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6 ©y*(-) and its 2/p Formal Group Law

6,1 Problems In using the exsct trlangle

An obvious approach to™Vv* and thus to™ V" is to use the

exact trisngle of 4.7 :

T4 (MUA B(Z/pLEJ)

The major difficulty is that for general n I do not
know the structure of‘ﬁ#(@yAiP(Z/p1§;)?. It is closely
related to ﬂ}(@yAB(Z/plij}ezU*(B(Z/plfm)),and as B(Z/pl£.} is
(BZ/Eﬁigéégg/p)xz“Eék’for a start we should like to know
U (EZ ). For n=2 (B£,=RP") thls has been determined by
Comner & Floyd (jl) but for higher n U,{(BZ,) remains unknown to me

One might hope for a relation of U (BZ ) to U,(Q8") like
that of Kahn & Priddy (3i) for ordinary homology, end further
hope that it would extend to relate U,(B(Z/plZ )} to U, (GBZ/p).
However we have as yet no general theorem linking U*(QX) to
U*(X) - 1t 1s known how to build H,(QX;Z/p) from H, (X;Z/p)

(Dyer & Lashof (1#), May (26)) but there are no results in other
homology theories.(Indeed Hodgkin (20) shows that the situation
1s quite different in K, (QX;Z/p).)

Hodgkin (20) calculates K, (Qs®;2/p) by using representations
of Z_and one would hope that & similar approach to U,(Qs’),
combined with the work of tom Dieck (15) using locallisations
to study Uu(BG), would yileld results., Also relevant is the
work of Landweber ((23) & (24)) on the Thom map Ux{BG) —> H (BG;2)

and Kunneth formulae for U¥*(BGxBH).
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In the rest of this chapter we shall calculate various
detalls of ®v*(-) by using certain exact triangles which are
related to the one above, but which split into short exact
sequences, simplifying calculations.

ELQ.@’V*(~), being a representative Z/p-theory, has

By (a5 )x* VB H,L(Qs° ;2/p) etc. so has a "Kehn Priddy theorem".
One would hope that®Vv*(+), which is so close to U¥(-)
geometrically, might in due course ald us in Investigating

U (@S’ ).

6.2 The "Z/p-Homology of Spectra'" Exact Triangle

Let K&ggp) denote the Eilenberg-Maclane spectrum for
H¥(-;2/p) snd let Mfy denote a spectrum for the theory &v¥(-
(We have defined ®Vv*(X) for finite CW X and so the spectrum

@fy 1s well-defined up to "wesk equivalence! (see Adams (2}).)

R e
Y, (K(Z/p))

(so H,(M™%;2/p) 1s well-defined.)

Then H*(MMV;Z/p)
~ Stable

i

Since homology theorles commute wlth ;Eg the exact
triaengle of 4.7 may be applied with X==K(Z/p) to glve:

Y (K(2/p)) bWy (K {%/p))
1,4 degree O

:t:\\\\ ;////ji:/ jnx degree -n

. ky degree n-1
70 (K(Z/p) A (MUA, B(Z/PLE)T))
x
By the comment above this trlangle is the same as:

H (M V;2/p) — H(M™V;2/p)

N

Hy (MUA,B(Z/pLE)" ;2/p)
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What 1s useful esbout this approach 1s that Nsksaoka's

results ((22) & (30}) on H,(BZ ;2/p) tell us about
H*(MyAiP(Z/pZQJEZ/p) and thus, by using the triangle, about
H*(Mfy;Z/p). As@V¥(~) 1s s representative Z/p-theory we know
thet H¥(M™V;2/p) is free over the Steenrod algebra &, and this
gives us information about®v*, As a by-product of this
investigation we shall find the Z/p formal group structure of

eoy*(Bz/p) glven by the classes (?;) of 4.2,

Remark 6.2.1 The exact trilangle (D shows inductively that

H,(4'Y;%/p) 1s a finite dimensional Z/p-vector space for each
qe Thus for H?(Mﬁy;z/p) we have an isomorphic exact triangle
dual (as vector spaces) to (:) $-

*
HS (" ;2/p) < H*(M"V;2/p)

H*(M,y,«ip(z/plf.\m/p)

Remark 6.2.2 The spectra M&& are defined up to "weak

equivalence" Cépectra E,F are "weakly equivalent! if and only
if JK,E} ={K,gl for all finite CW K (Adams (2)).); but, as
shown above, H*(Mfy;z/p) is well-defined., In Chapter 6 we shall
need to examine naturel transformations of theories, e.g.
(@V*( ) ——a . v¥(-). We are faced with the technical question as
to whether these are necessarily induced by meps of spectra
M5 MEY if the spectra are only defined up to wesk
equivalence; Adams () constructs representing objects for
cohomology theories defined on finite CW complexes and shows
that all natural transformations give maps of representing
objects (though these maps are not necessarily unique). Thus

for instance, there 1s & map Mi%—~>@&f% inducingﬁﬁv*(uy~éﬁﬂh*(m
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(If we used mock-bundles to define our theories (35) then we
should find that they have canonical A-spectra defined geometric-
-slly and all our natural transformations geometrically induce
canonical maps of A-spectra).

Alternatively one mey observe that all our proofs of
theorems in Chapter & will deal only with H,(~;Z/p) applied to
spectra, and as we have seen H¥(M2V;Z/p)gﬁﬂv*(K£gZp)) so that
a natural transformation(wv*(-)u—JW“V*(~) induces & well-defined
map H*(Miy;z/p)“ﬂ-H*(Mffb;z/p) (by regarding it as
f“v*(K%/p))—L“*"v*(Kgg/p)) ) which is all that is really needed
in the proofs. So, while for clarity of exposition in chapter ©
natural transformations will be assumed to have sssoclsted maps
of spectra (which they de have by Adams® results), one may read
the chapter with "H (-;Z/pl-spectacles” and not worry about the

problem.
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6.3 H¥(¥V;2/p) as an Abelian Group

In this section we shall show that the maps k, in the
triangle (1) of 6.2 are all zero, and thus that the triangle
breeks up into short exact sequences.

First we examine k, . This 1s Induced by the map of
spectra k,:ﬁgABZ/ﬁt—» MU teking a 7/p-bundle over a U-manifold
to its total space (see 4.7). k, commutes with the UTmodule
structure, so it suffices to evaluate it on the sphere
spectrum § <> MU,

Thus k, is "multiplication" by a stable map g:ipz/p-—ayy
i.e. k, factorises:

MUASEZ/B" — 5 MUAMY " MU aaeeeenneeeen (B
(g represents an element g¢U’(B2/p}; as a U-mock-bundle over
Bz/p, g ls represented by: EZ/p )

BZ/p

For each inclusion of groups He<y G tom Dieck (15) defines
a transfer map t:U*(BH)—» U{BG). By following through his
definition with H= §eland G=2/p we find that:-

t :U*—> U*(B2/p) sends 1 p———> g,

Lemma 6.5.1 (tom Dieck (14), Novikov (g)etc.)

Let 1:2/pcs S+ Then 1%:0*(CP¥)—»U™(BZ/p) is epimorphic

* =" _ L :
and UT(BZ/p)=TU [B%LLi;iish..Qf) (b«-euﬁi), I the canonical
U e oo
P C~bundle over CP”, so

0 (18::01) = £, (0l (G, 200 ))

F, formal group law on u*(ct

Proof tom Dieck (i4). l

Corollary 6.3.2 g=t(l)= Fu(C,Fu(C;...))/C==p+... eU°(BZ/p)

Proof Immediate from tom Dieck (i§). '
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* % * ok
Proposition 6.3.3 The map k,:H (@y;z/p)—*bﬂ.(gyABA/p;Z/p)

in (:)kzero.

Proof By C) it is sufficient to show that the map

g*:H*(My;Z/p)—a-H*(BZ/p;Z/p) is zero:=-

Conslder the Boardman map:
U*(BZ/p)~§>Homzéh*(BZ/p;Z/p),H*(My;Z/pI}? H*(Ep;Z/P)g;H*(BZ/p;Z/;
This sends g > g

6.5.,2 tells us that g is a power seriles with all 1ts coefficlents

in I{p)= the ideal of all classes 1n U* with all Chern numbers

-t
divisible by p. (This follows from g= log, (p log,Cl.)

Hence, under B:U™—>H, (MU;Z/p) all these coefficlents go to

zero, and as B 1s both natural and multiplicative we may

deduce that g 0. l

Corollary 6.5.4 HY(MNW;z/p)% H*(I@;Z/p)@H*“{bgy,\lsz/p‘“;Z/p)
?%Ki

Proof Immediate.

We generallse €6.3.3 :-

* - F-nl :
Proposition 6.3.5 The map kn:H*(MtEY;Z/p)—éIin(@y,uﬁ(Z/plgjﬁz/;

is zero.
Proof ki is induced by the mep of spectra (see 6.2.2):-
K, :87 MUAzB(Z/PUE) —> MW
which takes a U-manifold which is @& Z/pli;bundle to the total
space of the associated Z/p*...*xZ/p-bundle (which is an ™"v-
-manifold). (see 4.7), g
Now a Z/pt%;:tZ/p—bundle has a free Z/p-action on it
(given by the diagonal Z/p-actlon) and the quotient 1s still
an®W-manifold, so we may factorise k, as the composition:-
8™ MU, B(Z/D1E, ) ——> W VAB2/p— M"Yy

[ﬁotal space of Z/Ej;;:tg/p- Efotal space of
bundle, regarded as Z/p—bundl%} Z/p-bundle]



82
The map MthABZ/pi—aMﬁZW is again "multiplication" by geU”(B2/p)
(cofe (B)) 1ee. it is:

B2/ 5 —2% MV - M8V
where m gives the U¥-module structure of OOv*(-),
In 6.3.3 it was proved that g :H™(MU;2/p)— H™(BZ/p;24/p) is

*
zero, and therefore k, 1ls zero. |

Corollary 6.%.6 There 1s a Z/p~vector space isomorphlsm:

B, (W;32/p) = B (MV;2/p)e H*_ygl\grg/\i?(z/plzw)} %/p)
Proof Immediate. (N.B. This isomorphism 1s not canonical; it
depends on the cholce Qkof a vector space splittling of

S, tE 5 2/p )5 By (MU AgB(2/R22)55/p)e ) I

Now we know that:

Hy (MU, B(Z/D12 )5 2/P )% HalB(2/D)E,) sH(MU32/p)")  where 2/p"
denotes the sign ection:Z/plE,—> Z>%, on Z/p. (This
isomorphism 1s just the Klinneth formula for H*(-;Z/p) twisted
byé;;as p and 2 are co-prime this formula is true by

consideration of the double cover of MUagB(Z/pl)h )
P
+ - 7 1)
Thus H*,,QI\@LIAZ'_B(Z/pZih);Z/p)=€§§Hs(h@;ﬂ/p)® Eik,s_,QB(Z/pliJ;Z/p' )

Corollary 6.3.7 H(M™;2/p) is a free H(MU;Z/p)-module.

Proof This follows at once from the vanishing of k, in (:)
and the remark above which implies that H*JQEQAEB(Z/pLQJEZ/p)

is & free H{MU;Z/p)-module. l

Corollary 6.3.8 There 1s a vector space lsomorphism f(dependent

on the choice ofﬁ{):

e
o { o

0 gyl s 2/0 1000, 5, (32/0050;2/8" ]} = . 0fN32/)

Proof Immedliate from 6.3.6 and the remark following it. E



Proposition €.3.9

He(B(2/012) 32/0") = H,(BE; (H,(BZ/p32/p) J® 2/0")

Proof Nakaoka (29) proves this for the trivial actlon of £ on
Z/p. The same proof works for the non-trivial actlon. See e.g.

Brécker (5). l

n
This mesns that for the fibration (BZ/p)—>B(Z/plZ)—> BZ,
the H*ﬁ-;Z/p) spectral sequence collapses (and dually the

E¥(-:%/p) spectral sequence collapses).

(B, (B2/p32/p)) [ //
- /

3

H(BZ;2/p")

In the cohomology case the "first column® consists of the
antlsymmetric elements < (H*(BZ/ij/p))ﬁ These ere preclsely
the image of the map 1*:H*(B(z/p1%);2/p"™)— B (B(2/p)";2/p).
The other columns are induced by the higher Z/p-homology of

Z_(determined by Nakaoka (29)).

6.5.8 gave us the vector space structure of H*(Mﬁy;z/p),
and it is an Immediste consequence of Corollary ©6.3.7 that
H$(Miy;z/p) is a free H*(My;z/p)-module. There 1ls one more

useful plece of information on H*(Mfﬁ;z/p) we shall need:

Proposition 6,3,10 H¥(Mi&;2/p) ls a commutative {(in Milnor's

sense (2%)) Z/p-algebra.
Proof H*(th\l;z/p)ng*(KLZJp)) as rings and @)V*(—) is a

commutative ring theory (4.6.6). l
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6.4 H*(MmV;Z/p) as & module over GZP
ot

We determline the structure of H*(MSV;Z/p) by showing how
it injects into a known &r-module, BN (MUABZ/P;%/p); the

s
technique will generalise to give information about H (M _V;Z/p).

Definition 6.4,1 Let ¢, be the class of the 1dentity map in

-{MU(N),MU(Nfg as an element of UM%MU(N)). Let xva'(Bz/p) be

as defined in 4,2, Then cu.dveanHkMU(N)ABZ/ﬁq and by the
definition of @y the element §v=lim cN.mv is g well-defined

element of “V'(MUABZ/p).

Proposition 6.4.2 The class ﬁﬁwh'(mgABZ/ﬁ) induces an Injection

H*(Mﬂv;z/p)cm>If*%g@ABZ/ﬁzz/p) with 1mage consisting of "all
classes divisible by « or f3 cH*(BZ/p;Z/p}“ i.e. the image 1=
jLH”“(I\QLJ; Z/p)xvl}@§lf"'(l\;i§,\52/p*; 2/p) -P} .

Proof

~{
Case (1) N=0 Let f, :S BZ/p—>M"V be a (stable) map classifying

Lo From the exact triangle of theories we may plcture f, ;=

MU

e~

*L

s'Bz/p i-*lg‘,‘vv

b

SHUABZ/p"
fo classifies OCVSO f:: 1t > ok 'coocoooooo(I)
" A
H°(MV;2/p) H'(BZ/p;%/p)
[fince f:: 1t : > Ky
P H
My (M) Myt (BZ/p)

Jf, classifies the singularity set of xv(i;e. f%} and its

normal Z/p-bundle. We may therefore factorise Jf, s-

J%, :BZ/p —> MU(1)ABZ/p'~—> S*MUABZ/p"
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On & filtration §M7z/p of BZ/p we may look at Jjf, as the map

of Thom spaces:
2l nel, +
“-IJ Tn
$Y72/p W > BU(L)xS )Z/p

lassification of D -bundle

gx(identity).
assoc. to Z/p-bundle

where w 1s the map

Applying H*(—;Z/p) to this we have;-
" Xt i + x* - -+
H*(g'7Z/p;Z/p)<%—--«H*(MU(l)AS /Z/p;a/p)4——ﬁ.:ﬁmgABz/p;z/p)

] l kil
(8" 3/p3 /D)< H*(BU(L)xS /,/3%/)

By the definition of w, w* sends:-
21 K,
H¥(BU(1)xS /Z/p;Z/p)—ﬁrH (s /z/p;Z/p)

t® 1 | > [ ( teH™(BU(1);2/p) )
.5
1@ > o fs (1,820 )
S+t
80 t@hfﬁsl > o

H*‘%MU;Z/p)"ﬁ>H*(MU(l);Z/p) sends 1l+—1t 80 we hawe:=

+
(jfo)*: l@ocﬂswm““‘%ﬁ(j-ﬁs*‘ o-ooo.-oco--oooo(II)

But

~{2N4)
Case {11} N>0 Let ﬁq:SbM‘MU(N)ABZ/pt~ﬁ>M2y be a (stable)

map classifylng c,«% « The exact triangle glves us:-

MU
L;
~faNti)
st MU(N)ABZ/p+-—iima-%ﬂV
P
1.
SMUABZ/p
As fN classiflies the product c“.dw we may write it:
ga“MU(N)AS*Bz/p*533§L@9Amﬂv-43;»Mﬂy
where g, classifies ¢, ¢ U1%MU(N)); as N->« g, becomes the

identity mep MU—MU and so f, 1s the compositlon:
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MU MU — — ——> MU

] {

- + il vu ‘:/6]
MU, S Bz/p—odes My MV — T 5 MV cesereinnnns (I1I1)

| I
V L
MUASKMUABZ/p* — —>SMUABZ/p"
H
Let w be any class ¢ HF(MU32/p)e m™ tH*(My;2/p)—>H (MUAMU;2/p)
sends Wrmma-W@li-wQQ..+w2©..+u.. (where w’,w” etc, have

degree less than that of w.)

So, teking any 1ift of we E (MU;2/p) to W e H (MY%;2/p)
m*:HY (M 2/p) —— H*(My;z/p)@ﬂ*(nt‘jv;z/p) sends :-

—_—

'3
W 5 WOLt W EDeotWDsotese

(1¢B°(My;2/p) has unlque 1ift to 1eH(MYV;2/p) as both these

groups are *Z/p. Again w’,w” etc. have deg. less than that of w.)]

Using this and the result (I), in (III) we find that:-

* -
fW Sel’lds WF——-)W@&-*-WI@..‘?..- .cooocoooo(IV)

By (I11) jfw 1s the compositloni-
— + z + kN “ +
MUABZ/p bryyrig MUAS™ MU ABZ/p 5> S MUABZ/p
S0, using the result (II}, we find that:
. K -z + H*-—z + % +
(3£ ) :H (MUABZ/p;2%/p)—> H (MUAMUABZ/p;2/p) —>H"(MU.BZ/p;%/p)
sends :- WBLRS > (WBL+ WO ¢ atee s DL I WL +W Daatans

oo-ooooooooa(v)

E3
By (IV) and (V) Image f, 1s generated by certaln classes
WEAWD o etees and W@a:-f.’ns*“*' we® setesasy, existing for each w; but

‘" etc. all have degree less than that of w, so the classes

w/,w'
generate the image claimed. l

Remark 6.4.5 For MU we have the "splitting principle":

*
H (MU(N);Z/p)f—L?H*(BU(N);Z/p)f-—eH*(BU(wJ;Z/p) where
Y.
1 1s the map classifying c eU(BU(N)). We sball use 6.4.2 in &
¥ 3
gimilar way to"split" H (Mfy;Z/p).
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6.5 The Cobordism Theories ®“W*(-)

The technique of 6.4 does not apply dlrectly to H*(I»E’L’V;Z/p).
For this reason we introduce yet another series of geometric

cobordism theories ®w¥(-)}. MW-manifolds are U-manifolds

with labelled singularitiles of type Z/p,Z/p#Z/p,...,Z/pf}:’.gE/'p
l.e. they are 1llke My-manifolds but with the faces labelﬂlme{g, o
and the corners lsbelled by the faces meeting there. (One

mey think of this labelling ss choosing a specific trivialisatlo;
of the Z-data.)

Definition 6.5.1 An ™W-manifold 1s s U-manifold with faces

and corners, M, where the boundary of M 1s a union of (labelled)
faces ?,MuZ?lMu ‘e VQH_M with a free Z/p-asction on each of these
?:M such that these Z/p-actions are "orthogonal” where faces

meet. (l.e. induce a free (Z/p) -action onB;Mn;)éM etc. ).

As M is g U-manifold with corners note that:

(1) Each 2. M 1is a U-menifold of dimension m-1.
Each 3;3&,‘2&3& e se  se se  se .. m=2, etc,

(2) A U-orientation is induced on S MaZMadM Dby regarding
it as Bil(Diz(DizM)‘)) where i,,il,i3 is the permutation of

i,i,k with 1,> 1,>1, .

There is an obvlous notion of cobordism of (’“W-manifolds,
to give a bordism theory ("’W*(—). A similar srgument to 4.3.6
shows that f"’w*(-) is a generalised homology theory. “"’w*(-) is
naturslly a U*-module, buty as the singularities are labelleds

Cartesian product of "W-manifolds does not induce a

commutative product in &w¥(-),
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Theorem 6,5,2 There 1s an exact triangle of homology theorles:

i (x) eSO, (x)
(W denotes a spectrum
dne " for M (-).)
Ta (X*a (W ABZ/3) )
where 1., 1s induced by "inclusion of manifolds with empty d'.
j., takes a Z/p-bundie over an “W-manifold to its total

space.,

2w, Tegards I, M as a Z/p-bundle (over an ®W-menifold).

b 2

Proof One just generallses the proof for the trilangle:

U, (X) — "V, (X)

NS

T (X AMUABZ/P)) (4.7 with n=1)
This is quite straightforward, so we omit the details, (Baas's

methods (3) degl with triangles llke that of 6.5.2.) l

Proposition 6.5.3

: +
J““:H*(MTW;Z/p)-~4>H*(MTWABZ/p;Z/p) is zero,
Proof Ag In 6.3.3 and 6.3.5 1t 1s clear that J,, is
multiplication by the element ge U°(B2Z/p). (Recall that ™w,

1s a U¥-module.) As we saw in 6.3.3 &y 1s zero, so j:“ 1s zero,

Putting X==K£§£p) in 6.5.2 and applylng the result of
6.5.3 we obtaln short exact sequences:
%=1 W) Y.,/ oy * v .
0—H (M,ijBz/p;z/p))_ﬁH (MZW;2/p )l (M W;2/p)— 0.t
LS S l’nt—l
and dually:

v, o
0-—>11*(Mi%fu;z/p )3—3» H_‘l(l‘&/&\fw_;Z/p)ﬂH*,t(IﬂﬁVABZ/p;L/p)ﬁO. e @

iy nerg
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The Carteslan product of a ™W-manifold with a “i-manifold
induces a multiplication: Mﬁwgmﬂw—;?mﬂﬂw (which is an WU-

-module map) and so we have maps:-

Ho(MW;2/p @MMU,UH)*(MJ"VW;Z/p)Tj H, (M™% ;2/p)
—~~ t

Lemma 6.5,4 Such m, are lsomorphisms, and (:) is Jjust

W .
H*(Miw;é/p)ggu&wdzén—~) applied to the sequence:

O —> H (MU 32/p )—> H (4W;2/p )~ H, (MUABZ/p32/p)—> 0
Proof 1 Ewerything in sight is (inductively) a free H, (MU;Z/p)-
-module so the lemma is proved by the diagram of short exact

sequences (coefficients in Z/p):~
O—>H. (MWhko H (MU)—> H (M"W)p Hy(MW)—>H (MWl H, (MUABZ/E)-> (
R )®H,.¢w* ~ R T e~ Hmf~$~4 /D)

), fur +
0 — H (M W) ———— o (M*W) —— H_ (MW.BZ/p) —— 0

[

We now proceed to generallse the "splitting principle"

of 6.4.

Definition 6.5.5 Consider o, .., W (BZ/px...«BZ/p). This
T
is just the ™W-manifold consisting of n coples of «,(4.2),

each mapping to the appropriate copy of BZ/p. Now define

. e m _ +
Liesedne W (MUA(BZ/p %e s exB2/p) ) to be &iﬁjqwdl...in

(cye U™(MU(N)) as in 6.4.1.)

Proposition 6,5.6 The class %;&Lfn<4”W"(M§Aﬁ82/px...xBZ/p)+)
n

induces an injection H(M®W;2/p)cs ' (MUA(BZ/px. . xBZ/p)5%/p)
Fad ety reire—are=r

Y

with image consisting of:"all those classes in
H*“impA(BZ/ps...»Bz/p)ﬁz/p) which are multiples of some
5|S-Loo.snéH*(BZ/p)(ooOY-BZ/P;Z/p)" (Eachgb being either Q"’ or ﬁi).

oY
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i.e the image conslsts of:

%H*(Mg;z/p}'dlld'l' v 0(1,\75

GB{H*‘kMyABZ/ﬂ;Z/p).ﬁgil...“QYB{H*q(MgAB%<§EZ/P)-“wﬁl“g-o-*;C%°C)-
1abellé§\(l) labelled (2)
G);H*“lt MUA(BZ/pxBZ/p 552/p) Pty o '“':5 BoesiBeve
labelled (1,2)
@D ouo
@ eeo
© I U ABZ/ e XBZ/DISE/ D) s oo
labelled (1,2, ¢00,11)
(where the "labels" correspond to the coples of BZ/p in
H* (MU A(BZ/Dxs « xBZ/D)32/p)+ Given an x divisible by some & ...&,

"
it belongs in a unique line of thils presentation by countlng for

how many 1 x 1s dilvisible by «; but not fBi.) (Note that 6.5.6

agrees with 6.4.2 for n=1 as “V¥(-)z ®wW*(~) by definition,)

<IN -
Proof Let cyediese®y be classified by I, :S MU(N)AS’YBZ/px..xBZ/I
- ' — MMy R

Ag In the proof of 6.4.2, ﬂm“,is the composition:

~n d.afo, n
HUAS (BZ/Dga s o2 B3/p ) =2200 gy 3 25 17N

n

We may further factorise this as:
fne1) - (drfon-dnto ) { il [n-
(MUAS " (BZ/Dxs e xB%/D) WS BZ/p —tt 3 °'(/M§Anﬁ”¢xq),\1»@\’,’vu——+”““‘rﬁjﬁﬁmj\‘,’vw

-} m

W
l.es £, 1s the composition:

o ' -] -Ffl.— A)c, ~t} !
(I\'IU/\S[ I)(BZ/p:co&BZ/p))AS BZ/pMimAM,:W%WW .oct--O@
i A Vs -~

~
By the proof of case (1) in 6.4.2 Ié,*:H*H(Bz/p;Z/p)—;rH*(MﬂW;Z/p
has lmage generating H*(Mﬂw;z/p) as an H,(MU;Z/p)-module.,

Now assume inductively that Q:;iis injective (so ﬁﬁwu‘is onto) .
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sk
But by 6.5.4 H (MW;2/p)& B, (0W;2/p) @, 1;1*(1\;1}1@4;2/13)

(“i‘:‘s?!,»
*
so we deduce that fe o, , 1s epilmorphlic (and dually that fe,
is injective) by inspecting the composition (3). Using 6.4.2
E
and (:) inductively it 1s also clear that f,,. has the stated

image. I

6.6 The Relatlon of ™W¥(-) to ®y*(-)

An W-manifold masy be regarded ss an ™V-manifold simply
by "forgetting" the labels on the faces and corners. This
gives & natural transformation of theories whilch we denote by

ék: @ﬁw———>@@y on spectra. (see 6.2.2).

Proposition 6.6,1 The followlng diagram commutes;-

fn & " i)
T P S SR

!

wf:tlw- ey

g

sif ’WABz/p‘“—@i‘;'s“ngy%?(z/pli,f

el
N

G-t}

Here ¥ 1is the mep, defined on an”W-manifold M with a
Z/p-bundle'z over 1t, which teskes the depth n-1 singularity
stratum of M and its normal (Z/p)wq—bundle, adds the restriction
of & to get a (Z/p)nmbundle over the stratum, and then

classifies this as a (%/plZ )-bundle over a U-manifold.

Proof It 1s immedlate from the definitlion of _@wthat this

definition of ¥

i

makes the dlagram commute, i

Since both sides of 6.6.1 glve short exact sequences when
H¥(-;2/p) is applied (by 6.3.5 & 6.5.3) we now know that

> * o K *>
& m* (% ;2/p) —E(W;2/p) s determined vy ¥,Y,..., ¥

ne*
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2k
Definition 6,6,2 Denote by A  the antisymmetric elements

e B¥((Bz/p)"32/p) (i.e. the elements on which £ has the sign

actlon).

Proposition 6.6.3

The image of & :H"(M™;4/p)—>H (i*W;2/p) is isomorphic
(non-caenonlcally) as a Z/p-vector space to:
*K-S-n
@ 4 v w;z/plele £57 Y
s ~ men
Proof The definition of iﬂw in 6,6.1 shows that 1t factorisesi:=-
) ~1}
S WA BZ/ P> S* M WA(BZ/DXBZ/P V> o e e —>S" MU A(BZ/D x4 « 4xBZ/p )
o~ Bn_i — Bn-l '2. o~ N t
+
7 8T MUAB(2/PLE,)
(see 6,5,2 for definition of B& )
n
Here i1 1s induced by (Z/p) ¢—> (2/plZ,) end so we know that

o o
1*: B (UaB(2/00E,J52/p)—> B (MUA(BZ/pxs.oxB2/p)52/p) has

K—S=n, n

image @ [HS(MU;2/p)@ Au | (see 6.5.9)
s

. *
Now 9,&,33,...,3,?, are all injective {(6.5.3) so we deduces-

Image \E:‘E @ [HS (MU;2/p)® A*W‘S—w]

* *
Summing ‘1;0, cony EW.. (which 1s the non-canonicsl step) we have

*
the required result for the image of {\. E

AN+ L)
Let g, :8 MU(N)A(BZ/p)t*—?MLV clasgify the element
2N
C o ®yaee &V TMU(N)A(BZ<Bﬁ&5LiBZ/p)q- (See 6.5.,6 to

compare g, with f, :Sm*TﬂU(N)A(BZ/p)Y:—wI\Jﬁ'\?.)

Then, from the defihitions of fw’m‘,gw‘YL we have a commuting

dlagram: 3 *
14"

B¥(";2/p) B (52/p)
) >*
* 'f'w,w
8"0‘“ g

(MEA(BZ/M/P)+5Z/P)

"
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*<
(% 2/p) —Ex 5 5¥0%;2/p)

é‘f\A I ’c:‘“

H*" (MU A (BZ/p*. o B2/ )52/D)

Proposition 6.6.4

*
(Image g, )= (Image fow ) (Antisymmetric elements
A7 - I \ 7
<3 H  (MUA(BZ/px.. *BZ/p);2/p))
T

Proof

The actlon of ¢ «Z, permuting the factors of
Iy L +
dt}Lgxwé@Wm(MyA(BA/px...xBa/p) ) simply changes the sign of

n
#,. according as to whether 01s odd or even.

*e e
T

oy

Thus (Image g’:;ﬂ& ) ¢» (Antisym. els.) A (Image fﬁ)nj

~ . ¥* .
We know (Image 372':) £ (Image g:,\),sa.nce foon 18 Injective
»
s0 1t how only remains to show that (Image &.) has the seame

size as (Image fa.. ) (Antisym, els.).

*
But consider the explicit form of (Image f_,.) given in
Proposition 6.5.6. Conslder a particular antisymmetric element
*
in {(Image fo,» ); this will lie in some line of the expression

a»*
of 6.5.6 end 1t 1s easy to see that the set (Antisym.)n (Image £,

/] ¥

is in (1-1) correspondance with:
Kem
%@?{Antisym. els, <« H (MUA(BZ/p)M;Z/p)}
i
6.6.3 shows that (Image €,.) has precisely this size,

concluding the proof of the proposition., I

Proposition 6.6.,5 The maps &0 n BTG multiplicative, l.e. the

following dlagram commutes:

kbl U m+n
MUA(BZ/P) A MUA(BZ/p) > MUA(BZ/p)
lﬂw,‘w‘- \Lﬂm')\_ J/ﬂm,m+n
] - Lt} fn)
Y A Sy > S™WTY

where the various multiplications are the obvious ones.,
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Proof This is the 1limlt of disgrems:-
Y "wor™
MU (M) A(BZ/p) A MU(N)A(BZ/p) ————3 MU(M+N ), (BZ/p)
LQM,M lﬁu,n lﬁMnJ,mwt

—IM- - _afMeNY-fmend, o
SN A STy > g M

But such diasgrems commute, as g, ~classifiles c:ﬂot'l...ﬂfm
H

W U
gy, Classifies ci& .,o0n

1]

t
and ngmmclass:Lfies Gpop %1 PR S AT L S e
J

Definition 6,.6.,6

Let us= (t,+alt?+a4ﬁf+...)(tl+aip:}a*ti+...)(t3+u..)...
A A
p Hﬁxmy;Z/p)e)P[ai,a4,...] CJrH*(BU(l)xBU(l)x...;Z/p)@>P[ﬁ1,n.]
be Boardman's unlversal element (c.f. 2.1.10 ) giving a

specific ring isomorphism: H*(zxgy;z/p)g P[a,i_,aq_,...]

b3
Let V.. .= u@(m,+(§; bl'f'o"'lﬂ; Ca 'i'ﬂib}"'oo)(o‘iu_'f'ﬁz_bl‘i"-oo)coo(o'{m,‘f'ﬂwbj‘f' ...)

e B MU A(BZ/pre . oxB2/p)32/p)@ P [a, 16P[c. JOE [ b.] {with the

a; In dim, 1i=-2]
As n-»oe0  let v v, by In dim. i=-(2j+1)

c; in dim, i=-2j Y

Proposition 6.6.7 Regarded as a universal element v gives a

duality between (Image gtm%)ciyﬂfMXMUA(BZ/p eoo BZ/pI5%/p) (oo
- V'FYY"T-._._‘—-/ s
and the algebra P[a;T®P[c.]® E[b:J], under which the

comuitiplication B (MUA(BZ/p)" 32/p) —>H MUA(BZ/p )" ;2/p)
® B MU A(BZ/p)™;2/p )

corresponds to the multiplication in the algebra Pla;]eP[cBE[b.]
Eroof

In the expansiqn of v conslder the term coefficient to b, ¢~
(/5, D,y . .ot,g-l-{ot,ﬁj_b, g oo Yoty B oty o AL
= b,{ﬁ,“n .o .ocn}@l‘ﬁzots. o ool Y Bty LALEE .} (Since b, is in

odd dim. o, b, = =be

So In the duality b,corresponds to an asntisymmetric element
with each term divisible by some §...5

, . (where g;is oy, or A ).
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In fact each element of P[aJ@P[c;]®E[b] has coefficient in
the expansion of v such an antlsymmetric element, and vice

versa. Perhaps the easlest way to see this 1s to observe that:

(1) Glven an antisymmetric element in the «; and B ,1f its
leading term contains a factor ﬁfﬁg then it must also
have a factor «, or ol (in order for the transposition
(i,j) to reverse the sign.), so its coefficlent in the
expansion of v has no term divlsible by bz il.0. 1ts
coefficlent 1s a non-zero element of P[aﬂ@P[piE@E[bﬁ].

(11)Given an element of P[a]® P[c;|®@E[bi] then its coefficient
in the expansion of v must be antisymmetric, for the action
of (1,2) on (L +f, b+ «ee)(«, +A b +¢ss) changes 1ts sign
{as both factors are in dimension 1) and so chenges the
sign of each coefficient in its expansion; but such
transpositions generate the gction of anon

(0{|+ﬁib,+ooo)(0{1+/§a‘bt+ ooo)-oo(xn*ﬁnb"‘f’out)o

Now 646.4 and 6.5.6 together tell us that the image of
g:w conslsts preclsely of the antisymmetric elements having
each term divlsible by some S,...gn. As v is the product
U@t b, +eee J{ky ¥ b +ese)ees the multipiication in
Pla.]@Plcil®E(b,] is dual to the comultiplication on

H*(I‘-’lg/\(BZ/pf-BZ/px.--)Ez/p)o (Cofo 201010) I

Corollary 6.6.8 As v glves a duality beftween the quotient

(Image g:“) of H*(@:b;z/p) and Pla.}® P{ceE(b,] we may regard
it (dually) as giving an slgebra 1somorphism of the subalgebra
(Imege gws) Of H,(M7V;2/p) to PlaleP[c]eE[b:] .

(Recall that by 6.6.5 Baom, 18 an algebra map, so (Image Eues)
has the same algebra structure regarded as an image of

+
H*hﬁpr(BZ/pﬁBZ/p «se);Z/D) Or as a subalgebra of H*(MSV;Z/p).)I
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Proposition 6.6.9

Let A¥ denote (Image g:,w). Then A™ is free as a module over
the Steenrod algebra &r'

Proof

.r

AtINER *
(Image g:;)¢+fi (MU(W)A(BZ/p)" 32/p)
? W

+r t
[c»;H**“((Bz/p)”AiBz/p) ;Z/p)]

In the limit (Image gxw) is a coalgebras with co-unit

Fe 2N+ ] N
1im cyoy eeeat,  (mapping to Bieeef Xjeeed e H ({(BZ/p) ;2/p).)

N2> w N
b0

The action of @, on fe..fyctiessty, 1 free as n and N->e0,
(See Steenrod & Epstein (37 Chapter VI Prop.2.4; this is a

direct consequence of Milnor's theorem on the action of 62P

on H{BZ/p;2/p) (3.2.1).)

The proof of 6.6,9 is completed by the lemma of Milnor and

Mcore (28) ;-

Lemma 6.6.10 Let A be a connected Hopf algebra over a field F.

Let M be a connected coalgebra over F with co-unit lel, and
o left module over A such that the disgonal map is & map of
A-modules. Suppose ViA—>»M sasr>8.1l 1s a monomorphism. Then
M 1s & free left A-module.

Proof Stong (39) p9%4. E
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6,7 The Z/p-Formal Group(M)V*(BZ/p)

As in the %Z/2 case (2.1.9) we have a "Boardman map':
H =
B:(w)\!*(X)wwHommr[H*(NfJV; z/p),H*(X;2/p)]

> Homz/[n*(mfi’v;z/p),ﬂ*(x;z/p)] z H*(x;z/p)é?ﬂ*(wﬂv;z/
P

By Rourke's result (3.1.2 ) we know that H*(Mﬁ?;Z/pj is
a free module over the Steenrod algebra d%,, so H is an
isomorphism and B is injective. It 18 an injection of algebras,
where the multiplication on H*(X;Z/p)é}ﬁ*(wf%;Z/p) is given
by the multiplication maps Mf&A@fv_f>MfW together with the

cup product on H*(X;Z/p).

Proposition 6.7.1 B:“mv*a_;ﬂ*(ﬂﬁw;z/p) has as lmage those

elements xeiH*(Mfy;Z/p) which are Invariant under the coactlon

of the dual coalgebra§ to the Steenrod algebra (see 3.2 ) l.e.
the image consists of those x such that xr—+x®1 under the
coaction H,(MWV;2/p) —H,(EV;2/p)®S, .

Proof This follows at once from the definition of B, I

We now adapt 2.1.9 to determine the Z/p formal group

@y*(Bz/p) induced by the classes ("(g:) (of 4.2 ).

Lenma 6.7.2 Applied to the space BZ/p the Boardman map

B *(B2/p ) > B¥(B2/p;3 2/ )® Bal MV ;2/p) sends:
oy > f,(}’;) To+fAb, tafie, + AP0+ e
S
(Recall that 6.6.8 picks out a particular subalgebra
Play,a, 000 ® Ple 0,0l ®E[b, by, 00u]  of H (V:2/p). )
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Proof Consider the identlty map sgr-ﬁj\'fv,wﬁivimm . Thls defines

an element 1e (’JVD(NQV), which maps to an element 1Ny e ty)

under the natural transformation “’v*(-)~—‘§°’v*(-).

Under B, the element lé@)VO(M:iV) has image the natural
homomorphism 47*:H*(M£V;Z/p)-—-;H*(f\’f:’{f;z/p), which, expressed
as an element w’é& H*(M/‘LLV;Z/p)é; H*(lvf:;)V;Z/p) is just the restrict-

~ion of the universal element weH*(Nﬁi}\f;Z/p)éH*(I\ﬁiﬁV;Z/p).

Now 49* has 1image & image L:H*(l\@\i;’&/p)‘% H*(Ivfjf;Z/p)
(because MYV = MEW) so w' e HNu;2/p)® Ay (where A, = Image &,

i
~

Z Image Gy

Let £,: S'MUABZ/P-—>M’Y be a (stable) map classifying oy
. x4+
(6.4.1). Then fo :H*(Mi)V;Z/p)-—-?’ H *(;@ABz/p*“;z/p) is an

injection (6.4.2) and we have a commuting diagram:

“htly) > B > H¥(M9V;2/p)@ Hel M V;2/p)
1t > w’ .
¢ I ]; ycrs
* restriction
%y | —7 of univ. el.
@y ! (yyabz/p) >—3 > B (MU AB2/532/p) & H, (6% 2/p).

But the restrictlon of the universsal element to

FaS
B*'(MUABZ/P;2/p )@ Ax 18 just u® («+Ab+...) (using the

isomorphism A, ¥ P[a;J@P[cd®E[0:i] of 6.6.8.)
ELd VA
Thus B V' (MUABZ/p)~—> H  (MUABZ/P;2/p)® He(¥N;2/p) sends
oy to u® (x+fb +...), and using the natural map
BZ/p 5% B%/p —» MUABZ/p' we get:
B ] A
BN (Bz/p) > (Bz/p;2/p) @ H, (MN;2/p)

o, b &+t [f3 b,+o¢/301+[31b3 €ese
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Similarly, the identity class ¢3MU(1),MU(1)} glves rise

(via $MU(1),M0(1F—->300(1), 403> 310(1),8%} ) to a class
Le*y*(Mu(1)) which,under the Boardman map, goes to the
restriction of the universal element t+t18,1_+ £3 Bgtees

¢ H000(1);52/p)® Hy MY ;2/p)

The map BZ/p—>MU(1l) classifying [3‘, sends LEVE(MU(L)) to
ﬁvéml\f’(BZ/p) so we get:

BNV (BZ/p ) —> H’“ﬂ(Bf&/p;Z/p)g’ Ha (W 32/p)
A > ptfag t oyt Sl tens l

The classes(gg)ﬁ*(BZ/p) induce a Z/p-formal group law.

Thus there is a unique ring map (ﬁ:Avm(;’V* inducing this law

from the universal law {(3.5. 1.

Theorem 6.,7.5 ¢ is injective.(i.e.&”)\f*(u) "ecarries" the

universal law).
Proof Exactly as in (2.1.9 )} we now know that the Z/p-formal

- 1
group law induced by ("ﬁy\f) is given by f(f '{oé@) + f (z,)’)) .(f::(f')
; ) A .

2

Thus the law has logarithm £, When this logarithm is
put into canonical form (with the coeffilcients of ﬂfk ZE€TO0 ),
the coefficients are: a;+ decomposables (i# 2(p‘}—l))

b, + decomposables (1% 2p‘} -1)
c,+ decomposables
These are all polynomial generators of *—’”’V*. By definition

¢ 1s the mep sending the generators of Ay to these generators.

Hence ¢ 1s injective. l
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6.8 Reallsation of the Universal Z/p Formal Group V*LBZ/pl

Recall 6,7: H*(I\ﬁ]v;z/p) is free over Qrand S0 ¢
P yXNx )z Homdr[H*(ﬁv;z/p),H*(x;z/p)]

Denote image é*:H*(Mfﬁf;Z/p)—-iv H*(MZW;Z/p) by A*, and image §*by A,
£* 1s free over @F(6.6.9) and so Hom@r[A*,H*(X;Z/p}] is a

cohomology theory.

Definition 6.8.1 Define V¥(X) to be Hom&p[A*,H*(X;Z/p)]

é‘*induces a naturel inclusion: V*(X)C L }*@)V*(X}
IR , 1K
Hom@P [A*, H*(X; Z/pBC.; Hom@rgi*(hﬁ)v;z/p )s
H(X;2/p)

v¥(-) has an algebra structure induced from that on the

subalgebra Agc»HT(MW;2/p) and thus it is e (commutative)

multiplicative Z/p-theory. {(3.1.1 )

The argument used In the proof of 6,7.2 shows that
(%J)G(“)V*(Bz/p) 1ie in the image of i: V¥(Bz/p)<>“N*(Bz/p)
(since they lie in HN(B2Z/p;2/p)® 4, <» H¥(Bz/p;2/p BH(MV;2/p) )
Thus they glve well-—defined["é‘&)éV*(BZ/P). This gives a formal
group structure to V¥(BZ/p), which clearly maps injectively

to that given by 6.7.3 on®V*(Bz/p).

Theorem 6.8.2 The universal map ¢:A,—> V¥ induced by the formal

group law, 1s an isc;morphism. l.e. V*(Bz/p) is @ realisation
of the universal Z/p-formal gnoup.

Proof ¢ 1is injective by the remark above and 6.7.3, AY free

*
over Cﬁr implies that A*&‘V®Sr. But S}.is given by 3.2.1 , and
A,xPla]loP[cile E[b:] so V¥ has the same size as Ay , and

therefore ¢ is an isomorphism, '
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Remark 6.8.3
V* foo), K
Since (X) <>V (X) 1t would be useful to have some

characterisation of which elements of ®W¥(Xx) 1ie in V¥(X),

in order to get a complete geometric picture of V%(-). Cne
mlight conjecture that V*(X)'—‘ Irnage%%*(x)a@)\f*(x)% 3 this
would be trivial to prove if H*(ijv;Z/p) were free over &?_P[s.o
that ®W* (X) would be isomorphic to Homcﬂr[H*(ﬁw;z/p),ﬂ*(x;z/p].]
However, H*(Nf@;z/p) is not free over 6?? (6.5.6), so there may
be elements ge Hom&/P[H*(MjV;Z/p),H*(X;Z/pn which are not
induced by any stable map X—-?MZW » and thus elements of

v¥(X) not in the image of*W*(X).

What we can say, however, is that v 1is generated by the
coefficients of the Z/p formel group law on®v*(-~); one
should be able to compute these coefficlents as "Milnor
manifolds" and their explicit form should:. help in the

charascterisation of Vv (-) c-wa“"”v’*,‘( -)e

Remark 6,8.4

Any @P-module splitting <> H“"(mﬁ‘iv;z/p) of f*gives a
vector space splitting “"’)v*(—)_wv*(-). One would hope for
ring splittings; the following line of attack seems hopeful:-
(1) It should be possible to adapt Brécker's proof (§) that
ERH*(BZ“;Z/p“)) is a free polynomial ring (up to sign) to
show that @H*(B(Z/pléw);z/pw) 1s also a free polynomial
ring (up to sig'n).

(11) Given (1) one can construct a € (as in 6.3.8) inductively
in such a way that it 1s a ring isomorphism (end not Just

a vector space lsomorphism), which would prove that

H*(hﬁﬂv;z/p) is a free polynomial algebra,
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(111) @”V*er9ﬂ*(ﬁfﬁ;z/p) so this would prove@mv*a free
polynomial algebra over Z/p.

(iv) If one could then obtain a decomposition:édv*egv*@>R*,
R* a free polynomial algebra, one could then get v¥(-)
from®v¥*(-) geometrically, by "killing the polynomisl
genersators of k"  (using Baas's method (3) of killing

free polynomial generatorsJ

The main work in such a progrem would be s deeper study

of the ring and d%-module structures of H*(B(Z/plﬁk);a/ﬁﬁ than

has been presented in this thesis.
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7 Operations 1n®N*(-) and Further Speculation

This chapter will outline how operations in®Vv¥(-) may
be deflned and indlcate some other lines of development. It

is intended merely as a sketch, and no attempt 1s made at rigour.

7.1 Steenrod Operatlons

The Steenrod operations @L are geometrically constructed
for UF(-) by tom Dieck (12), However, singularities must be
introduced to construct any sort of Bocksteln operation.

On @@v*(-) we can analogously construct Steenrod operations,

in this case getting the full algebrs G%of operations, not

just Cap/(Qo) i

Let Xé@»V“(X) (X a finite CW complex). We may represent
x by a mock~-bundle M—¥» X with blocks “N-manifolds of
P

codimension n. Consider the equlvariant p th power: M-——mb-XP

lw~-——--m—%~XxBZ/p
{ A

\ 4
EZ/p — > XPKZIPEZ/p

M "le
b codim. np

The pull-back glves an element ye&mV“P(XxBZ/p)

But “Vv¥(x«Bz/p) 1s cenonlcally isomorphic to (°°>V*(X)®P[F;]@EE>(V'
Taking the expansion of y and plcking out the coefficient of

dfﬁf (with s+2t = r) .gives an element of @y™7(x) and this is
defined to be the value of the Steenrod operation of degree
n{p-1)-r on x. (Proofs of well-definition etc. go just as

tom Dieck's (12).)

The Bockstein Qs ¥ (X)—"V"*X) 1s given by the case

r=n(p=-1)~1l., (Note that there 1s also a "geometric Bockstein"
'

given by taking O of the "manifold with corners" (4.5.5 ) and

quotienting by the Z/p-action; these should be related.)



104

7.2 Landweber-Novikov Operations

Stable additive operations corresponé to &”V*(Miy)
%éﬂﬁbff%MfW;Z/p). One should be able to realise these
operations geometrically, in the way Quillen does for U*(Mg) (33);

here 1 can only indicate an approach to this,

Again, let xe®V™(X) be represented by the “W-mock bundle
M—j:>x. We may conslder X a manifold (which 1s no loss of
generallty for X finite CW - see Quillen (33) or (4.1)) and
Ui anﬁmV~manifold embedded in a stable complex bundle over X.
Each singularity stratum M; of M has normal bundle with
structure group of the form U(n)x(%/plZ ). These bundles
then hawe.characteristic classes ( in®V¥(M;) ) given by
the images of the universal classes d”V*(BUxB(Z/plém)) via
the classifying maps of the bundles. What remains unclear,
however, 1s how to fit together these elements in the various

Ey*(M,) for the different strata, so as to glve a class in

©y*(M) snd thus, by the transfer map f,, an element of “WV¥(X).

If one could define Landweber-Novikov operations by this
program it should be possible to ldentify the Steenrod operation:
(and the Adams operations) asmong them and so investigateéwv*(-)

by using methods analogous to Quillen's for UT(-} (33).
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7.% Further 3peculatlon

Wie know how H,(QX;Z/p) (@=3"s") 1s generated by Hu(X;Z/p
(May (26)) and since(m)\lx(-)é’(W)V*t@)H*(w;Z/p) the same is true
for@mv*(QX); we should then be able to use the relation of
Ug{~) toﬁqvﬁ(-) to give us information sbout U,(QX) and how

it 1s related to Up(X). (see 6,1),

Another interesting area is to examlne how far the theories
Wy¥ () map onto H*(m;Z/p); consider the theories(”U*(-),
defined to be the cohomology theories obtained from U¥(-} by
"killing" the Mllnor polynomlal generating elements y,,y, ,..
coeyTnq (y, dim, 2pl—2) (using Baas's method (3) of introducing
singularities to kill polynomial generators.) Thus
Wy* o U7<yg,--qykv' I can show, by using the sort of geometric
techniques employed to calculateinv* in Chapter 5, that the
netural maps UV have kernel o I, (see 5.2.3) and thus
the natural transformations U*(-)}—"¥(-) factor:
U*(m)m—»“h*(w}——amw*(-). It is reasonsble to conjecture thet
Wy*(~)—sMy*( o) 18 injectlve; this 1s certainly true for
n=1, and one-may use this fact to construct spaces with
wV*(X)*—*H*(X;Z/p) not epimorphic, since®U*(-) is easier to
deal with than "v*(-), The same technique should show that

there exist X with ®v*(X)—s B*(X ;Z/p) not epimorphic.

The ideas of the paragraph above should be linked with
various known results: Quillen (33) proved that U(CPF”) is
the universal (Z-) formal group. The spectral sequence
H*(X;U%*)=>U*(X) does not in general collapse however, and
U¥(X)— H¥(X;Z) is not epimorphic, so we have no lsomorphism

of U(X) to U*e® H¥(X;2). However, he does give a nice result
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for U*(Xh» (1.e. localised at p); this is a ring isomorphism:
U* (X )y, U}“;%gp*(x) (Quillen (33))

(BP¥(-) 1s Brown-Peterson cohomology localised at p, with

point ring %wfy,,yz,... v, dim. 2p° -2.)

He characterises the epimorphism U*(—%élibBP*(n) by the
fact that U*(CPQ)(P)-—}A&*BP*(CPOO) is the canonical map of the
formal group law on q; to a "typical law" for p. [h "typical
law" is & formal group law ¥ with F(E‘X%;F(Sxxg;F(...,E?X%)))z(J
for all primes g#p (%; are g th roots of 1l). Over a torsion-
free ring K, such as ux

(y ? .
[
and only if its logarithm (over R® Q) has the form = 1.x" .

a formal group lew is typical if

M~ '
The map Uiyw»BP* sends xpitw———>y} x>0 (i4=p¢-l). ]

We then have the factorisation ofﬂ:U*‘(X)(;-»H*(X;Z/p):_

/ "
U*(X){_";BP*(X)_&, B*(X;2/p) ( i 1s not epimorphic
» in general,)

Johnson and Wilson ) examine/ﬂ vy means of the tower of

theorlies:

" * Adn ¥, * Mo *
BPY (X )= « .= BP<n7 (X )= BP<{n~1> (X ). .~» BK 0> (X ) ~>BP<~17(X)
i 2
HY(X;2.) B (X; 2/p)
*
where BE<n) =BF/, - (the ideal is killed by Bass's
NAER A R R method (3)

They show that for any finite complex X, there is an n

such that 4 , % . ,... are all epimorphic and p, . s are ail

“q’...

.
gl BET (X)),

thus giving a grest deal of information on the representability

not epimorphic, and further, that thls n 1s hom dim

gquestion,

There should be a connection with my results, using the
short exaect sequence: BP<n-15 5> U:; ;»“YJ(’:) , but this
remains to be explored.
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