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Abstract

This thesis is about the enumeration of two models of directed lattice

paths in a strip.

The first problem considered is of path diagrams formed by Dyck paths

and columns underneath it, counted with respect to the length of the

paths and the sum of the heights of the columns. The enumeration of

these path diagrams is related to q-deformed tangent and secant num-

bers. Generating functions of height-restricted path diagrams are given

by convergents of continued fractions. We derive expressions for these

convergents in terms of basic hypergeometric functions, leading to a hier-

archy of novel identities for basic hypergeometric functions. From these

expressions, we also find novel expressions for the infinite continued frac-

tions, leading to a different proof of known enumeration formulas for

q-tangent and q-secant numbers.

The second problem considered is the enumeration of directed weighted

paths in a strip with arbitrary step heights. Here, we find an appealing

formula for their generating function in terms of a ratio of two (skew-)

Schur functions, evaluated at the roots of the so-called kernel of a linear

functional equation. The partitions indexing these Schur functions only

depend on the size of the largest up and down steps, and the weights of

the individual steps enter via the kernel roots. To aid computation, we

express the skew Schur function in this formula in terms of a sum of Schur

functions, and give several examples. We also consider an extension

where contacts at the boundary are weighted.
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Chapter 1

Introduction

Lattice paths can be informally described as a regular arrangement of points in a

Euclidean space Rd. Counting lattice paths is an important field in combinatorics

known as Enumerative Combinatorics. This enumeration of paths is a very widely

studied problem not just in combinatorics and probability theory but also in physics

where the lattice paths are used to model polymers. Here we consider enumeration

problems consisting of certain arrangements in d = 2 dimensions which are restricted

by specific conditions.

There are several methods used for the enumeration of these paths. While the

aim is to derive counting formulas for lattice paths with respect to fixed parameters

such as total length, in some cases the enumeration of the paths can more easily be

given in terms of explicit expressions for generating functions. For certain directed

path problems it is possible to describe the generating functions as continued frac-

tions [7]. One of the more modern methods for obtaining generating functions is the

kernel method [2, 22].

In Chapter 2 we introduce the key terms used in the thesis, which includes Dyck

paths, Motzkin paths, continued fractions, symmetric polynomials with an emphasis

on Schur functions and skew Schur functions. We also introduce the methods used
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such as the kernel method and Cramer’s rule. It also includes an overview of the

generalised weighted path model and discusses surface weights to model polymer

adsorption.

In Chapter 3 we investigate path diagrams bounded by Dyck paths and work

out their counting using continued fraction expansions. Using the correspondence

between path diagrams and continued fractions [7], we derive generating functions

for restricted height path diagrams by solving the recurrence relation for the nu-

merator and denominator of the convergents of the continued fractions. Here, the

wth convergent corresponds to restricting the height of the path diagrams to lie

within a strip of width w. We consider two cases, differing by the maximal height

of a column below a down step. These cases turn out to be intimately related to

q-tangent and q-secant numbers [24], where q is the generating variable for the sum

of column heights. We determine these generating functions explicitly in terms of

basic hypergeometric functions that is the wth convergents and the half plane limits

for these path diagrams which corresponds to results for q-tangent numbers and

q-secant numbers. We also derive the results for the half plane limits of both cases.

Finally, the wth convergents give interesting basic hypergeometric identities.

In Chapter 4 we establish a general relationship between the enumeration of

generalised weighted paths and skew Schur functions, extending work by Bousquet-

Mélou [3]. We define a model of generalised weighted paths that are directed lattice

paths which can take steps out of a finite set of heights but are restricted to remain

within a strip of height w and specify start- and end-heights. We further associate

weights to the height of the steps taken. Our main result comprises of a theorem

expressing the generating function of these paths in terms of skew Schur functions.

In Chapter 5 we extend the enumeration of these generalised weighted paths by

adding contact weights at the boundaries. We thus consider the model of generalised

weighted paths undergoing adsorption onto the lower and the upper boundary. Poly-

mer adsorption has always been of interest and it has been evaluated for different

lattice paths [4, 23]. We look at the special case of adsorption in Motzkin paths [5]

which is then extended to generalised weighted paths.

12



Chapter 2

Background

This chapter discusses the key notions used in the thesis. In the next sections we

introduce Dyck and Motzkin paths, and discuss their relations to the combinatorial

aspects of continued fractions, as this will play a central part in Chapter 3. To

prepare for Chapters 4 and 5, we introduce the kernel method as a method for

solving certain linear combinatorial functional equations. As we express our results

in terms of linear systems involving symmetric functions, we also briefly remind the

reader of the general Laplace expansion and Cramer’s rule, and summarise needed

background on symmetric functions, in particular focussing on Schur functions and

the Jacobi-Trudi formulas. We close this chapter by briefly discussing polymer

adsorption.

2.1 Dyck paths

Definition 2.1. A Dyck path of length n is a directed walk on Z2 from (0, 0) to

(n, 0), which never goes below the x-axis. The step sets permitted are an up step

(1, 1) and a down step (1,−1).
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The length of any Dyck path is even, and Dyck paths of half length n (i.e.

of length 2n) are counted by the Catalan numbers Cn. There are various ways of

obtaining a simple formula for Cn, for example by using a combinatorial construction

as follows. A Dyck path is either an empty step or an up step followed by a Dyck

path and a down step. Translating this into generating functions and defining the

generating function of Dyck paths to be

C(z) =
∞∑
n=0

Cnz
2n , (2.1.1)

we can say that C(z) satisfies the quadratic equation

C(z) = 1 + z2C(z)2 , (2.1.2)

which can be solved to give

C(z) =
1±
√

1− 4z2

2z2
. (2.1.3)

To get the postive coefficients in C(z) we take the solution

C(z) =
1−
√

1− 4z2

2z2
.

The 2nth coefficient of z will give us the corresponding Catalan number as follows:

[z2n]C(z) = Cn =
1

n+ 1

(
2n

n

)
. (2.1.4)

2.2 Motzkin paths

Definition 2.2. A Motzkin path of size n is a directed walk on Z2 from (0, 0) to

(n, 0), which never goes below the x-axis. The step sets permitted are an up step
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(1, 1), a down step (1,−1), and a horizontal step (1, 0).

Thus, a Motzkin path is either an empty step or a horizontal step followed by a

Motzkin path or an up step followed by a Motzkin path then a down step and then

another Motzkin path. In terms of the generating function of Motzkin paths,

M(z) =
∞∑
n=0

Mnz
n , (2.2.1)

this implies the quadratic equation

M(z) = 1 + zM(z) + z2M(z)2 . (2.2.2)

Solving the quadratic equation gives

M(z) =
(1− z)±

√
(z − 1)2 − 4z2

2z2
. (2.2.3)

For the positive coefficients we take the solution

M(z) =
(1− z)−

√
1− 2z − 3z2

2z2
. (2.2.4)

The coefficient of z in the generating function M(z) is the Motzkin number Mn,

which thus count Motzkin paths of length n. Catalan numbers and Motzkin numbers

are related by the expression

Mn =

n/2∑
k=0

(
n

2k

)
Ck , (2.2.5)

where the combinatorial prefactor corresponds to the number of ways horizontal

steps can be inserted into a Dyck path of length 2k to create a Motzkin path of

length n.
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2.3 Continued fractions

In this section we discuss Jacobi type continued fraction expansions. The Jacobi

type continued fraction takes the form

J(X, t) =
1

1− c0t−
a0b1t

2

1− c1t−
a1b2t

2

. . . ak−1bkt2

. (2.3.1)

From [7] we know that Jacobi type continued fractions have a combinatorial interpre-

tation in terms of labelled paths in the plane as follows: ai labels an up step starting

at height i, bi labels a down steps starting at height i and ci labels a horizontal step

at height i. An example of a labelled path is shown in Figure 2.1. Finite Jacobi type

a1 b2

b1 a0 b1 a0

a1

c2

a2 b3

b2

b1
c1

a0

Figure 2.1: A labelled path where ai is a label for an up step starting at height i, bi
for a down step starting at height i and ci for a horizontal step at height i.

continued fractions as given by (2.3.1) therefore correspond to Motzkin paths in a

strip of height k, whereas infinite continued fractions correspond to Motzkin paths

without height restrictions. Note that if all ci are zero then the continued fraction

is simply a Stieltjes type continued fraction which represents Dyck paths.

Continued fraction expansions for Dyck paths and Motzkin paths without

16



weights are thus given by

M(z) =
1

1− z −
z2

1− z −
z2

. . .

and C(z) =
1

1−
z2

1−
z2

. . .

. (2.3.2)

2.4 Path diagrams

Definition 2.3. A system of path diagrams is defined by a possibility function

pos : X → N0.

Path diagrams are composed of a Dyck path u = u1u2u3 · · ·un where for j =

1, 2, . . . , n each uj ∈ X, and the corresponding sequence of integers s = s1s2s3 . . . sn

where for i = 1, 2, · · · , n each 0 ≤ si ≤ pos(uj). We get n points corresponding to a

path of length n.

This definition has been taken from Flajolet [7], where one can also find many

examples. Path diagrams have been used to enumerate various classes of permu-

tations. They are defined by a possibility function where each particular function

illustrates a different combinatorial object.

Path diagrams can be visualised by interpreting the value of the possibility func-

tion for any label as the height of a point associated to this label, as shown in Figure

2.2, where the path from Figure 2.1 has been augmented by a particular relisation

of a possibility function given by

d = (u; s) = (a0a1b2b1a0c1b1a0a1c2a2b3b2b1; 1, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 0) . (2.4.1)

We now move on to concepts for Chapter 4 and 5. We begin by defining the model

17



a1 b2

b1 a0 b1 a0

a1

c2

a2 b3

b2

b1
c1

a0

Figure 2.2: A system of path diagram given by a sequence of integers s =
(1, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 0). Each integer represents a height of point marked
by crosses.

of generalised weighted paths.

2.5 Generalised paths

Dyck paths can be generalised in many different ways. For example, increasing the

step set by a horizontal step leads to Motzkin paths. Labelle and Yeh [16] considered

replacing northeast steps by steps from an arbitrary finite multiset with integral

coordinates and a corresponding replacement of southeast steps, which for example

includes paths with chess-knight moves. Similarly, Bousquet-Mélou [3] changed the

step set by expanding the vertical step size to be a subset of the integers and allowing

for asymmetry between up steps and down steps. Additionally, different weights are

associated to steps of different jump height [3]. Another generalisation is given by

removing the restriction on starting and ending heights to be zero. For example,

the paper [1] extends the work by Bousquet-Mélou by allowing the path to end at

any height rather than on the x-axis.

In Chapter 4 we will introduce generalised weighted paths, which are defined in

line with [3] and [1] . We will consider paths in a slit of width w with starting at

height u and ending at height v, which take steps from a given finite set of heights,

with weights associated to these individual steps. We will call these generalised

weighted paths.
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2.6 Kernel method

In this section we talk about the kernel method, which has been used in various

combinatorial problems. This orginated from Knuth’s work [13] and was explained

further with numerous examples given by Prodinger [22]. Some recent applications

have been in [2, 10,15].

We illustrate the kernel method by giving a simple example of non-negative

lattice paths starting at the origin and taking steps (1, 1) and (1,−1), known as

ballot paths. Let a
(i)
n be the number of such paths from the origin to (n, i). Their

generating function is given by

fi(z) =
∑
n≥0

a(i)n z
n . (2.6.1)

These generating functions satisfy the recursions

fi(z) = zfi−1(z) + zfi+1(z), i ≥ 1 (2.6.2)

and

f0(z) = 1 + zf1(z). (2.6.3)

To solve this enumeration problem we introduce an additional variable x. Consider

a bivariate generating function F (z, x) =
∑
i≥0

fi(z)xi, which uses two generating

variables that account for both the length and height of paths. Multiplying the

above recursions by xi and summing, we find

F (z, x) = 1 + zxF (z, x) +
z

x
F (z, x)− z

x
f0(z) . (2.6.4)

Here zx corresponds to an up step, and z/x corresponds to a down step. We can

write f0(z) = F (z, 0), so that we get

F (z, x) =
zF (z, 0)− x
zx2 − x+ z

. (2.6.5)
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The denominator being quadratic in x can be factorised as z(x− r1(z))(x− r2(z)),

where r1,2(z) are given by:

r1,2(z) =
1±
√

1− 4z2

2z
. (2.6.6)

We see that x− r1(z) ∼ x− z as x, z → 0, so the factor 1/(x− r1(z)) has no power

series expansion around (0, 0). However F (z, x) does have one, so this “bad” factor

must cancel, i.e. (x − r1(z)) must also be a factor of the numerator. This implies

that zF (z, 0) = r1(z), and so

F (z, 0) =
1−
√

1− 4z2

2z2
, (2.6.7)

which is the well known generating function for Catalan numbers. This example

illustrates the normal kernel method.

We now consider another example given in [2, eq. 11]. Here, the kernel is given

by

K(z, u) = ub(1− u) + zub − z(1− u)
∑
α∈A

uα+b + z(1− u)
∑
β∈B

ub−β , (2.6.8)

with finite sets A ⊂ Z and B ⊂ N+, where N+ = {1, 2, 3, . . .} that specify the

allowed forward jumps and the forbidden backward jumps, respectively. Letting the

kernel equal to zero now gives a+ b+ 1 solutions, and we are interested in the type

of roots obtained. If the a + b + 1 solutions are expanded around 0, the roots are

classified by considering their Puiseaux expansion [2] as

• the unit branch, denoted by u0, is a power series in z with constant term 1;

• b small branches, denoted by u1, . . . , ub, are power series in z1/b whose first

non zero term is ςz1/b, with ςb + 1 = 0;

• a large branches, denoted by v1, . . . , va, are Laurent series in z1/a whose first

non zero term is ςz1/a,with ςa + 1 = 0.

20



The reason for looking at the roots is to show that all the roots are distinct. In

Chapter 4 we have a kernel with α + β roots with α large roots and β small roots.

Of particular interest is that roots have been translated into elementary symmetric

functions and are later expressed in terms of Schur functions.

2.7 Cramer’s rule

Cramer’s rule is a well known method for solving system of equations with a unique

solution. It expresses the solution of unknown in form of determinants. Consider a

system of n linear equations with n unknowns written in matrix form as

Ax = b , (2.7.1)

where x is the column vector with all the unknowns. Cramer’s rule states that the

individual values for the unknowns are given by

xi =
|Ai|
|A|

i = 1, . . . , n , (2.7.2)

where Ai is the matrix formed by replacing the ith column of A by the column vector

b. Similar to the work in [15], we are using this method in Chapters 4 and 5 to solve

the system of equations where the unknowns are generating functions of paths.

The resulting determinants can be evaluated using the Laplace expansion [20]

with respect to a chosen row or column. Due to the structure of the matrices we

consider, we will also make use of a generalised form of Laplace expansion where the

determinant is computed by using more than one row or column. Here we follow

notation used in [28]. Let B = [bij] be an n× n matrix and S the set of k-element

subsets of {1, 2, . . . , n}, H an element in it. Then the determinant of B can be
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expanded along the k rows identified by H as follows:

|B| =
∑
L∈S

εH,LbH,LcH,L , (2.7.3)

where εH,L is the sign of the permutation determined by H and L, equal to

(−1)(
∑
h∈H h)+(

∑
`∈L `), bH,L is the square minor of B obtained by deleting from B

rows and columns with indices in H and L respectively, and cH,L (called the com-

plement of bH,L) is defined to be bH′,L′ , with H ′ and L′ being the complement of H

and L respectively.

This generalised version of Laplace expansion has been used in Chapter 5 to

compute the generating functions of paths under adsorption.

2.8 Schur functions

To define Schur functions and state the Jacobi-Trudi formulas that we will make use

of in Chapter 4, we need to introduce the notion of symmetric polynomials. Material

in this section follows [25], however we restrict ourselves to only considering a fixed

number of variables.

Let x = (x1, ..., xl) be a set of l indeterminates. A symmetric polynomial is

a polynomial in these indeterminates that is invariant under any exchange of its

arguments. Symmetric polynomials form a vector space under addition and scalar

multiplication, and an algebra under addition, multiplication and scalar multiplica-

tion. We denote the space of symmetric polynomials in l variables by Λl.

A partition λ = (λ1, ..., λl) is a weakly decreasing sequence of l non-negative

integers where λi are called parts. There are several bases for symmetric polyno-

mials, perhaps the simplest one being the basis of monomial symmetric functions,

given by mλ(x) =
∑

α x
α where the sum ranges over all distinct permutations α of

the partition λ and where we have used the notation xα = xα1
1 . . . xαll . Elementary

symmetric polynomials are special cases defined as er = m(1r), or more explicitly as
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Definition 2.4. Let x = (x1, ..., xl) be a set of l indeterminates. For each integer

r ≥ 0, the r-th elementary symmetric polynomial er is the sum of all products of r

distinct variables xi, so that e0 = 1 and

er(x1, . . . , xl) =
∑

1≤i1≤i2≤...≤ik≤l

xi1xi2 . . . xik . (2.8.1)

where r ≥ 1 [17].

For example, for l = 3, e0(x1, x2, x3) = 1,

e1(x1, x2, x3) = x1 + x2 + x3 ,

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3 ,

e3(x1, x2, x3) = x1x2x3 ,

and er(x1, x2, x3) = 0 for r > 3. We can extend the elementary symmetric polyno-

mials to a basis of Λl by forming eλ = eλ1 . . . eλl . Another basis, and one convenient

for us, is given by Schur functions.

Definition 2.5. Let x = (x1, ..., xl) be a set of l indeterminates, and let λ be a

partition. The Schur function sλ is defined as

sλ(x1, . . . , xl) =
aλ+δ(x1, . . . , xl)

aδ(x1, . . . , xl)
, (2.8.2)

where

aµ(x1, . . . , xl) = det(x
µj
i )li,j=1

and δ = (l − 1, l − 2, . . . , 0).

We note that aµ is an alternating polynomial which changes sign under exchange

of any two variables, and that aδ =
∏
i<j

(xi − xj) is the Vandermonde determinant.
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We now define an inner product 〈, 〉 on Λl by requiring that {sλ} is an orthonor-

mal basis. We can now define skew Schur functions as follows.

Definition 2.6. Given two partitions λ and µ with µ ⊆ λ, the skew Schur function

sλ/µ is defined via

〈sλ/µ, sν〉 = 〈sλ, sµsν〉 (2.8.3)

for any partition ν.

Thus, a Schur function sλ is also a skew Schur function sλ/µ with µ = (). A

major result in the theory of symmetric functions is that a skew Schur function sλ/µ

expands positively in Schur functions as

sλ/µ =
∑
ν

cλµνsν , (2.8.4)

where the coefficients cλµν are known as Littlewood-Richardson coefficients. The

Littlewood-Richardson rule states that cλµν is equal to the number of semi standard

Young tableaux of skew shape λ/µ of type ν, from which the positivity follows. For

example,

s(3,3,2,1)/(2,1) = s(22,12) + s(23) + s(3,13) + 2s(3,2,1) + s(32) . (2.8.5)

We have used a special case of this rule due to Pieri, where µ is a horizontal strip,

to prove a corollary in Chapter 4.

We close this section by stating a simple identity which enables computation of

Schur and skew Schur functions in terms of elementary symmetric functions. The

(second) Jacobi-Trudi formula states that

sλ/µ = det(eλ′i−µ′j−i+j)
l(λ)
i,j=1 , (2.8.6)

where λ′ and µ′ are partitions conjugate to λ and µ, respectively. Here, a conjugate

partition is most easily defined via transposition of the associated Young diagram.

It is this identity via which we arrive at our main results in Chapters 4 and 5.
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2.9 Polymer adsorption

We can use generalised paths to model a long chain polymer in solution. Considering

paths in a strip of fixed width models polymers in a restricted domain. If there is

an attractive force between the polymer and the boundary of the domain, then the

polymer experiences a change in behaviour. If the attractive force is sufficiently

strong, then the limiting fraction of the polymer in contact with the wall will be

positive; we say that the polymer is adsorbed.

We can account for this in a path model by adding a weight every time the

generalised path comes in contact with the walls. To give an example, Figure 2.3

κ

λ

κ
κ

λ

λ

λ

w

Figure 2.3: An example of a Motzkin path in slit of width w with edge and vertex
contacts. The contacts at the lower and upper boundary are weighted by κ and λ
respectively.

shows a Motzkin path with vertex and edge contacts at the boundaries. The model

is defined to take a weight of κ whenever an up step leaves the boundary y = 0,

and a weight of λ when a down step leaves the boundary y = w. When a horizontal

step lies on the boundary it gets a weight of κ or λ depending on the boundary.

For Motzkin paths this has been discussed in [5,27]. In this thesis, we use this as a

motivation to study an extension of generalised weighted paths where these weights

have been included.
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Chapter 3

Enumerating Path Diagrams

3.1 Introduction

A Dyck path is a lattice path on N2 from (0, 0) to (2n, 0) consisting of n steps in the

northeast direction of the form (1, 1) and n steps in the southeast direction of the

form (1,−1) such that the path never goes below the line y = 0. Figure 3.1 shows

a Dyck path.

Figure 3.1: A Dyck path of half length N = 6.

We encode a Dyck path in terms of labelled steps where each step is indexed with

the height of the of point from where it starts. For example, the labelled path for

Figure 3.1 would be (a0, a1, b2, b1, a0, a1, a2, b3, a2, b3, b2, b1) where ai is a northeast
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step starting at height i and bj is a southeast step starting at height j. So we can

say that there is a set X = {a0, a1, a2, . . .} ∪ {b1, b2, b3, . . .}, the elements of which,

as ordered finite sequence, form a Dyck path. Using the idea of defining labelled

Dyck paths, we consider path diagrams which are represented by a Dyck path and

the set of points under it subjected to some conditions, as introduced in Chapter 2.

Figure 3.2: Dyck path with column heights formed by integers s =
(0, 0, 0, 0, 1, 3, 1, 0, 1, 1)

In this chapter we consider two types of path diagrams. In the first case we

consider a case in which we count all possible points bounded by a Dyck path. The

possibility function is defined as

pos(aj) = j, pos(bk) = k, for j ≥ 0 and k ≥ 1. (3.1.1)

In the second case we restrict the set of points by eliminating the points which are

in contact with the Dyck path at southeast step. We thus have

pos(aj) = j, pos(bk) = k − 1, for j ≥ 0 and k ≥ 1. (3.1.2)

These possibility functions map labelled steps onto a set of integers. These integers

can be visualised as column heights as in Figure 3.2.

A path is then formed by joining the peaks of the columns. For example,

Figure 3.3 shows an example of one such path diagram with this path shown as

a dashed line. The corresponding set of integers belonging to this diagram are
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Figure 3.3: Dyck path with a path diagram

s = (0, 0, 0, 0, 1, 3, 1, 0, 1, 1); we can interpret this as a model of two non crossing

paths in a finite slit. A lot of work has been done on the enumeration of non cross-

ing paths in [14, 26]. The work here takes into account two paths given by a path

diagram, i.e., a Dyck path and a general directed path restrained to lie between the

x-axis and this Dyck path.

3.2 Generating functions and continued fraction

expansions

The generating functions of path diagrams of a Dyck path weighted according to

their length and the sum of column heights is given as

Gw(t, q) =
∞∑

N,m=0

a
(w)
N,mt

2Nqm (3.2.1)

and

G′w(t, q) =
∞∑

N,m=0

b
(w)
N,mt

2Nqm, (3.2.2)

where Gw(t, q) and G′w(t, q) are the generating functions weighted according to their

length 2N and sum of column heights m. The coefficients enumerate the path
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diagrams for both the cases described; that is a
(w)
N,m is the number of path diagrams

defined by the possibility function in (3.1.1) and b
(w)
N,m is the number of path diagrams

formed by the possibility function in (3.1.2), bounded by a Dyck path of length 2N

in a slit of width w. Here q is conjugate to the sum of column heights and t is

conjugate to the length of the Dyck path.

Figure 3.4 shows all the possible paths of half length N = 2 and total column

height m = 2. The vertical lines show the possible columns whose heights sum to 2.

We find that a
(1)
2,2 = 1 and a

(w)
2,2 = 5 for w ≥ 2. For b

(w)
N,m the contact of path diagram

and Dyck path is restricted at every southeast step, so b
(1)
2,2 = 0 and b

(w)
2,2 = 1 for

w ≥ 2. This corresponds to the first path in Figure 3.4.

Figure 3.4: Example of a Dyck path with sum of column heights in this case m = 2
and half length N = 2.

We rewrite the generating functions defined above by forming partial sums over

N by introducing the fixed column height partition functions

Z(w)
m (t) =

∞∑
N=0

a
(w)
N,mt

2N and Z ′(w)m (t) =
∞∑
N=0

b
(w)
N,mt

2N , (3.2.3)

so that

Gw(t, q) =
∞∑
m=0

Z(w)
m (t)qm and G′w(t, q) =

∞∑
m=0

Z ′(w)m (t)qm. (3.2.4)
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Alternatively, considering the fixed length partition functions

Q
(w)
N (q) =

∞∑
m=0

a
(w)
N,mq

m, and Q
′(w)
N (q) =

∞∑
m=0

b
(w)
N,mq

m, (3.2.5)

we can write

Gw(t, q) =
∞∑
N=0

Q
(w)
N (q)t2N , and G′w(t, q) =

∞∑
N=0

Q
′(w)
N (q)t2N . (3.2.6)

Therefore Q
(w)
N and Q

′(w)
N are the coefficients of t2N of the generating functions

Gw(t, q) and G′w(t, q), respectively. The case m = 0 reduces to the enumeration of

Dyck paths without area weighting, and if we consider columns of maximal height

for any Dyck path (corresponding to the largest value of m for which Z
(w
m )(t) is non

zero) then this is equivalent to counting area weighted Dyck paths [9].

In [7], the correspondence between generating functions and continued fractions

has been discussed in detail. We start by developing the idea of writing a continued

fraction of path diagram bounded by a Dyck path with all possibilities of sum of

column heights under it. The continued fraction expansions (3.2.7) and (3.2.8) are

simply the result of a direct geometrical correspondence [7, Theorem 3A], corre-

sponding to the odd Euler numbers E2n+1, which are the coefficients of of a formal

power series defined via the continued fraction

1

1−
1.2t2

1−
2.3t2

. . .

. (3.2.7)

Similarly restricting the contact of path diagram at every southeast step of a Dyck

path resulted in the following continued fraction expansion which is given in [7,
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Theorem 3B]

1

1−
1.1t2

1−
2.2t2

. . .

. (3.2.8)

This idea was generalised in [24] by giving the possibilities of sum of column heights

a weight of q. So the continued fraction expansion is given as

G(t, q) =
1

1−
α2(1− q)(1− q2)

1−
α2(1− q2)(1− q3)

. . .

(3.2.9)

and

G′(t, q) =
1

1−
α2(1− q)2

1−
α2(1− q2)2

. . .

, (3.2.10)

where

α =
t

1− q
. (3.2.11)

Below we shall use α and t interchangably, as convenient.

This enumeration is analogous to q-tangent and q-secant numbers, respectively.

Proposition 3.1. For w ≥ 0, the generating functions in (3.2.1) and (3.2.2) repre-
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sented as generalised finite continued fractions are respectively given by

Gw(t, q) =
1

1−
α2(1− q)(1− q2)

1−
α2(1− q2)(1− q3)

. . .−
α2(1− qw−1)(1− qw)

1− α2(1− qw)(1− qw+1)

(3.2.12)

and

G′w(t, q) =
1

1−
α2(1− q)2

1−
α2(1− q2)2

. . . −
α2(1− qw−1)2

1− α2(1− qw)2

, (3.2.13)

where α =
t

1− q
.

Proof. The generalised continued fractions in (3.2.12) and (3.2.13) are the finite

versions of equations (3) and (4) given by [11]. The Dyck path of height zero is the

Dyck path with no step and so there is no possibility of columns under it. Hence

G0(t, q) = 1. From the combinatorial theory of continued fractions given by [7], if

X = (a0, a1, a2, .., b0, b1, ..) the Stieltjes type continued fraction is

Sk(X, t) =
1

1−
a0b1t

2

1−
a1b2t

2

. . . −
ak−2bk−1t

2

1− ak−1bkt2
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where ai corresponds to a northeast step starting at height i, bj corresponds to a

southeast step starting at height j, and t is conjugate to the length of the Dyck

path. For the continued fraction (3.2.12) we see that a0 = 1. For k ≥ 1 we see that

at height k the northeast step is starting at k − 1 and so the possibility of column

heights below a northeast step is ak = 1 + q + q2 + . . .+ qk−1. Similarly at height k

the southeast step starts at height k and so the possibility of column heights below

a southeast step is bk = 1+q+q2 +q3 + . . .+qk. For the continued fraction (3.2.13),

the contact is restricted for every southeast step so we have the same possibility of

column height as the northeast step, that is ak = bk = 1 + q + q2 + q3 + . . . + qk−1

for k ≥ 1.

It is obvious that we can write the generalised continued fractions as a rational

function.

Proposition 3.2. For w ≥ 0,

Gw(t, q) =
Pw(α, q)

Qw(α, q)
and G′w(t, q) =

P ′w(α, q)

Q′w(α, q)
, (3.2.14)
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where

Pw =


0 w = −1

1 w = 0

Pw−1 − α2(1− qw)(1− qw+1)Pw−2 w ≥ 1

, (3.2.15)

Qw =


1 w = −1

1 w = 0

Qw−1 − α2(1− qw)(1− qw+1)Qw−2 w ≥ 1

, (3.2.16)

P ′w =


0 w = −1

1 w = 0

Pw−1 − α2(1− qw)2Pw−2 w ≥ 1

and (3.2.17)

Q′w =


1 w = −1

1 w = 0

Qw−1 − α2(1− qw)2Qw−2 w ≥ 1

. (3.2.18)

Proof. The initial conditions follow from the fact that G−1(t, q) = G′−1(t, q) = 0/1.

This implies that P−1 = P ′−1 = 0 and Q−1 = Q′−1 = 1. Also for w = 0 we have

G0(t, q) = G′0(t, q) = 1/1. For w ≥ 1 we compare with the h-th convergent of

the J-fraction on page 152 of [7]. We have z = t and ak = 1 for k ≥ 1 and

bk = (1 − qw)(1 − qw+1) and ck = 0 for k ≥ 0. This reduces to the recurrence

equations given in (3.2.15) and (3.2.16). For the generating function G′w(t, q) we see

that, instead, bk = (1− qw)(1− qw), which results in the recurrence equations given

in (3.2.17) and (3.2.18).
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3.3 wth convergent of q-tangent numbers

Theorem 3.3. For w ≥ 0, the wth convergent for the continued fraction expansion

of the generating function of q-tangent numbers is given by

Gw(t, q) =
1

1−
λ2(1− q)

[
λ̄wφ(λ, q3)φ

(
λ̄, qw+3

)
− λwφ

(
λ̄, q3

)
φ(λ, qw+3)

]
(1 + λ2)

[
λ̄wφ(λ, q2)φ

(
λ̄, qw+3

)
− λw+2φ

(
λ̄, q2

)
φ(λ, qw+3)

] .
(3.3.1)

Here,

φ(λ, x) =
∞∑
k=0

(iλ; q)k(−iλ; q)kx
k

(λ2q; q)k(q; q)k
= 2φ1(iλ,−iλ;λ2q; q, x), (3.3.2)

where

2φ1(a, b; c; q, x) =
∞∑
k=0

(a; q)k(b; q)k x
k

(c; q)k(q; q)k

is a basic hypergeometric function, and λ is a root of P (λ) = λ2 − λ/α + 1 where

α = t/(1− q).

Proof. We shall prove Theorem 3.3 by solving the recurrence relation (3.2.15) and

(3.2.16). We can write Pw and Qw as the linear combination of two basic hyperge-

ometric functions and determine the coefficients from the initial conditions of the

recurrences given in Proposition 3.2.

We can see that for w ≥ 1 the recurrence relation for Pw(α, q) and Qw(α, q) is

the same, so we represent them both by R(w) and solve simultaneously. From the

recursion given in (3.2.15) and (3.2.16) we have for w ≥ 1,

R(w) = R(w − 1)− α2(1− qw)(1− qw+1)R(w − 2). (3.3.3)
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Unlike a linear recurrence with constant coefficients, this cannot be solved by a

standard method because we have w-dependent coefficients. Moreover, the occur-

rence of both qw and q2w poses a difficulty, so our next step will be to eliminate

the term containing q2w by appropriate rewriting of the recurrences. It is evident

from the coefficient of R(w−2) that multiplying by a q-factorial will simplify (3.3.3)

appropriately. We thus rescale the recursion (3.3.3) as follows:

R(w) = αw(q; q)w+1S(w), (3.3.4)

where the standard notation for the q-Pochhammer symbol is used:

(a; q)n =
n−1∏
k=0

(1− aqk).

This transformation of coefficients leads to the recurrence

αw(q; q)w+1S(w) = αw−1(q; q)wS(w − 1)

− α2(1− qw)(1− qw+1)αw−2(q; q)w−1S(w − 2), (3.3.5)

dividing by αw(1− qw+1) throughout gives

S(w) =
S(w − 1)

α(1− qw+1)
− S(w − 2). (3.3.6)

Rearranging terms leads to

S(w)− 1

α
S(w − 1) + S(w − 2) = qw+1(S(w) + S(w − 2)) (3.3.7)

for w ≥ 1. This eliminates q2w from the recurrence as intended, as the right hand

side only contains a qw prefactor. The left hand side of equation (3.3.7) is a linear

36



homogeneous recurrence relation with a characteristic polynomial

P (λ) = λ2 − λ

α
+ 1. (3.3.8)

The two roots λ1 and λ2 of the characteristic polynomial are reciprocal to each other,

λ1λ2 = 1, (3.3.9)

a fact that we will need to use below. The solution to the recurrence relation (3.3.7)

can be written as a linear combination of the powers of the roots of the characteristic

polynomial, if the right hand side of (3.3.7) was zero, and hence not q-dependent.

To solve the recurrence (3.3.7) in general, we use the ansatz

S(w) = λw
∞∑
k=0

ckq
kw, (3.3.10)

which has been shown to work when there are powers of qw in such a linear recurrence

[18] [19]. Substituting this ansatz into equation (3.3.7), we have

λw
∞∑
k=0

ckq
kw −

(
1

α

)
λw−1

∞∑
k=0

ckq
k(w−1) + λw−2

∞∑
k=0

ckq
k(w−2)

= qw+1

(
λn

∞∑
k=0

ckq
kw + λw−2

∞∑
k=0

ckq
k(w−2)

)
. (3.3.11)

It turns out that we can manipulate this equation to arrive at a recurrence equation

for the coefficients ck. Dividing by λw−2 throughout we find

λ2
∞∑
k=0

ckq
kw −

(
1

α

)
λ
∞∑
k=0

ckq
k(w−1) +

∞∑
k=0

ckq
k(w−2)

= qw+1(λ2
∞∑
k=0

ckq
kw +

∞∑
k=0

ckq
k(w−2)). (3.3.12)
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We separate the terms containing c0 on the left hand side and adjust the limits of

summation throughout the equation,

(λ2 − λ

α
+ 1)c0 +

∞∑
k=1

qkw(λ2 − λ

α
q−k + q−2k)ck

= qw+1

(
λ2

∞∑
k=1

ck−1q
(k−1)w +

∞∑
k=1

ck−1q
(k−1)(w−2)

)
. (3.3.13)

To establish the recurrence relation we collect the terms with ck and ck−1,

P (λ)c0 +
∞∑
k=1

qkw−2k(λ2q2k − λ

α
qk + 1)ck =

∞∑
k=1

(λ2qkw+1 + qkw−2k+3)ck−1. (3.3.14)

From (3.3.8) we replace the coefficient of ck with P (λqk) to get,

P (λ)c0 +
∞∑
k=1

qkw−2kP (λqk)ck =
∞∑
k=1

qkw−2k(λ2q2k + q2)qck−1 . (3.3.15)

The recurrence relation for ck can now be read off from

P (λ)c0 +
∞∑
k=1

qkw−2k
(
P (λqk)ck − (λ2q2k + q2)qck−1

)
= 0. (3.3.16)

This equation is satisfied if P (λ) = 0 and all the coefficients in the sum vanish, i.e.

P (λqk)ck − (λ2q2k + q2)qck−1 = 0. Now P (λ) = 0 implies

λ2 − λ

α
+ 1 = 0 ,

which equivalently can be used to express α in terms of λ as

α =
λ

1 + λ2
. (3.3.17)
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Eliminating α in the characteristic polynomial (3.3.8), we factorise as

P (µ) =
(µ− λ)(µ− 1

λ
)

λ
.

We need to evaluate P (λqk), so we now let µ = λqk and simplify to get

P (λqk) = (1− qk)(1− λ2qk). (3.3.18)

If P (λqk)ck − (λ2q2k + q2)qck−1 = 0 then for k > 0 we have

ck =
(λ2q2k + q2)qck−1

P (λqk)
. (3.3.19)

Now substituting in the value of P (λqk) from (3.3.18) in (3.3.19) and iterating it we

have

ck =
(−λ2; q2)k q3k

(q; q)k(λ2q; q)k
, (3.3.20)

where we choose to write all products in terms of the q-Pochhammer symbol. The

full solution to the recurrence equation (3.3.7) is a linear combination of the ansatz

over both values of λ. Here P (λ) = 0 and also P (λ̄) = 0 (where λ̄ = 1
λ
). We can

write the general solution for S(w) as

S(w) = Aλw
∞∑
k=0

ck(λ, q)q
kw +Bλ̄w

∞∑
k=0

ck
(
λ̄, q
)
qkw. (3.3.21)

We can now write the general solution in terms of a basic hypergeometric series. We

define

φ(λ, x) =
∞∑
k=0

(−λ2; q2)kxk

(q; q)k(λ2q; q)k
=
∞∑
k=0

(iλ; q)k(−iλ; q)kx
k

(λ2q; q)k(q; q)k
= 2φ1(iλ,−iλ;λ2q; q, x),

(3.3.22)
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where

2φ1(a, b; c; q, x) =
∞∑
k=0

(a; q)k(b; q)k x
k

(c; q)k(q; q)k
.

Using this notation, the general solution S(w) can simply be written as

S(w) = Aλwφ(λ, qw+3) +Bλ̄wφ
(
λ̄, qw+3

)
. (3.3.23)

Using the initial conditions we can solve for A and B. Our recursion for Pw and Qw

for w ≥ 1 is similar, but with different initial conditions. First we solve for Pw with

the following initial conditions

P−1 = R(−1) = 0 P0 = R(0) = 1 .

Since R(w) = αw(q; q)w+1S(w), we have

S(−1) = 0 S(0) =
1

1− q
. (3.3.24)

We substitute the initial conditions (3.3.24) in equation (3.3.23) and solve for A and

B. This gives two simultaneous equations as

1

1− q
= Aφ

(
λ, q3

)
+Bφ

(
λ̄, q3

)
,

0 = Aλ̄φ(λ, q2) +Bλφ
(
λ̄, q2

)
.

Solving these equations gives

A =
−λ2φ

(
λ̄, q2

)
(1− q)

(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

)
and

B =
φ(λ, q2)

(1− q)
(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

) .
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Similarly we solve for Qw. Let the general solution be

S(w) = Cλnφ(λ, qw+3) +Dλ̄wφ
(
λ̄, qw+3

)
, (3.3.25)

with the initial conditions as

R(−1) = 1 R(0) = 1.

Since R(w) = αw(q; q)w+1S(w) we have

S(−1) = α S(0) =
1

1− q
. (3.3.26)

Substituting the initial condition from (3.3.26) in equation (3.3.25), we get two

equations
1

1− q
= Cφ(λ, q3) +Dφ

(
λ̄, q3

)
α = Cλ̄φ(λ, q2) +Dλφ

(
λ̄, q2

)
,

solving for C and D gives

C =
(α)(λ)(1− q)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
(1− q)

(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

)
and

D =
φ(λ, q2)− (α)(λ)(1− q)φ(λ, q3)

(1− q)
(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

) .
Substituting the full solution for Pw(α, q) and Qw(α, q) in (3.2.14), we have the

following expression

Gw(t, q) =
Aλwφ(λ, qw+3) +B(λ̄)wφ

(
λ̄, qw+3

)
Cλwφ(λ, qw+3) +D(λ̄)wφ

(
λ̄, qw+3

) . (3.3.27)
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Using the values of A,B,C and D we have the full solution as

Gw(t, q) =
1

1−
λ2(1− q)

[
λ̄wφ(λ, q3)φ

(
λ̄, qw+3

)
− λwφ

(
λ̄, q3

)
φ(λ, qw+3)

]
(1 + λ2)

[
λ̄wφ(λ, q2)φ

(
λ̄, qw+3

)
− λw+2φ

(
λ̄, q2

)
φ(λ, qw+3)

] .
(3.3.28)

This completes the proof.

3.4 Half plane limit for q-tangent numbers

By taking the limit of infinite w in the generating function Gw, we derive an ex-

pression for the generating function of q-tangent numbers. This corresponds to

enumeration of path diagrams in the half plane without height restriction, and we

therefore refer to this as the half plane limit.

Corollary 3.4. The generating function of q-tangent numbers is

G(t, q) =

(1 + λ)2
[
1− (1 + λ2)

∞∑
k=0

(−iλ)k

(1− iλqk)

]
λ2(1− q)

, (3.4.1)

where λ is the root of t = (1− q)λ/(1 + λ2) with smallest modulus.

Proof. For the half plane limit we consider the sum (3.3.28). We know that the q

series converges when |q| < 1 using the ratio test. From (3.3.9) we see that one of

the roots of the characteristic polynomial (3.3.8) is less than one if t is sufficiently

small. We assume |λ| < 1. When w →∞,

φ(λ, qw+3) = 2φ1(iλ,−iλ;λ2q; q, qw+3)→ 2φ1(iλ,−iλ;λ2q; q, 0) = 1.
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Also

|λw| → 0.

This implies

G(t, q) =
1

1− λ2(1− q)φ(λ, q3)

(1 + λ2)φ(λ, q2)

. (3.4.2)

Heine’s transformation formula for 2φ1 series [8] is given by

2φ1(a, b; c; q, z) =
(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2φ1(c/b, z; az; q, b). (3.4.3)

Using this transformation we can write the basic hypergeometric functions in (3.4.2)

as follows

φ(λ, q2) = 2φ1(iλ,−iλ;λ2q; q, q2) =
(−iλ; q)∞(iλq2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλq, q

2; iλq2; q,−iλ)

(3.4.4)

and

φ(λ, q3) = 2φ1(iλ,−iλ;λ2q; q, q3) =
(−iλ; q)∞(iλq3; q)∞

(λ2q; q)∞(q3; q)∞
2φ1(iλq, q

3; iλq3; q,−iλ).

(3.4.5)

Further substituting the transformations of basic hypergeometric functions from

(3.4.4) and (3.4.5) in the half plane limit (3.4.2) yields

G(t, q) =
1

1−
λ2(1− q)(−iλ; q)∞(iλq3; q)∞

(λ2q; q)∞(q3; q)∞
2φ1(iλq, q

3; iλq3; q,−iλ)

(1 + λ2)
(−iλ; q)∞(iλq2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλq, q2; iλq2; q,−iλ)

. (3.4.6)
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Simplifying this expression gives

G(t, q) =
1

1−
λ2(1− q)(1− q2)

∞∑
k=0

(iλq; q)k(q
3; q)k

(iλq3; q)k(q; q)k
(−iλ)k

(1− iλq2)(1 + λ2)
∞∑
k=0

(iλq; q)k(q
2; q)k

(iλq2; q)k(q; q)k
(−iλ)k

(3.4.7)

=
1

1−
(λ2)(1− q)

∞∑
k=0

(1− qk+1)(1− qk+2)

(1− iλqk+1)(1− iλqk+2)
(−iλ)k

(1 + λ2)
∞∑
k=0

(1− qk+1)

(1− iλqk+1)
(−iλ)k

. (3.4.8)

We aim to simplify the terms in the sums on the right hand side of (3.4.8). For this

we let

N =
(1− qk+1)(1− qk+2)

(1− iλqk+1)(1− iλqk+2)
(−iλ)k (3.4.9)

and

D =
(1− qk+1)

(1− iλqk+1)
(−iλ)k. (3.4.10)

To simplify, we substitute x = −iλ in N to get

N =
∞∑
k=0

(1− qk+1)(1− qk+2)

(1 + xqk+1)(1 + xqk+2)
xk. (3.4.11)

Using partial fraction decomposition we get

N =
∞∑
k=0

[
xk

x2
− xk(1 + x)(x+ q)

x2(q − 1)(1 + xqk+1)
+

xk(1 + x)(1 + xq)

x2(q − 1)(1 + xqk+2)

]
. (3.4.12)
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Shifting summation indices and combining the fractions, we find

N = (−1)

x4
∞∑
k=0

xk

(1 + xqk+1)
− 2x2

∞∑
k=0

xk

(1 + xqk+1)
+
∞∑
k=0

xk

(1 + xqk+1)
+ x2q + 1

x4(q − 1)(x− 1)
.

(3.4.13)

Similarly we consider the expression D and substitute x = −iλ to get

D =
∞∑
k=0

(1− qk+1)

(1 + xqk+1)
xk.

Again for this expression we decompose into partial fractions

D =
∞∑
k=0

−x
k

x
+

xk(x+ 1)

x(1 + xqk+1)
. (3.4.14)

Shifting summation indices and combining the fractions, we find

D =

x2
∞∑
k=0

xk

(1 + xqk)
−
∞∑
k=0

xk

(1 + xqk)
+ 1

x2(x− 1)
. (3.4.15)

Substituting (3.4.13) and (3.4.15) in (3.4.8) and simplifying, we get the final expres-

sion as

G(t, q) =

(1 + λ)2
[
1− (1 + λ2)

∞∑
k=0

(−iλ)k

(1− iλqk)

]
λ2(1− q)

. (3.4.16)

This gives the desired result.

3.4.1 An explicit formula for q-tangent numbers

Next we make connections to the previous work in [11] where closed formulas for

q-Euler numbers (q-tangent numbers and q-secant numbers) are obtained. The

paper [11] uses permutation tableaux for obtaining these formulas. In particular, we
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extract the coefficient of t2N of G(t, q) given in (3.4.1). Our result is in agreement

with Theorem 1.4 in [11].

Corollary 3.5. QN(q) = [t2N ]G(t, q) is given by

QN(q) =
1

(1− q)2N+1

N+1∑
m=0

qm
2+2m

(
m+1∑
l=−m

(−1)lq−l
2+2l

)
(2m+ 2)

(
2N+1
N+m+1

)
N +m+ 2

(3.4.17)

To prove this corollary, we need an identity which reduces from counting rect-

angles on the square lattice in two different ways, taking ideas from [21].

Lemma 3.6.
∞∑
n=0

xn

1− yqn
=
∞∑
n=0

xnynqn
2
(1− xyq2n)

(1− xqn)(1− yqn)
. (3.4.18)

Proof. We consider the generating function of rectangles (including those of height

or width zero) on the square lattice, counted with respect to height, width, and area,

given by

R(x, y, q) =
∞∑

n,m=0

xnymqnm . (3.4.19)

Summing over m gives the left hand side of identity (3.4.18). If we instead sum over

rectangles of fixed minimal width or height N , then this results in

R(x, y, q) =
∞∑
N=0

(
∞∑

m=N

xNymqNm +
∞∑
n=N

xnyNqnN − xNyNqN2

)
(3.4.20)

=
∞∑
N=0

(
xNyNqN

2

1− yqN
+
xNyNqN

2

1− xqN
− xNyNqN2

)
(3.4.21)

=
∞∑
N=0

xNyNqN
2

(
1

1− yqN
+

1

1− xqN
− 1

)
. (3.4.22)

Simplifying the terms in the final bracket gives the right hand side of identity

(3.4.18).
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Proof of Corollary 3.5. The sum in (3.4.1) can be identified with R(−iλ, iλ, q), so

that using Lemma 3.6 we get

G(t, q) =

(1 + λ)2

[
1− (1 + λ2)

∞∑
n=0

qn
2
λ2n(1− λ2q2n)

(1 + λ2q2n)

]
λ2(1− q)

. (3.4.23)

We remind that G(t, q) is by definition an even function in t, and that the t-

dependence on the right hand side is implicit in λ = λ(t). To extract the coefficient

of t2N , we evaluate the contour integral

[t2N ]G(t, q) =
1

2πi

∮ (1 + λ(t)2)

(
1− (1 + λ(t))2

∞∑
n=0

qn
2
λ(t)2n(1− λ(t)2q2n)

(1 + λ(t)2q2n)

)
λ(t)2(1− q)t2N+1

dt .

(3.4.24)

Next we perform the change of variables from t to λ. Comparing the value of α from

the characteristic polynomial given in (3.3.8) and (3.2.11), we have

λ+
1

λ
=

1− q
t

, (3.4.25)

this implies

t =
(1− q)λ
1 + λ2

. (3.4.26)

Differentiating t given in (3.4.26) with respect to λ gives

dt

dλ
=

(1− q)(1− λ)(1 + λ)

(1 + λ2)2
. (3.4.27)

Substituting the value of t and its differential from (3.4.26) and (3.4.27) in (3.4.24)
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we get

[t2N ]G(t, q) =
1

2πi

∮ 
(1 + λ2)

(
1− (1 + λ2)

∞∑
n=0

qn
2
λ2n(1− λ2q2n)

(1 + λ2q2n)

)
(1− q)(1 + λ2)2N+1(1− λ2)

λ2N+2(1− q)(1− q)2N+1(1 + λ2)2

 dλ

λ
.

(3.4.28)

Simplifying gives

[t2N ]G(t, q) =
1

2πi

∮ 
(1 + λ2)2N

(
1− (1 + λ2)

∞∑
n=0

qn
2
λ2n(1− λ2q2n)

(1 + λ2q2n)

)
(1− λ2)

λ2N+2(1− q)2N+1

 dλ

λ
.

(3.4.29)

The expression above is in terms of λ, and using the relationship between λ and t

we know

[t2N ]G (t, q) = [λ0]HN(λ, q), (3.4.30)

where

HN(λ, q) =

(1 + λ2)2N

(
1− (1 + λ2)

∞∑
n=0

qn
2
λ2n(1− λ2q2n)

(1 + λ2q2n)

)
(1− λ2)

λ2N+2(1− q)2N+1
(3.4.31)

=

(
λ+

1

λ

)2N (
1

λ2
− 1

)(
1− (1 + λ2)

∞∑
n=0

qn
2
λ2n(1− λ2q2n)

(1 + λ2q2n)

)
(1− q)2N+1

. (3.4.32)
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We are therefore led to computing the constant term in λ of HN(λ, q), i.e.

[λ0]HN(λ, q) = [λ0]

T1 − T2
∞∑
n=0

T3

((1− q)2N+1
, (3.4.33)

where

T1 =

(
λ+

1

λ

)2N (
1

λ2
− 1

)
,

T2 =

(
λ+

1

λ

)2N (
1

λ2
− 1

)
(1 + λ2),

and

T3 =
qn

2
λ2n(1− λ2q2n)

(1 + λ2q2n)
.

We can write these T1, T2 and T3 as

T1 =
2N+1∑
k=0

(2N)!(2N − 2k + 1)!λ2k−2N−2

k!(2N − k + 1)!
, (3.4.34)

T2 =
2N+2∑
k=0

(2N + 1)!(2N − 2k + 2)!λ2k−2N−2

k!(2N − k + 2)!
(3.4.35)

and

T3 = qn
2

λ2n

(
2

(
∞∑
l=0

(−1)l(λ2q2n)l

)
− 1

)
. (3.4.36)

Substituting the expression (3.4.34),(3.4.35) and (3.4.36) in (3.4.33) gives

HN(λ, q) =
1

(1− q)2N+1

(
2N+1∑
k=0

(2N)!(2N − 2k + 1)!λ2k−2N−2

k!(2N − k + 1)!
−(

2N+2∑
k=0

(2N + 1)!(2N − 2k + 2)!λ2k−2N−2

k!(2N − k + 2)!

)(
∞∑
n=0

qn
2

λ2n

(
2
∞∑
l=0

(−1)l(λ2q2n)l − 1

)))
.

(3.4.37)
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Further we simplify by expanding and combining the summations to get

HN(λ, q) =
1

(1− q)2N+1

(
2N+1∑
k=0

(2N)!(2N − 2k + 1)!λ2k−2N−2

k!(2N − k + 1)!

−2
∞∑
n=0

∞∑
l=0

2N+2∑
k=0

(−1)lqn
2+2nl (2N + 1)!(2N − 2k + 2)!λ2k−2N−2+2n+2l

k!(2N − k + 2)!

+
∞∑
n=0

2N+2∑
k=0

qn
2 (2N + 1)!(2N − 2k + 2)!λ2k−2N−2+2n

k!(2N − k + 2 + 2n)!

)
. (3.4.38)

We want to extract the coefficient of λ0, so we combine the powers of λ and equate

them to 0 and find k. We insert this value of k into each term to get the coefficient

of λ0. For the first term in (3.4.38) we equate 2k − 2N − 2 = 0 and get k = N + 1.

For the second term we equate 2k− 2N − 2 + 2n+ 2l = 0 and get k = N −n− l+ 1.

Finally for the third term we equate 2k − 2N − 2 + 2n = 0 and get k = N − n+ 1.

Inserting these values of k in their respective terms we get

QN(q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−2
N+1∑
n=0

N−n+1∑
l=0

(−1)lqn
2+2nl (2N + 1)!(2n+ 2l)!

(N − n− l + 1)!(N + n+ l + 1)!

+
N+1∑
n=0

qn
2 (2N + 1)!(2n)!

(N − n+ 1)!(N + n+ 1)!

)
. (3.4.39)

Next we add and subtract the term −l2 to the power of q in second term to complete
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the square

QN(q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−2
N+1∑
n=0

N−n+1∑
l=0

(−1)lq(n+l)
2

q−l
2 (2N + 1)!(2n+ 2l)!

(N − n− l + 1)!(N + n+ l + 1)!

+
N+1∑
n=0

qn
2 (2N + 1)!(2n)!

(N − n+ 1)!(N + n+ 1)!

)
. (3.4.40)

The sum runs over n+ l ≤ N , so we substitute n+ l = m in the second term which

simplifies the expression as

QN(q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−2
N+1∑
m=0

m∑
l=0

(−1)lqm
2

q−l
2 (2N + 1)!(2m)!

(N −m+ 1)!(N +m+ 1)!
+

N+1∑
n=0

qn
2 (2N + 1)!(2n)!

(N − n+ 1)!(N + n+ 1)!

)
.

(3.4.41)

Next we change the variable of summation from n to m in third term and simplify

to get

QN(q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−
N+1∑
m=0

qm
2 (2N + 1)!(2m)!

(N −m+ 1)!(N +m+ 1)!

(
2
m+1∑
l=0

(−1)lq−l
2 − 1

))
. (3.4.42)

Extending the limits of l in third term gives,

QN(q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−
N+1∑
m=0

qm
2 (2N + 1)!(2m)!

(N −m+ 1)!(N +m+ 1)!

 m+1∑
l=−(m+1)

(−1)lq−l
2

 . (3.4.43)
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Substituting m = m+ 1 and l = l − 1 gives

QN(q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

+
N∑
m=0

qm
2+2m (2N + 1)!(2m+ 2)!

(N −m)!(N +m+ 2)!

(
m+2∑
l=−m

(−1)lq−l
2+2l

))
. (3.4.44)

Now in the second term l = m+ 2 gives

(2N)!

N !(N + 1)!
.

This cancels out with the first term and we get

QN(q) =
1

(1− q)2N+1

N∑
m=0

qm
2+2m

(
m+1∑
l=−m

(−1)lq−l
2+2l

)
(2m+ 2)

(
2N+1
N+m+1

)
N +m+ 2

. (3.4.45)

3.5 wth convergent of q-secant numbers

Theorem 3.7. For w ≥ 0, the wth convergent for the continued fraction expansion

of the generating function of q-secant numbers is given by

G′w(t, q) =
1

1−
λ2(1− q)

[
λ̄wψ(λ, q2)ψ

(
λ̄, qw+2

)
− λwψ

(
λ̄, q2

)
ψ(λ, qw+2)

]
(1 + λ2)

[
λ̄wψ(λ, q)ψ

(
λ̄, qw+2

)
− λw+2ψ

(
λ̄, q
)
ψ(λ, qw+2)

] . (3.5.1)
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Here,

ψ(λ, x) =
∞∑
k=0

(iλ
√
q; q)k(−iλ

√
q; q)kx

k

(λ2q; q)k(q; q)k
= 2φ1(iλ

√
q,−iλ√q;λ2q; q, x),

where

2φ1(a, b; c; q, x) =
∞∑
k=0

(a; q)k(b; q)k x
k

(c; q)k(q; q)k

is a basic hypergeometric function and λ is the root of P (λ) = λ2 − λ/α + 1 where

α = t/(1− q).

Proof. We shall prove the theorem 3.7 by solving the recurrence (3.2.17) and (3.2.18).

This is done as in Theorem 3.3. It follows from the continued fraction expansion

given in (3.2.13) that both the numerator P ′w(α, q) and denominator Q′w(α, q) satisfy

the recurrence relations given in (3.2.17) and (3.2.18) respectively. As the recursions

are same for w ≥ 1, therefore we represent them both by R(w) and solve simulta-

neously. It follows that

R(w) = R(w − 1)− α2(1− qw)2R(w − 2). (3.5.2)

Expanding the coefficient of R(w − 2) gives three terms which cannot be solved

explicitly using standard method because we have w-dependent coefficients. Also the

terms qw and q2w create difficulty, so we will aim to eliminate the terms containing

q2w by suitable rescaling. For this we use the ansatz (3.3.4). This transformation of

coefficients leads to

αw(q; q)w+1S(w) = αw−1(q; q)wS(w − 1)

− α2(1− qw)(1− qw)αw−2(q; q)w−1S(w − 2). (3.5.3)
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Dividing by αw(1− qw), we obtain

(1− qw+1)S(w) =
1

α
S(w − 1)− (1− qw)S(w − 2). (3.5.4)

Rearranging to get the linear recurrence with constant coefficients on the left hand

side

S(w)− 1

α
S(w − 1) + S(w − 2) = qw+1S(w) + qwS(w − 2) (3.5.5)

for w ≥ 1. This eliminates the q2w from the recurrence as intended, with only qw

factors on the right hand side. We see that this recurrence is very similar to (3.3.7).

The left hand side of (3.5.5) is a linear homogeneous recurrence relation with the

same characteristic polynomial (3.3.8) as above, however the right hand side is

slightly different, with a prefactor of qw in front of S(w − 2) instead of a prefactor

qw+1. We thus use the same ansatz (3.3.10) to solve the recurrence. Following a

calculation identical to the one for q-tangent numbers, we find for k > 0

ck =
(λ2q2k + q)qck−1

P (λqk)
. (3.5.6)

Now substituting the value of P (λqk) in (3.5.6) and iterating it, we get

ck =
(−λ2q; q2)k q2k

(q; q)k(λ2q; q)k
. (3.5.7)

The full solution to the recurrence equation (3.5.5) is a linear combination of the

ansatz over both the values of λ. Here P (λ) = 0 and also P (λ̄) = 0 (where λ̄ = 1
λ
).

We can write the general solution for S(w) as

S(w) = Aλw
∞∑
k=0

ck(λ, q)q
kw +Bλ̄w

∞∑
k=0

ck
(
λ̄, q
)
qkw. (3.5.8)
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We define

ψ(λ, x) =
∞∑
k=0

(−λ2q; q2)k xk

(q; q)k(λ2q; q)k
=
∞∑
k=0

(iλ
√
q; q)k(−iλ

√
q; q)kx

k

(λ2q; q)k(q; q)k

= 2φ1(iλ
√
q,−iλ√q;λ2q; q, x)

where 2φ1 is a basic hypergeometric function. The general solution can be expressed

as follows

S(w) = Aλnψ(λ, qw+2) +Bλ̄wψ
(
λ̄, qw+2

)
. (3.5.9)

Using the initial conditions, we can solve for A and B. Our recurrence relation was

same for P ′w and Q′w for w ≥ 1, but the initial conditions were different as given in

(3.2.17) and (3.2.18). First solving it for the P ′w with the initial conditions as

P ′−1 = R(−1) = 0 P ′0 = R(0) = 1 .

Since R(w) = αw(q; q)w+1S(w), we have

S(−1) = 0 S(0) =
1

1− q
.

Substituting in equation (3.5.9) and solving it for A and B, we get two simultaneous

equations
1

1− q
= Aψ

(
λ, q2

)
+Bψ

(
λ̄, q2

)
,

0 = Aλ̄ψ(λ, q) +Bλψ
(
λ̄, q
)
.

Solving these equations gives

A =
−λ2ψ

(
λ̄, q
)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

)
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and

B =
ψ(λ, q)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

) .
Similarly, we solve for Q′w. We let our general solution be

S(w) = Cλwψ(λ, qw+2) +Dλ̄wψ
(
λ̄, qw+2

)
. (3.5.10)

The initial conditions are

Q′−1 = R(−1) = 1 Q′0 = R(0) = 1 .

Since R(w) = αw(q; q)w+1S(w), we have

S(−1) = α and S(0) =
1

1− q
.

Substituting in equation (3.5.10) we get two equations

1

1− q
= Cψ(λ, q2) +Dψ

(
λ̄, q2

)
,

α = Cλ̄ψ(λ, q) +Dλψ
(
λ̄, q
)
.

Solving for C and D, we obtain

C =
(α)(λ)(1− q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

)
and

D =
ψ(λ, q)− (α)(λ)(1− q)ψ(λ, q2)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

) .
Substituting the full solution for P ′w(α, q) and Q′w(α, q) in (3.2.14), we have the
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generating function as

G′w(t, q) =
Aλnψ(λ, qw+2) +B(λ̄)wψ

(
λ̄, qw+2

)
Cλwψ(λ, qw+2) +D(λ̄)wψ

(
λ̄, qw+2

) . (3.5.11)

Using the values of A,B,C and D, the full solution is given by

G′w(t, q) =
1

1−
λ2(1− q)

[
λ̄wψ(λ, q2)ψ

(
λ̄, qw+2

)
− λwψ

(
λ̄, q2

)
ψ(λ, qw+2)

]
(1 + λ2)

[
λ̄wψ(λ, q)ψ

(
λ̄, qw+2

)
− λw+2ψ

(
λ̄, q
)
ψ(λ, qw+2)

] .
(3.5.12)

This completes the proof.

3.6 Half plane limit for q-secant numbers

By taking the limit of infinite w in the generating function G′w, we derive an ex-

pression for the generating function of q-secant numbers. We refer to this as the

half plane limit as it corresponds to the enumeration of path diagrams without any

height restriction.

Corollary 3.8. The generating function of q-secant numbers is

G′(t, q) = (1 + λ2)
∞∑
k=0

(−iλ√q)k

(1− iλ√qqk)
, (3.6.1)

where λ is the root of t(1− q)λ/(1 + λ2) with smallest modulus.

Proof. For the half plane limit of q-secant numbers, consider the sum (3.5.1). We

know that the q series converges when |q| < 1 using the ratio test. From (3.3.9) we

see that one of the roots of characteristic polynomial (3.3.8) is less than one if t is
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sufficiently small. Assume |λ| < 1. For w →∞ we have

ψ(λ, qw+2) = 2φ1(iλ
√
q,−iλ√q;λ2q; q, qw+2)→ 2φ1(iλ

√
q,−iλ√q;λ2q; q, 0) = 1

and

|λw| → 0.

This implies

G′(t, q) =
1

1− λ2(1− q)ψ(λ, q2)

(1 + λ2)ψ(λ, q)

. (3.6.2)

Using Heine’s transformation formula given in (3.4.3), we transform the basic hy-

pergeometric functions given in (3.6.2) as follows

ψ(λ, q) = 2φ1(iλ
√
q,−iλ√q;λ2q; q, q) (3.6.3)

=
(−iλ√q; q)∞(iλq3/2; q)∞

(λ2q; q)∞(q; q)∞
2φ1(iλ

√
q, q; iλq3/2; q,−iλ√q) (3.6.4)

and

ψ(λ, q2) = 2φ1(iλ
√
q,−iλ√q;λ2q; q, q2) (3.6.5)

=
(−iλ√q; q)∞(iλq5/2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλ

√
q, q2; iλq5/2; q,−iλ√q). (3.6.6)

Substituting the transformations (3.6.4) and (3.6.6) in the half plane limit (3.6.2)
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yields

G′(t, q) =
1

1−
λ2(1− q)

(−iλ√q; q)∞(iλq5/2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλ

√
q, q2; iλq5/2; q,−iλ√q)

(1 + λ2)
(−iλ√q; q)∞(iλq3/2; q)∞

(λ2q; q)∞(q; q)∞
2φ1(iλ

√
q, q; iλq3/2; q,−iλ√q)

.

(3.6.7)

Simplifying the expression we obtain

G′(t, q) =
1

1−
λ2(1− q)2

∞∑
k=0

(iλ
√
q; q)k(q

2; q)k

(iλq5/2; q)k(q; q)k
(−iλ√q)k

(1 + λ2)(1− iλq3/2)
∞∑
k=0

(iλ
√
q; q)k(q; q)k

(iλq3/2; q)k(q; q)k
(−iλ√q)k

(3.6.8)

=
1

1−
λ2(1− q)

∞∑
k=0

(1− qk+1)

(1− iλqk+1/2)(1− iλqk+3/2)
(−iλ√q)k

(1 + λ2)
∞∑
k=0

(−iλ√q)k

(1− iλqk+1/2)

. (3.6.9)

To simplify further we consider the expression in (3.6.9). We aim to simplify the

terms in the sums on the right hand side of (3.6.9). For this we let

N =
∞∑
k=0

(1− qk+1)

(1− iλqk+1/2)(1− iλqk+3/2)
(−iλ√q)k (3.6.10)

and

D =
(−iλ√q)k

(1− iλqk+1/2)
. (3.6.11)
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We substitute x = −iλ√q in N and apply partial fraction decomposition to get

N =
∞∑
k=0

(
xkq(x+ 1)

x(1 + xqkq)(q − 1)
− xk(q + x)

x(1 + xqkq)(q − 1)

)
. (3.6.12)

Shifting summation indices and combining the fractions, we find

N =

(q − x2)
∞∑
k=0

xk

1 + xqk

x2(q − 1)
− q

x2(q − 1)
. (3.6.13)

Similarly we consider the expression D and substitute x = −iλ√q to get

D =
∞∑
k=0

xk

1 + xqk
. (3.6.14)

Substituting (3.6.13) and (3.6.14) in (3.6.9) and simplifying, we get the final result

as

G′(t, q) = (1 + λ2)
∞∑
k=0

(−iλ√q)k

(1− iλ√qqk)
. (3.6.15)

This gives the desired result.

3.6.1 An explicit formula for q-secant numbers

Next we extract the coefficient of t2N of G′(t, q) given in (3.6.1). Our result is in

agreement with Theorem 1.5 in [11].

Corollary 3.9. Q′N(q) = [t2N ]G′(t, q) is given by

Q′N(q) =
1

(1− q)2N
N∑
m=0

qm
2+m

(
m∑
l=0

(−1)lq−l
2

)
(2m+ 1)

(
2N
N+m

)
N +m+ 1

. (3.6.16)
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Proof. To prove this corollary we will again use the Lemma 3.6. The sum in (3.6.1)

can be identified with R(−iλ√q, iλ√q, q), so we get

G′(t, q) = (1 + λ)2
∞∑
k=0

qn
2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)
. (3.6.17)

We remind that t-dependence on the right hand side is implicit in λ = λ(t). To

extract the coefficient of t2N , we evaluate the contour integral

[t2N ]G′(t, q) =
1

2πi

∮ (1 + λ(t))2
∞∑
k=0

qn
2+nλ(t)2n(1− λ(t)2q2n+1)

(1 + λ(t)2q2n+1)

t2N+1
dt. (3.6.18)

From (3.4.27) substituting the value of dt/dλ we get

[t2N ]G′(t, q) =
1

2πi

∮ 
(1 + λ)2N

(
∞∑
k=0

qn
2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)

)
(1− λ2)

λ2N(1− q)2N)

 dλ

λ
.

(3.6.19)

The expression above is in terms of λ. Using the relationship between λ and t we

know

[t2N ]G′ (t, q) = [λ0]H ′N(λ, q) (3.6.20)

where

H ′N(λ, q) =

(
λ+

1

λ

)2N

(1− λ2)

(
∞∑
k=0

qn
2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)

)
(1− q)2N

. (3.6.21)

From the expression H ′N(λ, q) we can extract the constant term in λ as follows

[λ0]H ′N(λ, q) = [λ0]T1

∞∑
k=0

T2 , (3.6.22)
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where

T1 =

(
λ+

1

λ

)2N

(1− λ2)

(1− q)2N

and

T2 =
qn

2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)
. (3.6.23)

We can express T1 and T2 as

T1 =

2N+1∑
k=0

(2N)!(2N − 2k + 1)!λ2k−2N

k!(2N − k + 1)!

(1− q)2N
(3.6.24)

and

T2 = qn
2+nλ2n

(
2
∞∑
l=0

(−1)l(λ2q2n+1)l − 1

)
. (3.6.25)

Substituting the expression (3.6.24) and (3.6.25) in (3.6.22) gives

H ′N(λ, q) =
1

(1− q)2N(
2N+1∑
k=0

(2N)!(2N − 2k + 1)!λ2k−2N

k!(2N − k + 1)!

∞∑
n=0

qn
2+nλ2n

(
2
∞∑
l=0

(−1)l(λ2q2n+1)l − 1

))
.

(3.6.26)

Expanding the terms and combining the summation implies

H ′N(λ, q) =
1

(1− q)2N(
2
2N+1∑
k=0

∞∑
n=0

∞∑
l=0

(−1)lqn
2+n+2nl+l (2N)!(2N − 2k + 1)!λ2k−2N+2n+2l

k!(2N − k + 1)!

−
2N+1∑
k=0

∞∑
n=0

qn
2+n (2N)!(2N − 2k + 1)!λ2k−2N+2n

k!(2N − k + 1)!

)
. (3.6.27)
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We aim to get the coefficient of λ0, so we combine the powers of λ and equate

them to 0 to find k. For the first term we equate 2k − 2N + 2n + 2l = 0 and get

k = N − n − l. For the second term we let 2k − 2N + 2n = 0 and get k = N − n.

Inserting the value of k in (3.6.27) we get

Q′N(q) =
1

(1− q)2N

(
2
∞∑
n=0

∞∑
l=0

(−1)lqn
2+n+2nl+l (2N)!(2n+ 2l + 1)!

(N − n− l)!(N + n+ l + 1)!

−
∞∑
n=0

qn
2+n (2N)!(2n+ 1)!

(N − n)!(N + n+ 1)!

)
. (3.6.28)

We add and subtract the term −l2 to the power of q in the first term to complete

the square. We obtain

Q′N(q) =
1

(1− q)2N

(
2

N∑
n=0

N−n∑
l=0

(−1)lq(n+l)
2+n+lq−l

2 (2N)!(2n+ 2l + 1)!

(N − n− l)!(N + n+ l + 1)!

−
N∑
n=0

qn
2+n (2N)!(2n+ 1)!

(N − n)!(N + n+ 1)!

)
. (3.6.29)

The sum runs over n + l ≤ N , so we substitute n + l = m which simplifies the

expression as

Q′N(q) =
1

(1− q)2N

(
2

N∑
m=0

m∑
l=0

(−1)lqm
2+mq−l

2 (2N)!(2m+ 1)!

(N −m)!(N +m+ 1)!

−
N∑
n=0

qn
2+n (2N)!(2n+ 1)!

(N − n)!(N + n+ 1)!

)
. (3.6.30)

Changing the summation of variable in the second term from n to m and simplifying
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gives

Q′N(q) =
1

(1− q)2N

(
N∑
m=0

qm
2+m (2N)!(2m+ 1)!

(N −m)!(N +m+ 1)!

(
2

m∑
l=0

(−1)lq−l
2 − 1

))
.

(3.6.31)

The final result is

Q′N(q) =
1

(1− q)2N
N∑
m=0

qm
2+m

(
m∑

l=−m
(−1)lq−l

2

)
(2m+ 1)

(
2N
N+m

)
N +m+ 1

. (3.6.32)

This completes the proof.

3.7 Identities

The central results of this chapter have been given in Theorems 3.3 and 3.7, which

express finite continued fractions in terms of basic hypergeometric functions. For

example, for q-tangent numbers we have

1

1−
α2(1− q)(1− q2)

1−
α2(1− q2)(1− q3)

. . .−
α2(1− qw−1)(1− qw)

1− α2(1− qw)(1− qw+1)

=

1

1−
λ2(1− q)

[
λ̄wφ(λ, q3)φ

(
λ̄, qw+3

)
− λwφ

(
λ̄, q3

)
φ(λ, qw+3)

]
(1 + λ2)

[
λ̄wφ(λ, q2)φ

(
λ̄, qw+3

)
− λw+2φ

(
λ̄, q2

)
φ(λ, qw+3)

]
and a similar result holds for q-secant numbers. The point we would like to make

in this section is that these results can be re-interpreted as giving hierarchies of
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identities for basic hypergeometric functions. For w small, the left hand side is

a relatively simple rational function in t and q, whereas the right hand side is a

weighted ratio of products of basic hypergeometric functions at specific arguments.

We make the resulting identities explicit for w = 1 in the following corollary.

Corollary 3.10.

1− q2

1− ν2
=

2φ1(ν,−ν;−ν2q; q, q3) 2φ1 (−ν̄, ν̄;−ν2q̄; q, q4)
+ ν 2φ1 (−ν̄, ν̄;−ν2q̄; q, q3) 2φ1(ν,−ν;−ν2q; q, q4)

2φ1(ν,−ν;−ν2q; q, q2) 2φ1 (−ν̄, ν̄;−ν2q̄; q, q4)
− ν4 2φ1 (−ν̄, ν̄;−ν2q̄; q, q2) 2φ1(ν,−ν;−ν2q; q, q4)

(3.7.1)

where ν = iλ, ν̄ = 1
ν

and q̄ = 1
q

, and

1− q
1− µ2q̄

=

2φ1(µ,−µ;−µ2; q, q2) 2φ1 (−qµ̄, qµ̄;−q2µ̄2; q, q3)

+ (µ2q̄) 2φ1 (−qµ̄, qµ̄;−q2µ̄2; q, q2) 2φ1(µ,−µ;−µ2; q, q3)

2φ1(µ,−µ;−µ2; q, q) 2φ1 (−qµ̄, qµ̄;−q2µ̄2; q, q3)

− µ4q̄2 2φ1 (−qµ̄, qµ̄;−q2µ̄2; q, q) 2φ1(µ,−µ;−µ2; q, q3)

(3.7.2)

where µ = iλ
√
q, µ̄ = 1

µ
and q̄ = 1

q
.

Proof. Insert w = 1 in Theorems 3.3 and 3.7 and simplify.

To the best of our knowledge these identities are new. It would be interesting to

find an alternative derivation and perhaps deeper understanding of their meaning.
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Chapter 4

Generalised Weighted Paths

4.1 Introduction and model definition

Consider a directed path in a slit Z × {0, 1, · · · , w} of width w, starting at point

(0, u) and ending at point (n, v), taking its steps from {1} × S, where S ⊂ Z is

a finite set. For simplicity we call S the step set. We define A = S ∩ Z+
0 and

B = −(S\A). Figure 4.1 shows such a generalised path.

w=7

u=2

v=4

n=16

Figure 4.1: Generalised path of length n = 16 with northeast steps A = {1, 3, 4, 5, 6}
and southeast steps B = {1, 2, 3, 4} in a width of slit 7, starting at height 2 and
ending at height 4. Here α = 6 and β = 4.
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We are interested in the enumeration of these generalised paths, where we also

associate specific weights to individual steps. Every up step in A is weighted by pa,

a ∈ A and every down step has an associated weight qb, b ∈ B. If the maximum of

A and B are α and β respectively, we assume pα and qβ to be non zero. The length

n of the walk is taken into account by t. In particular, the generating function of

generalised weighted paths is given by

G(t, z) =
w∑
v=0

Gw,α,β
(u,v) (t)zv, (4.1.1)

where Gw,α,β
(u,v) (t) is the generating function of the paths and t is conjugate to the

length n of the walk, u is the starting height, and v is the ending height of the path.

4.2 The main result

Theorem 4.1. The generating function Gw,α,β
(u,v) (t) of generalised weighted paths is

given by

Gw,α,β
(u,v) (t) =

(−1)1−α

tpα

s(wα,u,0β−1)/(v,0α+β−1)(z̄)

s(w+1α,0β)(z̄)
, (4.2.1)

where z̄ are the α + β roots of

K(t, z) = 1− t
α∑
a=0

paz
a − t

β∑
b=1

qbz
−b ,

and sλ/µ(z) is a skew Schur function.

We shall prove this theorem in a sequence of steps in the next two sections. We

will first write down a functional equation satisfied by the generating function, and

define the notion of the kernel of this functional equation, which is essentially a

polynomial in z of degree α+ β, related to K(t, z) in the statement of the theorem

above. Coefficients of the kernel can be interpreted in terms of elementary symmetric
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functions of the roots. We cast the enumeration problem in terms of a system of

linear equations. Using elementary symmetric functions will allow us to employ the

Jacobi-Trudi formula to express the solution of the system in terms of skew Schur

functions, leading to the statement of the theorem.

4.3 The functional equation

An n-step walk is constructed by adding steps from the step set S to an (n − 1)-

step walk, provided n > 0. This leads to the functional equation for the generating

function G(t, z) given by:

G(t, z) = zu + t

(∑
a∈A

paz
a +

∑
b∈B

qb
zb

)
G(t, z)

− t
∞∑
j=1

zw+j
∑
a≥j

paG(u,w−a+j)(t)− t
∞∑
j=1

z−j
∑
b≥j

qbG(u,b−j)(t). (4.3.1)

Here zu represents the zero step walk starting and ending at height u. The term

t
(∑

a∈A paz
a +

∑
b∈B

qb
zb

)
G(t, z) corresponds to steps appended without the consid-

eration of violation of boundaries. The steps not allowed are removed by subtracting

the terms which account for the steps crossing the line y = 0 and y = w. For exam-

ple t
∑∞

j=1 z
w+j

∑
a≥j paG(u,w−a+j)(t) adjusts the steps going across the line y = w

and t
∑∞

j=1 z
−j∑

b≥j qbG(u,b−j)(t) corresponds to steps below the boundary y = 0.

We rearrange the functional equation as

(
1− t

∑
a∈A

paz
a + t

∑
b∈B

qb
zb

)
G(t, z) =

zu − t
∞∑
j=1

zw+j
∑
a≥j

paG(u,w−a+j)(t)− t
∞∑
j=1

z−j
∑
b≥j

qbG(u,b−j)(t). (4.3.2)
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This gives us the kernel K(t, z) of the functional equation

K(t, z) = 1− t
α∑
a=0

paz
a − t

β∑
b=1

qbz
−b. (4.3.3)

We finish this section proving a lemma relating the coefficients of the kernel to

elementary symmetric functions.

Lemma 4.2. The kernel can be written as

K(t, z) = −tpα
α+β∑
i=0

zα−i(−1)iei (4.3.4)

where

− tpa = −tpα(−1)α−aeα−a (4.3.5)

1− tp0 = −tpα(−1)αeα (4.3.6)

− tqb = −tpα(−1)α+beα+b (4.3.7)

for 1 ≤ a ≤ α and 1 ≤ b ≤ β.

Proof. We simplify the kernel and write as follows

K(t, z) =
−tpα
zβ

(
− zβ

tpα
+

α∑
a=0

pa
pα
za+α +

β∑
b=1

qb
pα
zβ−b

)
=
−tpα
zβ

α+β∏
k=1

(z − zk). (4.3.8)

We can relate the coefficients of the polynomial given by the kernel to the sum and

product of roots. Using the following relation we can transform the kernel.

n∏
k=1

(z + zk) =
n∑

α=0

zn−αeα(z̄) = zne0 + zn−1e1 + · · ·+ en , (4.3.9)

where z̄ = z1, z2 · · · zk. The kernel expressed in terms of elementary symmetric
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functions is given by

K(t, z) = 1−t
α∑
a=0

paz
a−t

β∑
b=1

qbz
−b =

−tpα
zβ

α+β∑
i=0

zα+β−i(−1)iei = −tpα
α+β∑
i=0

zα−i(−1)iei.

(4.3.10)

This implies

1− t
α∑
a=0

paz
a − t

β∑
b=1

qbz
−b = −tpα

α+β∑
i=0

zα−i(−1)iei . (4.3.11)

Next we compare coefficients in (4.3.11) for different powers of z. For α ≥ a ≥ 1,

let a = α− i in right hand side of (4.3.11) to get

− tpa = −tpα(−1)α−aeα−a . (4.3.12)

For a = 0, let i = α,

1− tp0 = −tpα(−1)αeα . (4.3.13)

For β ≥ b ≥ 1, we substitute −b = α− i

− tqb = −tpα(−1)α+beα+b . (4.3.14)

4.4 Solution of the functional equation

We aim to rewrite the functional equation (4.3.2) in terms of elementary symmetric

functions instead of weights pa, qb and t. For that we substitute the expression for

the kernel from Lemma 4.2 into it. We also drop w, α and β from Gw,α,β
(u,v) by writing
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Gw,α,β
(u,v) ≡ G(u.v). This gives

(
−tpα

α+β∑
i=0

zα−i(−1)iei

)
w∑
v=0

G(u,v)(t)z
v =

zu − t
∞∑
j=1

zw+j
∑
a≥j

paG(u,w−a+j)(t)

− t
∞∑
j=1

z−j
∑
b≥j

qbG(u,b−j)(t) . (4.4.1)

Similarly we express tpa and tqb in terms of elementary symmetric functions given

by (4.3.5) and (4.3.7) in Lemma 4.2. Rearranging terms and multiplying throughout

by −1/tpα we get

w∑
v=0

α+β∑
i=0

zv+α−i(−1)ieiG(u,v)(t) =

− zu

tpα
+
∞∑
j=1

∑
a≥j

zw+j(−1)α−aeα−aG(u,w−a+j)(t)

+
∞∑
j=1

∑
b≥j

z−j(−1)α+beα+bG(u,b−j)(t). (4.4.2)

Next we rearrange terms on the left hand side to better extract the coefficient of zv,

α+β∑
i=0

w+α−i∑
v=α−i

(−1)ieiG(u,v−α+i)(t)z
v =

− zu

tpα
+
∞∑
j=1

∑
a≥j

zw+j(−1)α−aeα−aG(u,w−a+j)(t)

+
∞∑
j=1

∑
b≥j

z−j(−1)α+beα+bG(u,b−j)(t). (4.4.3)
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As Gv is zero for v < 0 and v > w, so we extend the limits of summation of v and

write the functional equation as

α+β∑
i=0

∞∑
v=−∞

(−1)ieiG(u,v−α+i)z
v =

− zu

tpα
+
∞∑
j=1

α∑
a=j

zw+j(−1)α−aeα−aG(u,w−a+j)(t)+

∞∑
j=1

∞∑
b=j

z−j(−1)α+beα+bG(u,b−j)(t). (4.4.4)

Changing the order of summation and restricting the sum to non zero terms where

appropriate, we have

∞∑
v=−∞

(
α+β∑
i=0

(−1)ieiG(u,v−α+i)(t)

)
zv =

− zu

tpα
+

α∑
a=1

a∑
j=1

zw+j(−1)α−aeα−aG(u,w−a+j)(t)

+

β∑
b=1

b∑
j=1

z−j(−1)α+beα+bG(u,b−j)(t). (4.4.5)

On the right hand side, we let w + j = v in the first sum and v = −j in the second

sum, and write the summation for v as follows

∞∑
v=−∞

(
α+β∑
i=0

(−1)ieiG(u,v−α+i)(t)

)
zv =

− zu

tpα
+

α∑
a=1

w+a∑
v=w+1

zv(−1)α−aeα−aG(u,v−a)(t)

+

β∑
b=1

−1∑
v=−b

zv(−1)α+beα+bG(u,v+b)(t). (4.4.6)
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Exchanging the order of summation, we now can write the outer summation uni-

formly as sums over zv as follows

∞∑
v=−∞

(
α+β∑
i=0

(−1)ieiG(u,v−α+i)(t)

)
zv =

− zu

tpα
+

w+α∑
v=w+1

(
α∑

a=v−w

(−1)α−aeα−aG(u,v−a)(t)

)
zv

+
−1∑

v=−β

(
β∑
b=v

zv(−1)α+beα+bG(u,v+b)(t)

)
zv. (4.4.7)

Let α− a = i for the first summation and α+ b = i for second summation. We get

∞∑
v=−∞

(
α+β∑
i=0

(−1)ieiG(u,v−α+i)(t)

)
zv =

− zu

tpα
+

w+α∑
v=w+1

α+(w−v)∑
i=0

(−1)ieiG(u,v−α+i)(t)

 zv

+
−1∑

v=−β

(
α+β∑
i=α+v

(−1)ieiG(u,v−α+i)(t)

)
zv. (4.4.8)

Upon inspection one can now see that the sums on the right hand side can be

matched by sums over identical terms on the left hand side. The boundary cor-

rections in the functional equation have of course been introduced to precisely that

effect, as they were added to correct for steps that went beyond the upper and lower

boundaries. We are left with with the following expression

w∑
v=0

(
α+β∑
i=0

(−1)ieiG(u,v−α+i)(t)

)
zv = − zu

tpα
(4.4.9)
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Comparing coefficients of zv for 0 ≤ v ≤ w, Equation (4.4.9) is equivalent to a

system of w + 1 equations. This can be written in matrix form as



(−1)αeα (−1)α+1eα+1 ··· (−1)α+βeα+β ··· 0

(−1)α−1eα−1 (−1)αeα ··· (−1)α+β−1eα+β−1 ··· 0

(−1)α−2eα−2 (−1)α−1eα−1 ··· (−1)α+β−2eα+β−2 ··· 0

...
...

...
...

...
...

e0 −e1 ··· (−1)βeβ ··· 0

...
...

...
...

...
...

0 0 0 0 ··· (−1)αeα





G(u,0)(t)

G(u,1)(t)

G(u,2)(t)
...

G(u,w)(t)


=



0
...

− 1
tpα
...

0


,

(4.4.10)

where − 1
tpα

is an entry at uth position, with every other entry in the vector on the

right hand side being zero. We can evaluate the unknowns G(u,v)(t) for v = 0 . . . w,

by using Cramer’s rule. We write this matrix equation as

Ãx = b, (4.4.11)

where Ã is the coefficient matrix of dimension w + 1, x is the matrix of unknowns

G(u,v)(t), and b is the column vector on the right hand side with a single non zero

entry − 1
tpα

. We want to remove the negative signs of the entries in Ã to write the

matrix equation in terms of the matrix

A =



eα eα+1 eα+2 · · · eα+β · · · 0

eα−1 eα eα+1 · · · eα+β−1 · · · 0

eα−2 eα−1 eα · · · eα+β−2 · · · 0
...

...
...

...
...

. . .
...

e0 e1 e2 · · · eβ · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · eα


. (4.4.12)
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We accomplish this by applying a transformation given by the matrix

S =



1 0 0 · · · 0

0 −1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · (−1)w+1


. (4.4.13)

For the matrix S we know that S = S−1. The matrix equation (4.4.11) will be

transformed as SÃS−1Sx = Sb. We note that SÃS−1 = (−1)αA and Sb = (−1)ub,

so we have

(−1)αA(Sx) = (−1)ub, (4.4.14)

where (Sx)k = (−1)kG(u,k)(t). To evaluate Sx let A(u,v) be the matrix formed by

replacing column v in A with the column vector (−1)αSb, which has (−1)u+1−α 1
tpα

at position u. As per Cramer’s rule we can say that

(−1)vG(u,v)(t) =
|A(u,v)|
|A|

. (4.4.15)

Using the second Jacobi -Trudi formula, we can write the determinant of the matrix

A in terms of Schur functions. The second Jacobi-Trudi formula expresses the Schur

function as a determinant in terms of the elementary symmetric functions,

sλ = det(eλ′i+j−i)
l(λ′)
i,j=1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

eλ′1 eλ′1+1 eλ′1+2 · · · eλ′1+l−1

eλ′2−1 eλ′2 eλ′2+1 · · · eλ′1+l−2

eλ′3−2 eλ′3−1 eλ′3 · · · eλ′1+l−3
...

...
...

. . .
...

eλ′l−l+1 eλ′l−l+2 eλ′l−l+3 · · · eλ′l

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.4.16)
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Comparing the determinant in (4.4.16) with the matrix A in (4.4.13), we can see

that the conjugate partition λ′ is given by

λ′ =

α, α, α, · · · , α︸ ︷︷ ︸
w+1

 . (4.4.17)

From this conjugate partition we can write λ = (w+ 1α, 0β) and so the determinant

of the matrix A can be written as

|A| = s(w+1α,0β)(z1, z2, · · · , zα+β). (4.4.18)

Note that we have chosen the convention to let the partition have the same number

of parts as we have roots z1, z2, · · · , zα+β, so that we supplement the partition with

zero size parts as needed.

Further we need to evaluate G(u,v)(t) for v = 0 . . . w. Recall that the matrix

A(u,v) is equal to



eα eα+1 · · · eα+v−1 0 · · · eα+β · · · 0

eα−1 eα · · · eα+v−2 0 · · · eα+β−1 · · · 0

eα−2 eα−1 · · · eα+v−3 0 · · · eα+β−2 · · · 0
...

...
...

...
...

. . .
...

. . .
...

eα−u+1 eα−u+2 · · · eα+v−u 0 · · · eα+β−u+1 · · · 0

eα−u eα−u+1 · · · eα+v−u−1 (−1)u+1−α 1
tpα
· · · eα+β−u · · · 0

eα−u−1 eα−u · · · eα+v−u−2 0 · · · eα+β−u−1 · · · 0
...

...
...

...
...

. . .
...

. . .
...

e0 e1 · · · ev−1 0 · · · eβ · · · 0
...

...
...

...
...

. . .
...

. . .
...

0 0 0 0 0 · · · 0 · · · eα


[w+1]

.

(4.4.19)

To evaluate the determinant of A(u,v) we expand the matrix (4.4.19) by the vth
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column. This gives a matrix of size w as follows

|A(u,v)| =
(−1)2u+v+1−α

tpα

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eα eα+1 · · · eα+v−1 eα+v+1 · · · eα+β · · · 0

eα−1 eα · · · eα+v−2 eα+v · · · eα+β−1 · · · 0

eα−2 eα−1 · · · eα+v−3 eα+v−1 · · · eα+β−2 · · · 0
...

...
...

...
...

. . .
...

. . .
...

eα−u+1 eα−u+2 · · · eα+v−u eα+v−u+2 · · · eα+β−u+1 · · · 0

eα−u−1 eα−u · · · eα+v−u−2 eα+v−u−1 · · · eα+β−u−1 · · · 0

eα−u−2 eα−u−1 · · · eα+v−u−3 eα+v−u−1 · · · eα+β−u−2 · · · 0
...

...
...

...
...

. . .
...

. . .
...

e0 e1 · · · ev−1 ev+1 · · · eβ · · · 0
...

...
...

...
...

. . .
...

. . .
...

0 0 0 0 0 · · · 0 · · · eα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[w]

.

(4.4.20)

To study this matrix we look at the definition of skew Schur functions in terms of

the second Jacobi-Trudi formula.

sλ′/µ′ = det(eλ′i−µj+j−i)
l(λ′)
i,j=1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

eλ′1−µ′1 eλ′1−µ′2+1 eλ′1−µ′3+2 · · · eλ′1−µ′l+l−1

eλ′2−µ′1−1 eλ′2−µ′2 eλ′2−µ′3+1 · · · eλ′1−µ′l+l−2

eλ′3−µ′1−2 eλ′3−µ′2−1 eλ′3−µ′3 · · · eλ′1−µ′l+l−3
...

...
...

. . .
...

eλ′l−µ′1−l+1 eλ′l−µ′2−l+2 eλ′l−µ′3−l+3 · · · eλ′l−µ′l

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.4.21)

Comparing the determinant of A(u,v) to this determinant we can write the conju-

gate partitions for both λ and µ accordingly. To determine the conjugate partition

of λ, we note that the entries along a column initially decrease by one, so that λ′i

remains unchanged until the u-th row, where a decrease by two implies that λ′i de-
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creases by one. Hereafter, λ′i remains constant. Therefore λ′ = (cu, (c − 1)w−u) for

some c > 0. To determine µ, we consider the change along a row: the entries increase

by one except for a jump of two in the v-th column. Therefore µ′ = (dv, (d− 1)w−v)

for some d > 0. From the entry in the first row and column we see that λ′1−µ′1 = α,

hence c = d+ α. This determines λ and µ up to a constant. Letting d = 1, we find

λ′ = (α + 1u, αw−u) and µ′ = (1v, 0w−v). The partitions λ and µ are thus given by

λ = (wα, u, 0β−1) (4.4.22)

and

µ = (v, 0α+β−1), (4.4.23)

where we have again added zero size parts to follow the convention established above.

The corresponding skew Schur function is

s(wα,u,0β−1)/(v,0α+β−1)(z̄) . (4.4.24)

w

u

α

v

Figure 4.2: Skew partition λ/µ = (wα, u, 0β−1)/(v, 0α+β−1) for the skew Schur func-
tion related to detA(u,v). Here and in what follows we employ the ‘French’ convention
that the parts of the partition are depicted such the the largest part is at the top
and the smallest one at the bottom. Note that we do not show parts of zero size.
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A pictorial representation of the skew partition is given in Figure 4.2. We see

that the associated skew partition is given by a rectangle of size w × α which has a

row of size u added below and a row of size v removed from the top row.

Coming back to Cramer’s rule, we see that the determinant of any A(u,v) is given

by

|A(u,v)| = (−1)v+1−α 1

tpα
s(wα,u,0β−1)/(v,0α+β−1)(z̄) . (4.4.25)

Taking the value of |A| from (4.4.18) we can write that G(u,v) is given by

(−1)vG(u,v)(t) =
|A(u,v)|
|A|

= (−1)v+1−α 1

tpα

s(wα,u,0β−1)/(v,0α+β−1)(z̄)

s(w+1α,0β)(z̄)
. (4.4.26)

The final result is

G(u,v)(t) = (−1)1−α
1

tpα

s(wα,u,0β−1)/(v,0α+β−1)(z̄)

s(w+1α,0β)(z̄)
. (4.4.27)

4.5 Equivalent result in terms of Schur functions

Schur functions form a linear basis for the space of all symmetric polynomials [25].

We can therefore express the skew Schur function in Theorem 4.1 as a linear com-

bination of Schur fiunctions.

Lemma 4.3. Let α, β, w > 0. Then for 0 ≤ u, v ≤ w we have

s(wα,u,0β−1)/(v,0α+β−1)(z1, . . . , zα+β) =

r∑
l=0

s(wα−1,w−(v−u)+−l,(u−v)++l,0β−1)(z1, . . . , zα+β), (4.5.1)

where r = min(u, v, w − u,w − v).

Proof. From Pieri’s rule [25, Corollary 7.15.9], we know that for a skew partition
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λ/ν, where ν is a horizontal strip of size v,

sλ/ν(z) =
∑
µ

sµ(z), (4.5.2)

where the sum ranges over all partitions µ ⊆ λ for which λ/µ is a horizontal strip of

size v. In order to prove the lemma we specify the partitions λ and ν as on the left

hand side of (4.5.1). The partitions associated with the skew Schur function are

λ = (wα, u, 0β−1) (4.5.3)

and

ν = (v, 0α+β−1). (4.5.4)

w

u

α

w-u

Figure 4.3: A diagram of the partition λ = (wα, u, 0β−1) occurring in the identity
(4.5.2).

The aim is to find an explicit expression for all partitions µ in the sum on the right

hand side of (4.5.2). Given a partition λ of the shape depicted Figure 4.3, we want
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to find all partitions µ for which λ/µ is a horizontal strip of size v. This can be

viewed as removing a strip of size v from λ so that the remaining object is still a

valid partition. This removal can only be done from the last two rows, as removing

anything from above the last two rows will not correspond to the removal of a strip.

As the bottom row is of size u, the options of removing a strip of size v depend on

the size of u and v. For this we consider two cases depending on whether the size v

of the strip to be removed exceeds the length u of the bottom row or not.

Case u ≤ v

w

u-l

u

v-u+l

α

1

l

Figure 4.4: A diagram showing the structure of the partition µ = (wα−1, w − (v −
u)− l, l) in the case u ≤ v. The shaded part corresponds to a strip of size v.

Consider a skew partition given by λ/ν = (wα, u, 0β−1)/(v, 0α+β−1) shown in

Figure 4.2. If u ≤ v then the structure of the partitions µ appearing in the sum on

the right hand side of (4.5.2) are indicated in Figure 4.4. The shaded portion shows

the strip ν to be removed. We remove part of ν from the bottom row of length u

and the remaining part from the row above, i.e. we shorten the bottom row by u− l
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and the row above by v − u + l. We shall determine the allowed values of l below.

Removing the strip ν from λ gives the following partition

µ = (wα−1, w − (v − u)− l, l) . (4.5.5)

Now we derive bounds for l. Firstly we see that u− l ≥ 0. This implies

l ≤ u. (4.5.6)

Also we know that v−u+ l has to be less than or equal to w−u, else the grey parts

will lie above each other and so we will no longer have a strip. From this condition

we get

v − u+ l ≤ w − u ,

so

l ≤ w − v . (4.5.7)

From (4.5.6) and (4.5.7) it follows that

l ≤ min(u,w − v).

Also the condition u < v implies that w − u > w − v. Therefore it follows that

0 ≤ l ≤ min(u, v, w − u,w − v).

Therefore the sum can be written as

s(wα,u,0β−1)/(v,0α+β−1) =

min(u,v,w−u,w−v)∑
l=0

s(wα−1,w−(v−u)−l,l,0β−1) . (4.5.8)
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Case u > v

w

v-l

u

l

α

1

u-v+l

w-u

Figure 4.5: A diagram showing the structure of the partition µ = (wα−1, w − l, u−
v + l) in the case u > v. The shaded part corresponds to a strip of size v.

We use the same idea as in the first case and remove strip ν from the partition λ.

For v < u the structure of the partitions µ appearing in the sum on the right hand

side of (4.5.2) are indicated in Figure 4.5. Since v < u, we can remove ν completely

from the lowest row and nothing from the row above, or we can remove part of it

from the lowest row and the rest from the row above. We thus shorten the bottom

row by v − l and the row above by l. We shall determine the allowed values of l

below. Removing the strip ν from λ therefore gives the partition

µ = (wα−1, w − l, u− v + l) . (4.5.9)

Consider the bounds for l. We see that v − l ≥ 0, this implies

l ≤ v . (4.5.10)

83



Also we know that l has to be less than or equal to w − u, else the grey parts will

lie above each other. From this condition we get

l ≤ w − u . (4.5.11)

From (4.5.10) and (4.5.11) we have

l ≤ min(v, w − u).

Also from the condition v < u we have w − u < w − v. Then for l we have

0 ≤ l ≤ min(u, v, w − u,w − v).

From the bounds for l and Schur partition µ we get

s(wα,u,0β−1)/(v,0α+β−1) =

min(u,v,w−u,w−v)∑
l=0

s(wα−1,w−l,u−v+l,0β−1) (4.5.12)

We finally combine results (4.5.8) and (4.5.12). Denoting r = min(u, v, w−u,w−v),

we find

s(wα,u,0β−1)/(v,0α+β−1) =
r∑
l=0

s(wα−1,w−(v−u)+−l,(u−v)++l,0β−1) (4.5.13)

We now use this Lemma to state the desired equivalent result for Theorem 4.1 in

terms of Schur functions. Note that while in Lemma 4.3 we did not need to specify

the arguments of the functions, here it is important the the arguments are given by

the kernel roots.

Corollary 4.4. The generating function Gw,α,β
(u,v) (t) of generalised weighted paths in
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terms of Schur functions is given by

Gw,α,β
(u,v) (t) = (−1)1−α

1

tpα

r∑
l=0

s(wα−1,w−(v−u)+−l,(u−v)++l,0β−1)(z̄)

s(w+1α,0β)(z̄)
,

where z̄ are the α + β roots of the kernel

K(t, z) = 1− t
α∑
a=0

paz
a − t

β∑
b=1

qbz
−b.

and r = min(u, v, w − u,w − v).

Proof. Lemma 4.3 proves the corollary.

4.6 Examples

We now present several special cases involving small values of α and β. The first case

we examine is (α, β) = (1, 1), which corresponds to weighted Motzkin paths, and

also includes Dyck paths as a special case, if the weight of the horizontal step is set

to p0 = 0. This has been studied previously [12] [6], but the Schur function approach

used here is different and focusses more on the structure of the problem than just

giving explicit generating functions. We then examine the cases (α, β) = (1, 2) and

(α, β) = (2, 1), the solution of which involves roots of cubic equations. Here, the

strength of our Schur function approach becomes apparent, as any explicit solution

involves cumbersome algebraic expressions.

4.6.1 Motzkin paths

Theorem 4.1 shows that the geometric structure of the problem is encoded in the par-

tition shapes, while the step weights are “hidden” in the kernel roots. For Motzkin
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paths the result is particularly simple and elegant, involving only partitions with

two parts.

Gw,1,1
(u,v) (t) =

1

tp1

s(w,u)/(v,0)(z1, z2)

s(w+1,0)(z1, z2)
. (4.6.1)

From a computational point of view, skew Schur functions are of course not that

easy to evaluate, but with the help of Corollary 4.4 we are able to state the result

in terms of Schur functions.

Gw,1,1
(u,v) (t) =

1

tp1

r∑
l=0

s(w−(v−u)+−l,(u−v)++l)(z1, z2)

s(w+1,0)(z1, z2)
. (4.6.2)

To expand the Schur functions we write them in terms of determinants. The Schur

function in the denominator of Equation (4.6.2) is given by

s(w+1,0)(z1, z2) =
1

∆

∣∣∣∣∣zw+2
1 zw+2

2

z01 z02

∣∣∣∣∣ (4.6.3)

=
1

∆
(zw+2

1 − zw+2
2 ). (4.6.4)

where ∆ = ∆(z1, z2) = z1 − z2 comes from a Vandermonde determinant evalution.

Similarly expressing the Schur function in the numerator of Equation (4.6.2) as a

determinant implies

s(w−(v−u)+−l,(u−v)++l)(z1, z2) =
1

∆

∣∣∣∣∣zw−(v−u)+−l+1
1 z

w−(v−u)+−l+1
2

z
(u−v)++l
1 z

(u−v)++l
2

∣∣∣∣∣
=

1

∆
(z
w−(v−u)+−l+1
1 z

(u−v)++l
2 − zw−(v−u)+−l+1

2 z
(u−v)++l
1 ). (4.6.5)

Now substituting the expansion of these Schur functions into (4.6.2), we finally

obtain

Gw,1,1
(u,v) (t) =

1

tp1

min(u,v,w−u,w−v)∑
l=0

(z
w−(v−u)+−l+1
1 z

(u−v)++l
2 − zw−(v−u)+−l+1

2 z
(u−v)++l
1 )

zw+2
1 − zw+2

2

(4.6.6)
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Here, z1 = z1(t) and z2 = z2(t) are the roots of the kernel K(t, z) = 1− tp0− tp1z−
tq1/z, so that they can be explicitly given as solutions of the quadratic equation

z2 − 1/t− p0
p1

z +
q1
p1

= 0 . (4.6.7)

4.6.2 Case (α = 1, β = 2)

Structurally, this case is rather similar to the preceding one, however the Schur

functions now have as argument three kernel roots z1(t), z2(t) and z3(t), which are

the solution to the kernel equation given by

z3 − 1/t− p0
p1

z2 +
q1
p1
z +

q2
p1

= 0 , (4.6.8)

so that a general explicit solution would involve roots of a cubic equation. Theorem

4.1 implies that

Gw,1,2
(u,v) (t) =

1

tp1

s(w,u,0)/(v,0,0)(z1, z2, z3)

s(w+1,0,0)(z1, z2, z3)
, (4.6.9)

and the result given in Corollary 4.4 can be written as

Gw,1,2
(u,v) (t) =

1

tp1

r∑
l=0

s(w−(v−u)+−l,(u−v)++l,0)(z1, z2, z3)

s(w+1,0,0)(z1, z2, z3)
. (4.6.10)

We expand the Schur functions and write them in form of determinants. The Schur

function in the denominator is given by

s(w+1,0,0)(z1, z2, z3) =
1

∆

∣∣∣∣∣∣∣
zw+3
1 zw+3

2 zw+3
3

z11 z12 z13

z01 z02 z03

∣∣∣∣∣∣∣
=

1

∆
(zw+3

1 (z2 − z3)− zw+3
2 (z1 − z3) + zw+3

3 (z1 − z2)) , (4.6.11)
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where ∆ = (z1 − z2)(z1 − z3)(z2 − z3) is again a Vandermonde determinant (which

will however cancel out in the final result). Similarly expressing the Schur function

in the numerator as a determinant implies

s(w−(v−u)+−l,(u−v)++l,0)(z1, z2, z3) =

1

∆

(
z
w−(v−u)+−l+2
1 (z

(u−v)++l+1
2 − z(u−v)++l+1

3 )

− zw−(v−u)+−l+2
2 (z

(u−v)++l+1
1 − z(u−v)++l+1

3 )

+z
w−(v−u)+−l+2
3 (z

(u−v)++l+1
1 − z(u−v)++l+1

2 )
)
. (4.6.12)

Now substituting the expansion of Schur functions in (4.6.10), we obtain

Gw,1,2
(u,v) (t) =

1

tp1

min(u,v,w−u,w−v)∑
l=0


z
w−(v−u)+−l+2
1 (z

(u−v)++l+1
2 − z(u−v)++l+1

3 )

− zw−(v−u)+−l+2
2 (z

(u−v)++l+1
1 − z(u−v)++l+1

3 )

+ z
w−(v−u)+−l+2
3 (z

(u−v)++l+1
1 − z(u−v)++l+1

2 )


zw+3
1 (z2 − z3)− zw+3

2 (z1 − z3) + zw+3
3 (z1 − z2)

. (4.6.13)

4.6.3 Case (α = 2, β = 1)

The kernel equation now leads to

z3 +
p1
p2
z2 − 1/t− p0

p2
z +

q1
p2

= 0 . (4.6.14)

We note that exchanging α and β is akin to switching up and down steps with

adjusting the weights appropriately. More precisely, making all the parameters

explicit we have

K(2,1)
p0,p1,p2,q1

(t, z) = K(1,2)
p0,q1,q2,p1

(t, 1/z) , (4.6.15)
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which in the case of unit weights implies that the kernel roots for (α, β) = (2, 1)

and (α, β) = (1, 2) are simply inverses of each other. This symmetry is not as ex-

plicit when writing the generating functions in terms of Schur functions. Symmetry

considerations would dictate that we need to replace u and v by w − u and w − v,

respectively, but this is not obvious from the result given in Theorem 4.1, which

now reads

Gw,2,1
(u,v) (t) = − 1

tp2

s(w,w,u)/(v,0,0)(z1, z2, z3)

s(w+1,w+1,0)(z1, z2, z3)
. (4.6.16)

From Corollary 4.4, this can be written as

Gw,2,1
(u,v) (t) = − 1

tp2

r∑
l=0

s(w,w−(v−u)+−l,(u−v)++l)(z1, z2, z3)

s(w+1,w+1,0)(z1, z2, z3)
. (4.6.17)

We expand the Schur functions and write them in form of determinants, and we

obtain

Gw,2,1
(u,v) (t) =

− 1

tp2

min(u,v,w−u,w−v)∑
l=0


zw+2
1 (z

w−(v−u)+−l+1
2 z

(u−v)++l
3 − zw−(v−u)+−l+1

3 z
(u−v)++l
2 )

− zw+2
2 (z

w−(v−u)+−l+1
1 z

(u−v)++l
3 − zw−(v−u)+−l+1

3 z
(u−v)++l
1 )

+ zw+2
3 (z

w−(v−u)+−l+1
1 z

(u−v)++l
2 − zw−(v−u)+−l+1

2 z
(u−v)++l
1 )


zw+3
1 (zw+2

2 − zw+2
3 )− zw+3

2 (zw+2
1 − zw+2

3 ) + zw+3
3 (zw+2

1 − zw+2
2 )

.

(4.6.18)

When written in terms of kernel roots, we see some structural similarity between

(4.6.18) and (4.6.13), in line with the symmetry observation made above.
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Chapter 5

Adsorption of Generalised

Weighted Paths at Boundaries

5.1 Introduction

Recall from Chapter 4 the model of generalised weighted paths. In this chapter we

extend the generalised weighted paths by including adsorption of generalised paths

at boundaries. Before considering paths with general step sets, we first present the

model of Motzkin paths in Section 5.2 in order to set up the ideas for the general

case, which is then treated in Section 5.3. We note that adsorption of Motzkin paths

has been considered in [5]. Here we focus on adapting our methodology of Chapter

4 to the treatment of paths with boundary weights.
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5.2 Motzkin paths

Motzkin paths are closely related to Dyck paths. The step set includes the steps

from a Dyck path that is an up step (1, 1) and a down step (1,−1) and an addition

of a horizontal step (1, 0) which is what makes it different from Dyck paths. To be

precise, we consider lifted Motzkin paths [27], where starting and end points are not

restricted to be at height zero as is the case for Motzkin paths as normally defined.

For the adsorption model consider the generating function of Motzkin paths as

M(κ, λ, t, z) =
∑
ω

κaλbzvtn , (5.2.1)

where ω represents the set of all Motzkin paths in a slit of width w > 0 starting

at a fixed height u with 0 ≤ u ≤ w. We denote the total number of edges leaving

or lying on the line y = 0 by a (this is equivalent to the number of vertices on the

line with the exception of the final vertex), with b representing the total number of

edges leaving or lying on the line y = w. v is the ending height of the path and n is

the number of edges in a Motzkin path.

Figure 5.1: Motzkin path with edge and vertex visits with a = 3 and b = 2.

5.2.1 Functional equation

We construct a weighted path by appending steps from the step set of Motzkin

paths to an n − 1 step path where n > 0. The up step is weighted by p, the down

step by q and the horizontal step by r. This leads to the functional equation for the
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generating function M(κ, λ, t, z),

M(κ, λ, t, z) = zu + t(pz + r +
q

z
)M(κ, λ, t, z)− tq

z
M0(κ, λ, t)− tpzw+1Mw(κ, λ, t)

+ tp(κ− 1)zM0(κ, λ, t) + tq(λ− 1)zw−1Mw(κ, λ, t)

+ tr(κ− 1)M0(κ, λ, t) + tr(λ− 1)zwMw(κ, λ, t) , (5.2.2)

where M0(κ, λ, t) = [z0]M(κ, λ, t, z) and Mw(κ, λ, t) = [zw]M(κ, λ, t, z).

Here zu represents the zero step walk starting and ending at height u. The term

t(pz + r+ q
z
)M(κ, λ, t, z) corresponds to steps appended irrespective of whether the

resulting walk steps leave the slit. The steps not allowed are removed by subtracting

the terms which account for the steps crossing the boundaries y = 0, and y =

w. For example tq
z
M0(κ, λ, t) adjusts for steps going below the line y = 0, and

tpzw+1Mw(κ, λ, t) adjusts for steps going beyond y = w. Next the term tp(κ −
1)zM0(κ, λ, t) adds a weight κ to an up step leaving y = 0. Similarly the terms

tr(κ− 1)M0(κ, λ, t) + tr(λ− 1)zwMw(κ, λ, t) give a weight of κ and λ to horizontal

steps at the boundaries, and lastly tq(λ− 1)zw−1Mw(κ, λ, t) gives a weight of λ to a

down step leaving y = w.

To reduce notational overload, we now write M(t, z) ≡ M(κ, λ, t, z) and anal-

ogously Mv(t) = [zv]M(κ, λ, t, z). Collecting the coefficients of M(t, z), we rewrite

the functional equation as

(
1− tpz − tr − tq

z

)
M(t, z) = zu − tq

z
M0(t)− tpzw+1Mw(t) + tp(κ− 1)zM0(t)

+ tq(λ− 1)zw−1Mw(t) + tr(κ− 1)M0(t) + tr(λ− 1)zwMw(t) . (5.2.3)

5.2.2 The kernel

The coefficient of M(t, z) in functional equation (5.2.3) is the kernel given by

K(t, z) = 1− tpz − tr − tq
z
. (5.2.4)
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We rewrite the kernel as

K(t, z) = −tp
z

(
z2 − 1

tp
z +

r

p
z +

q

p

)
. (5.2.5)

As in Lemma 4.2. the kernel expressed in the terms of elementary symmetric func-

tions is given by

K(t, z) = −tp
z

(
z2e0 − ze1 + e2

)
= −tp

(
2∑
i=0

z1−i(−1)iei

)
. (5.2.6)

We aim to relate this to our work in Chapter 4 and use the same methodology

to solve for Motzkin paths under adsorption. For this we express our functional

equation (5.2.3) in terms of elementary symmetric functions and then solve it.

5.2.3 Solution of the functional equation

The functional equation with the kernel in terms of elementary symmetric functions

can be written as

− tp

(
2∑
i=0

z1−i(−1)iei

)
M(t, z) = zu− tq

z
M0(t)− tpzw+1Mw(t) + tp(κ− 1)zM0(t)

+ tq(λ− 1)zw−1Mw(t) + tr(κ− 1)M0(t) + tr(λ− 1)zwMw(t) . (5.2.7)
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From this functional equation we want to derive equations for the coefficients Mv(t).

Writing M(t, z) =
w∑
v=0

Mv(t)z
v and dividing throughout by −tp, we get

(
2∑
i=0

z1−i(−1)iei

)
w∑
v=0

Mv(t)z
v =
−1

tp
zu −

(
−1

tp

)
tq

z
M0(t)−

(
−1

tp

)
tpzw+1Mw(t)

+

(
−1

tp

)
tp(κ− 1)zM0(t) +

(
−1

tp

)
tq(λ− 1)zw−1Mw(t)

+

(
−1

tp

)
tr(κ− 1)M0(t) +

(
−1

tp

)
tr(λ− 1)zwMw(t) . (5.2.8)

Using the result from Lemma 4.2, we replace the terms on the right hand side with

elementary symmetric functions. We also rewrite the left hand side by changing the

order of summation and extending the limits of the summation over v to infinity,

as all the added terms are identically equal to zero. This transforms the functional

equation as follows:

∞∑
v=−∞

(
2∑
i=0

(−1)ieiMv+i−1(t)

)
zv =

−1

tp
zu+

e2
z
M0(t)+e0z

w+1Mw(t)−e0(κ−1)zM0(t)

− e2(λ− 1)zw−1Mw(t)− r

p
(κ− 1)M0(t)−

r

p
(λ− 1)zwMw(t) . (5.2.9)

Terms on the right hand side with powers of z less than 0 and greater than w are

cancelled out with the corresponding terms on the left hand side, and we are left

with

w∑
v=0

(
2∑
i=0

(−1)ieiMv+i−1(t)

)
zv =

−1

tp
zu − e0(κ− 1)zM0(t)

− e2(λ− 1)zw−1Mw(t)− r

p
(κ− 1)M0(t)−

r

p
(λ− 1)zwMw(t) . (5.2.10)

Comparing coefficients of zv for 0 ≤ v ≤ w, Equation (5.2.10) is equivalent to a

system of w + 1 equations for M(u,v)(t) = Mv(t), where we now have made the
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starting height u explicit in our notation.



(
−e1 + r

p
(κ− 1)

)
e2 0 · · · 0

e0κ −e1 e2 · · · 0

0 e0 −e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2λ

0 0 0 · · ·
(
−e1 + r

p
(λ− 1)

)





M(u,0)(t)

M(u,1)(t)

M(u,2)(t)
...

M(u,w)(t)


=



0
...

− 1
tp
...

0


.

(5.2.11)

Here − 1
tp

in the right hand column vector is an entry at the uth position, with

every other entry being zero. For readability we introduce κ′ and λ′ by letting

−e1κ′ = −e1 + r
p
(κ− 1) and −e1λ′ = −e1 + r

p
(λ− 1). Equation (5.2.11) thus gives

the following simple system of equations



−e1κ′ e2 0 · · · 0

e0κ −e1 e2 · · · 0

0 e0 −e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2λ

0 0 0 · · · −e1λ′





M(u,0)(t)

M(u,1)(t)

M(u,2)(t)
...

M(u,w)(t)


=



0
...

− 1
tp
...

0


, (5.2.12)

which differs from (4.4.11) by the inclusion of boundary weights κ, κ′, λ, and λ′ in

the first and last column.

We now again use Cramer’s rule to evaluate the unknowns M(u,v)(t). To be able

to express the resulting determinants using Jacobi-Trudi formulas, it is convenient

to eliminate the negative signs in front of the elementary symmetric functions. A

transformation is applied by multiplying with the matrix S as we did in Chapter

4, where the transformed matrix equation was A(Sx) = (−1)u+1−αb. For Motzkin
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paths α is simply equal to 1 and so we find



e1κ
′ e2 0 · · · 0

e0κ e1 e2 · · · 0

0 e0 e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2λ

0 0 0 · · · e1λ
′





M(u,0)(t)

−M(u,1)(t)

M(u,2)(t)
...

(−1)wM(u,w)(t)


=



0
...

(−1)u 1
tp

...

0


. (5.2.13)

The aim is to solve this matrix equation using Cramer’s rule. The unknowns are

given by

(−1)vM(u,v)(t) =
|A(u,v)|
|A|

, (5.2.14)

where A is given by

A =



e1κ
′ e2 0 · · · 0

e0κ e1 e2 · · · 0

0 e0 e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2λ

0 0 0 · · · e1λ
′


, (5.2.15)

and A(u,v) is the minor obtained by replacing the vth column in A by the column

vector on the right hand side of equation (5.2.13). To evaluate the determinant of

A, we use generalised cofactor expansion. The expansion is done by the first and

last column of the matrix A. We only consider the case w > 2 here, as smaller

values of w can be easily calculated directly without recourse to the formalism used

below. Generally the expansion gives a sum over
(
w+1
2

)
different terms, but due to

the presence of zeros in the first and last column most of these terms are zero and
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we are left with a sum over four terms only. We find

|A| =

∣∣∣∣∣e1κ′ 0

0 e1λ
′

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 0 · · · 0

e0 e1 e2 · · · 0

0 e0 e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2

0 0 0 · · · e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣e1κ′ 0

0 e2λ

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 0 · · · 0

e0 e1 e2 · · · 0

0 e0 e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2

0 0 0 · · · e0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣e0κ 0

0 e1λ
′

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e2 0 0 · · · 0

e0 e1 e2 · · · 0

0 e0 e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2

0 0 0 · · · e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣e0κ 0

0 e2λ

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e2 0 0 · · · 0

e0 e1 e2 · · · 0

0 e0 e1 · · · 0
...

...
...

. . .
...

0 0 0 · · · e2

0 0 0 · · · e0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.2.16)

where the sign is determined by evaluating the sign of the corresponding permuta-

tions used in (2.7.3). Using the notation in that equation, H = {1, w+ 1}, and L is

one of {1, w}, {1, w+ 1}, {2, w} and {2, w+ 1}. Using the Jacobi-Trudi formula for

each individual determinant we can express the determinant of A in terms of Schur

functions as

|A| = e1
2κ′λ′s(w−1,0) − e1e2κ′λs(w−2,0) − e0e1κλ′s(w−1,1) + e0e2κλs(w−2,1) . (5.2.17)

This concludes our evaluation of the determinant of A and we next turn to the

evaluation of the determinant of A(u,v). To avoid degenerate cases, we shall restrict

ourselves to the case 1 ≤ v ≤ w − 1 and 2 ≤ u ≤ w − 2, so in particular, we need

w > 3 here. As per Cramer’s rule we substitute the column vector on right hand
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side of equation (5.2.13) into A, leading to

A(u,v) =



e1κ
′ e2 0 · · · 0 · · · 0

e0κ e1 e2 · · · 0 · · · 0

0 e0 e1 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

0 0 0 · · · (−1)u 1
tp
· · · 0

...
...

...
. . .

...
. . .

...

0 0 0 · · · 0 · · · e2λ

0 0 0 · · · 0 · · · e1λ
′


. (5.2.18)

To compute the determinant of A(u,v) we expand by the vth column and get

A(u,v) = (−1)u+v
(−1)u

tp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1κ
′ e2 0 · · · · · · 0

e0κ e1 e2 · · · · · · 0

0 e0 e1 · · · · · · 0
...

...
...

. . . . . .
...

...
...

...
. . . . . .

...

0 0 0 · · · · · · e2λ

0 0 0 · · · · · · e1λ
′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.2.19)

Using generalised Laplace expansion along the first and the last column, we obtain

A(u,v) = (−1)u+v
(−1)u

tp(∣∣∣∣∣e1κ′ 0

0 e1λ
′

∣∣∣∣∣D1 −

∣∣∣∣∣e1κ′ 0

0 e2λ

∣∣∣∣∣D2 −

∣∣∣∣∣e0κ 0

0 e1λ
′

∣∣∣∣∣D3 +

∣∣∣∣∣e0κ 0

0 e2λ

∣∣∣∣∣D4

)
(5.2.20)

where D1, D2, D3 and D4 are the complementary minors. Using the second Jacobi-
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Trudi identity, we evaluate the determinants of each of the minors and get

|A(u,v)| = (−1)u+v
(−1)u

tp

(
e1

2κ′λ′s(w−2,u−1)/(v−1) − e1e2κ′λs(w−3,u−1)/(v−1)

−e0e1κλ′s(w−2,u−1,1)/(v−1) + e0e2κλs(w−3,u−1,1)/(v−1)
)
. (5.2.21)

Note that this expression ceases to make sense for u or v close to the boundary, as

expected. Also, we dropped the inclusion of zero size parts in the partition that we

used when writing Schur functions as it makes less sense here. We get the unknown

generating function by substituting the determinants in (5.2.14). This cancels the

signs and gives

M(u,v)(t) =
1

tp

(
e1

2κ′λ′S(w−2,u−1)/(v−1) − e1e2κ′λS(w−3,u−1)/(v−1)
− e0e1κλ′S(w−2,u−1,1)/(v−1) + e0e2κλS(w−3,u−1,1)/(v−1)

)
e12κ′λ′S(w−1) − e1e2κ′λS(w−2)−e0e1κλ′S(w−1,1) + e0e2κλS(w−2,1)

.

(5.2.22)

This completes the computation of the generating function of Motzkin paths under

adsorption.

5.3 Generalised weighted paths under adsorption

Here we will use the machinery developed for Motzkin paths for the adsorption of

generalised weighted paths. We will again arrive at a matrix equation that can be

solved in terms of skew Schur functions.

5.3.1 Generating function and functional equation

Consider the generalised weighted paths introduced in Chapter 4. We add boundary

weights κ and λ analogously to what we did for Motzkin paths, so that in extension
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of the notation in (4.1.1), the generating function is now given by

G(t, z) =
w∑
v=0

Gw,α,β
(u,v) (κ, λ; t)zv , (5.3.1)

where the generating function representing the paths ending at some height v (and

starting at fixed height u) is given by

Gv(t) = Gw,α,β
(u,v) (κ, λ; t) . (5.3.2)

The functional equation for the generating function G(t, z) is now given by

G(t, z) = zu + t

(∑
a∈A

paz
a +

∑
b∈B

qb
zb

)
G(t, z)

− t
∞∑
j=1

zw+j
∑
a≥j

paGw−a+j(t)− t
∞∑
j=1

z−j
∑
b≥j

qbGb−j(t)

+tp0(κ−1)G0(t)+tp0(λ−1)zwGw(t)+
α∑
a=1

tpa(κ−1)zaG0(t)+

β∑
b=1

tqb(λ−1)zw−bGw(t) ,

(5.3.3)

where the last four terms account for boundary weights. Note that there is a cor-

rection for the horizontal step with weight p0 at both the top and bottom border.

The kernel of the functional equation

K(t, z) = 1− t
∑
a∈A

paz
a − t

∑
b∈B

qb
zb

(5.3.4)

is identical to the one considered in Chapter 4.
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5.3.2 Solution of the functional equation

The same manipulations as in the case for Motzkin paths now lead to a slightly

more involved Matrix equation. From the functional equation we find

w∑
v=0

(
α+β∑
i=0

(−1)ieiGv−α+i(t)

)
zv = − zu

tpα
− p0
pα

(κ− 1)G0(t)−
p0
pα

(λ− 1)zwGw(t)

− 1

pα

α∑
a=1

pa(κ− 1)zaG0(t)−
1

pα

β∑
b=1

qb(λ− 1)zw−bGw(t) . (5.3.5)

As the next steps in the calculation are indentical to what has been done above, we

shall only give the matrix equation after the change of signs. Here we use κ′ and λ′

defined via (−1)αeακ
′ = (−1)αeα + p0

pα
(κ− 1) and (−1)αeαλ

′ = (−1)αeα + p0
pα

(λ− 1).

(−1)α



eακ
′ eα+1 · · · eα+β · · · 0

eα−1κ eα · · · eα+β−1 · · · 0
...

...
...

...
. . .

...

e0κ e1 · · · eβ · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · eαλ
′





G(u,0)(t)

−G(u,1)(t)

G(u,2)(t)
...

(−1)wG(u,w)(t)


=



0
...

(−1)u+1 1
tpα

...

0


.

(5.3.6)

Using Cramer’s rule we proceed with computing G(u,v)(t) from

(−1)vG(u,v)(t) =
|A(u,v)|
|A|

. (5.3.7)

We use a generalised cofactor expansion with respect to the first and last column

and write the resulting cofactors in terms of Schur functions using Jacobi-Trudi

formulas. We only give the result away from the boundaries, restricting the range
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of u and v to satisfy 0 < v < w and α < u < w − β. With the notation

κi =

κ′ i = 0

κ i > 0
and λj =

λ′ j = 0

λ j > 0
, (5.3.8)

we find that

|A| =
α∑
i=0

β∑
j=0

(−1)i+jκiλjeα−ieα+jS(w−1α−1,w−1−j,i,0β−1) (5.3.9)

and

|A(u,v)| =
(−1)α+v+1

tpα

α∑
i=0

β∑
j=0

(−1)i+jκiλjeα−ieα+jS(w−2α−1,w−2−j,u−1)/(v−1) . (5.3.10)

Our final result is therefore given as

G(u,v)(t) =
(−1)α+1

tpα

α∑
i=0

β∑
j=0

(−1)i+jκiλjeα−ieα+jS(w−2α−1,w−2−j,u−1)/(v−1)

α∑
i=0

β∑
j=0

(−1)i+jκiλjeα−ieα+jS(w−1α−1,w−1−j,i,0β−1)

. (5.3.11)

We note that there is a slight inconsistency in the Schur and skew Schur function

notations we have used in this Thesis. For Schur functions, we preferred to indicate

the dimension explicitly by giving a partition with α+ β parts, supplementing with

zeros if necessary. We continued to do this for skew Schur functions in Lemma 4.3.

However, we saw already in the Motzkin path case, where α + β = 2, the number

of parts in the skew Schur function increased to 3, so that our preferred notation

became less useful. We therefore dropped the trailing zeros when indicating the

parts of the partition in the skew Schur function notation.
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