 2
3 { 4

27 − t}
)

Ai
({

4
27λ

}− 2
3 { 4

27 − t}
) λ → 0 . (7.20)

This shows once again that γt = −1/3 and φ = 2/3. Taking the limit λ → 0 gives the result

(5.22) confirming that (7.18) is the correct choice.

8 Conclusion

We conclude by summarising the principal results of the paper: We have derived non-linear

functional equations for the generating functions of the models illustrated in figure 1. The

method of derivation of these functional equations relies on the process of ‘inflation’ which,

for the polygon models, corresponds to adding an area element to the top of each column

of the polygon. We obtain q-series solutions by linearising the equations. Additionally we

take the continuum limit to obtain Riccati differential equations for the corresponding semi-

continuous models. These equations can be transformed to linear differential equations and

hence solved.
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We have also studied the asymptotics of the generating functions in the neighbourhood of

the critical point. This has been done for the discrete models by using a formal perturbation

expansion of the non-linear functional equations and for the semi-continuous models by using

the method of dominant balance. The asymptotic forms obtained show that all the models

of figure 1 belong to the same universality class.
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