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Summary

N*(-)"&%H*(m;Z/B) (Thom)}s. I set out to construct a
cobordlsm theory V¥(-}, as closely analogous as possible to
N¥(-), mapping onto H¥(-;Z/p) where p is an odd prime. We
first recall the following properties of N* ()=

N¥(Bz/2)= N'[[Xx]], where we may choose X to be e (2) (the
N-Euler class of the universal Z/2-bundle). Multiplication
%/2x%/2—>7/2 then induces a map N [[X]]—N*[[¥,2]], x—F (¥,2)
and Boardman, Quillen and others showed that (N*,FN) is 1so-

~morphic to the universal "Z/2 formal group".

I consider ring theories h'*(-) mapping onto H™(~;2/p).
Such theories have h*(BZ/p)%‘-h*[[ﬁhj]GE[*k]. (E denotes an
exterior algebra). Corresponding to m: Z/pxZ/p—>%/p I define
a "2/p formal group law" in a palr of variables (‘;g::) and
calculate algebralcally the universal %/p formal group in this
situation. I then set up a certain cobordism ring %)V*(—) of
U-manifolds wilth singularities of type Z/p, Z/D%*Z/Dy «..
evus Z/p:};l;fi/p,... with structure groups Z/plévL and show
that a natural subtheory V¥(-)cs*"v*(-) has VX )—»H¥(X;2/p)
for all X and V¥{Bz/p) canonically isomorphic to the universsal
Z/p formal group (by defining a palr of "Euler classes"
(0/2:) ¢ ( g'(Bz/;;)) for Z/p-bundles). The method can be used to

2
(BZ/p)
generate other cobordism ring theories,
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1. Introductlon

Throughout this work all manifolds are ¢% &nd all group

actions are smooth.

Let X be a CW complex and let N¥*(-) denote the cobordism
theory dual to the bordism theory of unoriented manifolds, N*(-).
Thom 1) showed that the natural map ﬂ,:N*(X)—-rH‘*{X;Z/EJ is
an epimorphism of rings.

Later, using geometric Steenrod operations in N¥(-),
Quillen (33) and tom Dieck {6) proved that N¥(-) is characterised
by the algebralic property that N*(BZ/E) is canonilcally lsomorphic
to the "universal Z/2-formal group". A consequence is that there
1s a natural ring lsomorphism N¥(X)= NW'oH®(X;Z/2) and a canonica:
splitting af/w as & map of rings, both first observed by Boardmal
(4.) (see Quillen (33)). In Chapter 2 all these results are
examined in detall to motivate analogous Z/p results later,

The object of this thesls is to consider a corresponding
problem for Z/p (for primes p#2), in particular to find a
multiplicative cobordism theory V¥(-) mapping onto H*(—;Z/p)
such that V¥(BZ/p) is cananically isomorphic to the "universal
Z/p-formal group". As H“(BZ/p;Z/p)E“H$]®Eﬂ?] (P denotes poly.

E ext. algebras over Z/p), in Chapter 3 I define a notion of
"Z/p~formal group" involving both 'w!' and 14! variables; then,
using methods based. on those of Lazard (25) and :Fr8hlich (19),
I calculate algebraically the "universal Z/p-formal group" and
its ground ring, which I denote Ay.

The next stage 1s to bulld a geometric theory v¥(-) such
that V¥(BZ/p) is canonically isomorphic to this universal

formal group. The theory must have a natural geometric pair



(«,,)é V' (BZ/p)Y) and as a first step, in Chapter 4, we set up

A/ vi(Ba/p) )
a geometric theory Wv¥(-} of U-manifolds with Z/p-singularities

having such a natural pair of Euler classes(}‘;:)for each z/p-
-bundle. The requirements of a commutative multiplication
lead us to define a series of cobordism groups "v*(-), with
multiplicationsMV*(—)}"’V*(-)—)(MM)\I*(-J, and finally a
multiplicative theory®™v¥(-). The elements of o)y % may be
pictured as U-manifolds with singularities, where the links
of points are 87, %% 2/p, K34 2/ PR/ Dy o oy "% Z/pHk. KL/p

R Feld join
and the singularity strata have structure groups Z/p)_z;, Z/plg‘,
Z/plﬁl, ..,Z/plih on their normal bundles. Alternetively, by
"eutting along the singularities" one may picture elements
of Wy* 55 U-manifolds with faces snd corners of index< n,
having free Z/p-actions on each face, the actions being
"orthogonal" at corners, in the sense that on a corner of
index r they comblne locally to give a free action of (Z,/'p)‘v
and hence globally to give an action of Z/pli_r. ( Z, carries
the global "labeliing data" of the faces).

As might be expected, the theories most amenable to
caleculation are Pv¥(~) and®Vv*(-). In Chapter 5, using techniques
derived from those of Conner and Floyd (to) I calculate Wy¥ og
an abelian group and as & Uemodule. (A consequence of this
calculation, not proved here, 1s that there exist CW complexes
X with ®v¥(X)~» #¥(X;%/p) not epimorphic, in contradiction
to a conjecture of Sullivan {(40)}. However the theory we are
really interested in is(“’v*(-);[?Ev)é(c”“.r:(lfsz/p)) induce a Z/p~

i VIV (B2Z/p)
-formal group structure on BZ/p) and thus we have a

canonical map ¢:A, ._.;w’V*. In Chapter 6 I show that ¢ 1s

injective, 1.e. that®WV*(BZ/p) "carries" the universal Z/p-
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~-formal group law, and that as a consequence wermay geometrically
realise the Z/p-analogue Vi(~) of N*(~) as a naturally
included "sub-theory" of CV*(-.

The reason that V¥(-) has to be constructed indirectly,
ia“ﬁv*(n), is that while Z/2%,..xZ/2 1s isomorphic to s and
B

n fold jein
thus 1s homogeneous, so that we may extend the structure group

Z/2},£ to 0{(nj, Z/E;ﬁﬁfzg/p has no such homogeneity. I
conjecture that & v* (-~} is to vF(-) (multiplicatively) as-{~,QCP0}
is to %-,BU} (sdditively), 1in the following sense: Segal @6)
characterises {w,QGPﬁ? (q denotes 25" ) as the minimal represent-
able functor containing the group of formal sums of line bundles.
He shows that BU is a direct factor of QCP”, s0 that {-,BU% 1s

& split summand of {-,QCng. I conjecture that“v¥(-) is the
universal theory containing the commutative group of formal
products of Z/p~Euler classes, in some appropriste sense, and
that V¥(-) should be a split subring of “VF(-).

In Chapter 7 I sketch briefly the construction of operations
in ®@v*(-) and V*(-) and outline some further possible lines
of development. The method of introducing join-type singulaerities
with wreath product structure groups appears to be a useful
method of generating ring theoriles.

For convenlence, cohomology theories h¥*(-) will mostly be
pictured here using Quillen's notion (33} of cobordism of
h-oriented maps of manifolds or else in mock-bundle terms. For
general results on mock-bundles I refer to Rourke and Sanderson @35
for manifolds with singularities see Sulliven (49}, Baas (3},
Stone (3¢) and for manifoids with corners see Douady {16); for
algebraic results on formal groups see Fr8hlich (/9) and for
applications in algebraic topology see Quillén (33}, tom Dileck (4 ),

B ukhstaber Mishchenko and Novikov (g), Adams (1) etc.



o, N¥(~) and Zz/2-formal groups

We examine Quillen's (33), Bf8cker & tom bLieck's (69,
and Boardman's results about N¥(-) and the universal z/2-
-formal group, as a preliminsry to our construction of a %/p
anaiogue.

2.1 Z/2-formal groups

Let b be a finite CW complex and ":E -—»B be a real n-dim.

vector bundle.

vefinition 2.1.1 The Thom space T(M) of M 1s the disc

bundle. L{Y) of 7, with its boundary sphere bundle 3(%)
identified to a point.

For each Y there is a cancnlcal class tN(ﬂ)e ﬁ“(T(ﬂ))

called the Thom class of ™ (see Br8cker & tom Dieck (6)).

Remark 2.1.2 For B a manifold we may use Quillen's

description of N™(B) as cobordism classes of msps of manifolds

f:M—> B carrying certain normal structure ({33} or see 4.{ |

and then the manifold B embedded as the zero section in L{%)

represents the class tN(“?)e NNU(M),s(Mm) ) 2 ﬁn(T(ﬁ)).

Definition 2.1.5 Let 1 be the inclusion of the zero section

1:BYe s T(7M) (BY denotes B with a disjoint base point added)

The N-Euler class ey() of % is defined to be e, (] Jei*t (") in
NY(B).
For the canonical line bundle §_ over RP", T(3,)% k" and

i

t,(5) may be repreéented by the embedded submanifold RP <y KPP .

Thus eN(Eﬁ)e N'(RP") may be represented by RP™ <—» RP .

el

Proposition 2.1.4 Let 1:RP"< 5 RP .

Then (1) i*eﬂ(i“J= e (%)

so 1im eN(Eh) defines a unique elemeht eN(§)5££¥ NKFP“

“n



(11) N¥(RP™N)e 8¥[x]7,  where X= e, (3.)
X
80 N*(RPw“)fﬁ?N*(RPh) end as a result we have
[
, | "
N (rp®)e Lim NY(Er™) (all fepi® lim (NY(R™))=0
*“f\-

(see Brdécker & tom Lileck (6))

Proof Br8cker & tom Dieck (§) !
Corollary 2.1.5 N*(RF”)? N*[[XJ] (formal power serles ring)

where X= e,(3) and N*(RP™) is topologised by the
skeletal filtration RPey KPer ... of RP*;N*[[X]] is
topologised by the ldeais generated by X,Xl,xz,...

also N¥(RPXRE )& 0 [y,2z]]
where Y= eN(f); 7 = eN(ES (E!pull—back of ¥ under projection
onto lst factor RF«x Rﬁﬁ;? RF”, Sﬂsimilarly for o2nd factor)

Proof Brécker & tom Lieck (&) l

B7/2% RET (RF classiflies line bundles and thus Z/2-bundles)
Multiplication m:2/2x2/2~> Z/2 1s a group homomorphism, as %4/2
is abelian, and so m induces:

m:B(Z/2x2/2 )% (B2/2%B2/2)->BZ/2  (thinking of Bz/2 as RV
this classifies the®-bundle over RE% RE )

n* ¥ [[x1]— N*[[Y,Z]] 13 an N*-algebra morphism sending
10" to 1eW™® and so m™ 1s determined by 1ts value on X.

m* X E (Y,2)= Y+ 2+ Z a Y2 (a,eNT)
xl &
$21

F satisfiles certain properties from the group structure of Z/2:-

(1) F{O,X)=F(X,0)=X -identity

() F(X,F(Y,2)}=F(F(X,Y),2) -assoclativity
(3) P(X,Y)=F(Y,X} -commutativity
(4) P(X,X)= 0 -order 2

Definition 2.1.6 for K a commutative algebra over Z2/2, call

an FeR[[X,Y]] satisfying (1),(2),(3) & (4) a Z/2-formal group

law over R.
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Among pairs (R,F) there 1s a universal pailr (L,E.) such that
for each (R,F) there is a unique algebra homomorphism ¢:L—>R
sending each coefflcient 1q of F, to the corresponding

coefficient a&‘j of F.

(It is clear that such an L exists-it is a guotilent of the

algebra Z/B[éu;all i,j)d] by the relations of (1),(2),(3),(4) )

P
Definition 2.1.7 A logarithm for F is & serles 1.(X)= Xva X+

#8, X+ oo osR[[X]] such that 1 (F(X,Y¥))=1.(X)+ 1(Y)

Theorem 2.1.8 {Lazard)

Every Z/2-formal group law has a logarithm. This
logarithm may be chosen with a,;=0 for all i==2j-l and is unique
in this form. We therefore have:

Lzz/2[l,; 12 -1]
1p = X+1,X + 1,x41,x% ..,
and 8o FL(X,derl;ﬁlﬁFX)+ lﬂ(Y)) (1" means inverse seriles
feee 1(L(X)) =X. )
The unique ¢:L—>»R sending F_ to F 1s generated by sending the
coefficlents of lﬂ_ to the corresponding coefficlents of the
canonical lg.

Proof Fréhlich (1) or see 3.5.4, which applies for p=2. |

Theorem 2.1.9 (Quillen & tom Dieck)

N%;L. The formal group law Fh i1s lsomorphic to FL.
Proof |

(An outline of a proof only will be given here; it will
be in the spirit of Boardman's work (4) and all details are
explicit or implicit there.)

By the theorem of Thom (4} (or see Rourke (34)), the Thom
spectrum MO for N¥(-) 1s equivalent to a product of coples of

K(Z/2) (Eilenberg-Maclane spectra).
L



Thus we have a canonlcal ring isomorphlsm:

NF(x) = éx,nggzzﬁom%[ H*(Mo;z/z),ﬁ"‘(x;z/z)]
where Cﬂldenotes the %Z/2~Steenrod algebra, and where the ring
structure on the last group is made from cup product on
H*(X;%/2) together with the comultiplication on H*(K0;2/2)
induced by the product map of spectra MQAMQ—aaMQ.

So N*(X)ﬁ?-Hongﬂ*(qp;z/z),ﬁ*(x;z/eﬂs:H*(x;z/z)éH*(Mg;z/z).

B is called the Boardman map. (~ denotes completion with

respect to neighbourhOOGS{ﬁﬁ*(X)@ H,(MO); see Boardman (&) for
L

details of @ ). To prove 2.1.9 we shall need the following:-

Lemna 2.1.10 (Boardmen) There is an algebra isomorphism

H*(@Q;Z/z)f z/2fa,,8,,+-+]1 under which the Boardmen map sends:

eylt)s > £(t) = tra,t 7+ a b vus
m n

N'(BO(1)) H*(B0(1);%/2)8 2/2fa,,8 .00 ]

Proof of lemms

BO(1)= Bz/2 so HY(BO(1);2/2)% z/2[t]
BO(1)xe+exBO(1)—> BO(n) 1induces a "splitting map":
\\__.}T’,.—-\..____._z

H¥(BO(n);2/2)csH™(BO(1)x.,.¥BO(1);%/2) with image all
symmetric functions In t ,...,t, . This Injection sends:

Stiefel-Whitney class w, +—> 1 th elem. sym. fn. in T,pee5t
The maps BO(m)xBO(n)—BO(mtn) "adding bundles", correspond
under the splitting to:

H¥(BO(m¢n);2/2) m > H*(EO(m);Z/2)e B (BO(n);2/2)
B (BO(L)x. « xBO(1)32/2) —> HY(BO(L)r . o2 BO(1) JOB™(50(1)x. 1 xBO(1) )
e b, b > t; ®1 (1<n) "

t. ‘—*—*}l@t’i‘_* (i)n) Oo-oooooouo@

v

From the Stiefel~Whitney classes w, we obtain a basls for

Hl(BO;Z/2) as follows;



The evaluation mep e:HY(BO(n);%/2)® H (BO(n);2/2)—r2/2
Val
has dual e':2/2 —»H,(B0(n);2/2)@ E*(BO(n);2/2)

The image of 1 under the dual to the evaluation map is called

a universal element by Boardman (see (4) for details of this

approach to duality).

Consider the element

2. 2
u“=(l+ a,t,+ altlf...)...(l+-a,t“+-a tn cee)

A,
& H*(BO(l)»«...xBO(l);Z/z)é z/2[8, 18,08, 00 )
~—

(a, variable in dim. 1)

u,, may be viewed as a universal element glving an isomorphism

of some subspace A, of Z/E[?(,al,..j]to the dusal B: of a
subspace B, of H¥(BO(1)%...xBO(1);2/2).
e TN — et

.
% 2, by :
Sl b+ ot lra (tr oot va, (B, 6,8t vaatt b )te.,
It is clear thet each polynomial In the a;'s of total degree<n
is represented in u, with a different non-zero coefficient.
Thus A, Zsubspace of Z/Elﬁi,al,..j of polynomials of degree gn.
Also each coeffilcient 1s & symmetric polynomial in LA R
so that B_e» H'(BO(n);2/2) ¢ H*(BO(1) ... BO(1};Z/2). But a,
\--—--—"V"'—'—-—_,._.—’
ke ™

is the seme size as H_(BO(n);Z/2) in each dimension, so

B,z HM(BO(n);Z/2), and u, glves an isomorphism AL =H(BO(n);2/2)

In the limit n-»<, BO(n)~>» B0, and u glves an isomorphism
Z/Qiﬁl,al,.;sz*(BO;Z/E); further, from the form of
u=(l+ra,t+a t+..){lva, t,+..)e0s, this 1s an isomorphism of
algebras (where the algebra structure on H,(B0;z/2) is dual

to the coalgebra structure on H¥(B0;Z/2),glven by O ).

The Thom isomorphism H*(BO(n);Z/B)EEH%HYMO(n);Z/E) is

multiplication by t,tl...th.gﬂpplying this to the element u we



get an element:
u:\z (tl+a|t[1+alt13+ ..)(tg‘a,t:*‘ ‘.)".(t,\+ &’t:‘*‘co)

¢ BT (M0(n);2/2)® 2/20a,,8,,8,, 0]

* A4 Kt v _
(H (MO(n))<s H (BO(n))cs H (bO(l),n.T:»‘bu(l)) )
In the limit as n-e u’ gives an algebra isomorphism:
2/2 [al’a)_’ag’ "]?H*(I@;Z/z) (£ 1}_;]1 H*“L(Mo(n);z/z) )o
(The multiplication on H(MO;Z2/2) comes from MOAMO —> MO,

which in turn comes from the maps BO(m)xBO{n)—>BO(m+n).)

The identity map aﬁngg,n;@} glves an element Le N°(MO)
(= l‘fgn N"(MO(n}) ). Under the Boardman map B:N*Uﬁl\?)c__—?
s HY(MQ;%/2)8 H4(M0;2/2) L maps to the identity map in
HomWL[H*(M,Q;Z/2),H*(I\LQ;Z/E)] i.e. to the universal element in

H*(@;Z/B)@H*(I@;Z/z), which in terms of our bases 1s uh

The identilty mapEEMO(n),MO(n)% glves rise to an element
L, & N“(Mo(n)); (wl}_m t )« Under the Boardman map
BiN(MO(n)) s H(HO0(n);2/2)® Hy(10;2/2) L. maps to the

restriction of u/,i.e. ¢, maps to the element u’ & H(mo(n) )@

Thus, in particular, ., represents an element of N'(MO(1))

3 I n >
which maps to : tra t#a,t'+...¢H¥(M0(1);2/2)8® 4/2[8‘,82, vee ]

But: t, 1s just the Thom class ¢ N (T(%)}} of the canonical
line bundle { over BO(1l) so i* ¢, =eN(§J (where 1:BO(1}es MO(1)..
Thus, by the naturality of B, we have:

eul$) 2> £(t) = bra b 8.0t ...

N'(BO(1)) H*(B0(1);2/2)8 2/2[8,,8,,8,, 000 ]

completing the proof of the lemms 2.1.10, I

We now return to the proof of the theorem £.1.9:-
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Let m be the multiplication map BO(1)}»BO(1l)-—»B0(1) (BO(l/} )
= BZ/2

Then m* :E¥(BO(1);2/2)—» H¥(BO(1)xBO(1);2/2)
sends t ———> t'+
m* :N¥(BO(1)) —— N™(BO(1)=BO(1))
sends e, (3)F—> F,le (¥),e,(5))
Thus using m* and the naturality of B,
B:F, (ey(¥),ey(1)) ———> £{t'+t)
Write X=e (¥), Y=e,(3¥"), X ,=image X (=£(t')), Y, =r(t").
Then B:F, (X,Y)—> £[f7(x,) +£7(¥,)]
L
N*ﬁX,Y]] z/2[a,s8,, - J[[%,¥,1]
Let £7(X )=X+b,X + b X +... be the series formally inverse
to f, so thatl{ b,= a, + composite terms
bo=a, + ...
veoes i.e. by are poly. gens for Z/B[a‘,al,..;_
Consider the map z/2[a,,a,, eo] —> L
glven by {bf-—l 3 0
vy #+FH————> 1 otherwlse

Then EB:N*—-——? Z/fa[a,,al, ...] —> L

sends  Fy(X,7) 4 > 1"‘(1(x,)+m1(Y‘))= F (X,,Y,)
N*(x,v]] Lifx,,y, 1]

So $B:N*—> L splits the canonical ¢:L—>K" (recall from 2.1.8

that ¢ 1s the unlique ring map sending ¥ to F ). Thus g1is

injective; to complete the theorem it only remains to show ¢

is epimorphic and we do this by showing N* and L are the same

size in each dimenslon:

B*(M0;2/2) free over &, =% H, (40;Z/2)x TL(M0)®T, ¥ N*®T,

(where S, 1s the dual to @, ; Milnor (z3) shows §=Z/2 DM N, eee
XL in dimension 2:‘11).

But H,(MO;Z/2)= 2/2[9.,,&},&3,...] so N¥is the same size

as L¥2/2[1,,1,,.0,1,,..] (1% of1), |
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0.2 The ring splitting y:H¥(-:;2/2)—> ¥'(-)

Proposition 2.2.1 Any stable multiplicative natural

transformation V:H*(—;Z/Q)wa-ﬁ*(-) is determined by its
value on the space BZ/2.
Proof Let v:H¥(Bz/2;2/2)—> N¥(Bz/2)

send tt > f(eN(EJ) (f a power series
*)

over N
Since ¥ is multiplicative f determines ¥ on H*(BZ/B;Z/EJEEZ/Q[f]
Let X™"be the 2n-skeleton of the Eilenberg-Maclane space
K(Z/2,n). Then:
H*(K”;z/g)c-»ﬂ*(awz;z/e) (this injection
™

is induced by the map classifying the Z/2-cohomology class

t‘tl...tnéH*(BZ/Erk. XBZ/2;%/2); see Steenrod & Epstein (37))
| S

kst
Since the Atiysh-Hirzebruch spectral sequence H*(—;N*)=#N*(-)
collapses we have the same incluslon:

N¥(K™) c—s W*(BZ/2x.. xB2/2)"
""-——-"'Y“—--u—-—-"

et 4%

Thus,by multiplicativity and naturality, ¥V 1s determined on
H¥(K*2/2) and so on the first n cohomology groups of all
complexes of dimenslon <2n. But ¥ is stable so this determines
it on all finite dimensiongl complexes; however H*(X;Z/E)E

& lim HY(X,;2/2) for X CW and X, n-skeleton of X (see Brdcker
& tom Dieck {4)) and as the spectral sequences collapse,

N = 1n N*(X,}. Thusy is determined on all CW X. |

Corollary 2.2.2 If v:H¥(-;2/2)—» N*(~) 1s as in 2.2.1 ,

and V:¥ ——> £(ey (%)), then f is a logarithm of F,.

Proof Let 7] be any Z/2-bundle over a CW X and let w(”)cH'(X;Z,
denote 1ts lst Stifel-Whitney class. Then by the naturality

of v, v iw(T) s e, (1)) e N'(X)



In particular let X=BZ/2+«BZ/2 and "= Yo% .

Then y:w(‘g'@ﬂ#—"’ f(eu(ﬁzt‘é’gﬂ)) ¢ N'(Bz/2xBz/2)

But w(3'@¥) = t'+t ¢ H'(B2/2xB2/2:2/2) and v preserves addition
50 vit'e > £ey (T)) + re, (3))

i.e, f(eui‘i’@‘il’))= f(eH(E’)H f(e“(’i”)) - f 1s e legarithm of F”I

Proposition 2.2.,3 The stable multipllcative neatural

transformetlons ‘):H*(-—;Z/B)-—a-‘ﬂ*‘(-ﬂ are in 1l-1 correspondance
with the logarithms of F_, ; the canonical ¥ 1s glven by the
the canonical logarithm. (see 2.1.8)

proof  Let h™(-)= H™(-;2/2)®R (R an algebra over 2/2)

A sequence of elements u,ch (MO{n)) determines a stable
natural transformation N*(—)—-—*rh*(u) if the map SMO(n}-» MO(n+1)
sends u > u,. The transformation is multiplicatlve 1f the

maps MO(m)x» MO(n)—yMO(m+n) send u, > W xU,

Put u,=tel + t'er + t"@rﬂ- vee e B (MO(1)) = H'(~;2/2) @R
Then the stabllity and multlplicativity conditions above
determine a unique sequence of elements u . (using the
injections h*(MO(m+ n))es R (MO(m) )@ H (MO(n)) etc. We omlt
the detalls-they are straightforward)

Thusg each series tgl+ tl@ r, + t3® r,+... determines a
unlque stable multiplicative natursl transformation
.N*(—).—-a h*(-). In particular, put RK=L and let the series
be 17'(t) for 1 any logarithm of F . We then get s natural
transformation N*(;)-—?H*(—.;'Z/B)@ L which sends the formal
group law F; to the group law I2(=) +1(=)) 1.e. to F .
Thus the natural transformation is an isomorphism on the polint

rings and so gives an isomorphism on all X.

We have proved each logarithm determines a ring isomorphisn
*
N (-)= H'(-;2/2)@ L and thus a ring splitting v:H"(4;2/2)> ¥ ¢);
2.2.1 and 2.2.2 complete the proposition. |
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2.3 The Action of the Steenrod Algebra Lo

We use Milnor's description (27 of the action of Czlon
¥(Bz/2;2/2). Let 3=dual Hopf algebra to a,.
Theorem 2.,23.1 (Milnor)

S}?&”Z/z [>‘|3 >\1’¢o., )\L,o--; >\‘b dj.mo 2""1]

The action H¥(BZ/2;Z/2)e® —»H™(BZ/2;2/2) is described by
glving the dusal cosaction:
g:5%(B2/2;2/2)—> BN(BZ/2;2/2)® S,

which 1s a ring homomorphism generated by:

t b—> t®1+t’<};>~,+t4“®>\-z+ t%>>~3+--- veefl)
(B*(Bz/2;2/2)22/2[t] )
Proof Milnor @7) I
Remark 2.3.2 The formgl group H*(BZ/B;Z/B)SEZ/B[}] has

law FH(t’,t”): t'+ ' and 51 gives "the most general coaction

* To be precise: (5 ,%)} is universal among

preserving F, .'
pairs (A,f) where A 1s a 2/2-algebra and f:tb—it@ht"@ala— t3@ = O
is a ring homomorphism H¥(BZ/2;2/2)— H (B2/2;2/2)@ A which
preserves the formal group law Ei. (It is clear that if

£+t )= £(t' )+ £(t”) (mod 2) then f must be of form (1),

so that (31,9) is indeed universal as claimed.) Of course any
coalgebra A corresponding to an algebra of additive operations

on H*(-;Z/B) must preserve Fy,by naturality aend the argument

of 2.2.2,80 this says 4%is"aﬁ large as 1t can be",

In fact any power series treansformation preserving any
Z/2-formal group law must be of form (1), so that for example
(3,,6) 1s also universal among pairs (A,f) where 4 is a

z/2-algebra and f:eu(ﬁ)p,véu(i)@l+(eN(§)ﬁ§ g,++.0 15 an
N*~algebra homomorphism preserving the Z/ewformel group law F, .

In thils case @icorresponds to the tom Dleck Steenrod operations

on N¥(~). (12)
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When we have defined "Z/p-formal group laws" in Chapter 3

it will be clear that SP (the dual to CIZ',) 1s "the most general

coaction preserving such a law" in just the same way.
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3. Z/p-Formal Groups

3.1 Z/p=Theories

Definition 3.1.1 (Rourke (34)) A cohomology theory h'(~) is

called a Z/p-theory if and only if it satisfies the following

three conditions:
(1} It 1s connected. (l.e. h;{pt.}=0 for 10 )
(2) It 1s a ring theory.
(3) It has hy(pt.)= Z2/p.
(Note that (2) & (3)=> h"(X) is a Z/p-algebra for all X.)
K¥(~) 1s further sald to be commutative (in the sense of

dimar, dim b
¥Milnor (2% ) if a.b= (=1) na.d b.s

(esg. H¥(~3;Z/p) 1s a commutative Z/p-theory; N (-) ana H¥(-;2/2)

are commutative Z/2~theories.)

1¥(Bz/p;2/p) % PIRIOER] (see Steenrod and Epstein (37); we
use P to denote polynomial, E

exterior, algebras over Z/p;

«cH'(BZ/p;%/p) peH*(BZ/p;2/p) o)

Since we are looking for a Z/p-theory V¥(-}, universal in
some sense among Z/p-theories mepping onto H*(-;Z/p), we
exsmine theories h¥(-) with h*(BZ/p)%fh*GiH*(BZ/p;Z/p) l.e.
with h*(BZ/p)z‘h*[TJGkJJQEﬂdh] {this may be regarded as a

"free" power series ring in
dk,ﬂh, over h*, as the
commutativity condition
ensures MJ:O. )

In order to have a natural formal group structure defined
on n¥(Bz/p) we shall require h*(-) to be a theory having, for
the universal Z/p-bundle % a "canonlcal pair of Z/p-Euler

classeg! ¢xk(3)£11t(BZ/p)) (see Definition 3.3.1) anslogous
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to e,(3)e N'(BZ/2) 1in the 2/2 case.

Theorem 3.1.2 (Rourke) For sny Z/p~theory h*(—) the natural

map,u:h*(x)—a-ﬂ%(x;z/p) is epimorphic for all X if and only

if 1t 1s epimorphic h¥(Bz/p)— B (BZ/p;2/p).

Proof  Rourke (34) (The main Ingredient 1s a splitting

principle similar to that used in 2.2.1., This is that the

map Bz(gj;;;iﬁé/p-*'K(Z/p:5n) classifying otAx.../2 gives an
T

injection of the Z/p-cohomology of the 4n-skeleton of K(Z/p,3n))

Corollary 3.1.3 {Rourke) If h™(-) is a 2/p- theory and there

are classes akah‘(BZ/p), £ h?(BZ/p) such that w{e,) = &
¢H'(BZ/p;2/p), and u(p, )=Aed (BZ/p;2/p), then /u:h*(x)» B (X;2/p)
1s epimorphic for all X.
Proof Immediate. l
This gives a very useful easy test for whether a 2/p-

-theory n*(-) maps onto H*(-;Z/p).

3.2 The Action of the Steenrod Algebra d@(p:*z)

We use Milnor's description (23) of the action of dZFon
H¥(B2/p;2/p), Let S,= dual Hopf algebra to &, .

Theorem 3.2.1 (Milnor}

SexP[5,%,,...;3, dim. 2p1'—2]6§’E [T Ty Tayeen; T; dim, 2p;-l]
The actlon H'(BZ/p;2/pl®@®, —> H™(B2/p;2/p) 1s desribed by
glving the dual coaction:
Q:H*(Bz/p;Z/p)—éjH*(BZ/p;Z/P)GJSP
which 1s a ring homomorphism generated by:
o, 0 OL + BB Ta + o ., +ﬂ’f@q+...
B LB+ s +/5’°&9§-b+...
Proof  Milnor {(23). l

Remark 3.2.2 We shall define "Z/p-formal group law" in such a

way that this 1s the most general coaction preserving one. (c.f.
2.5.2.)
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3.3 The Inclusion Z/peyS

To motivate a part of the definition of a "Z/p-formal
group" we examlne s speclal property of H*(~32/p) -
Take any group incluslon Z/p > s' and regard 1t as
i

standard from now on in this work.

B¥(Bs';2/p)x p[5] (5 ¢ H*(BS' ;2/p) )
1*:H™(BS' ;2/p) > HX(BZ/p;2/p)
S — ﬂ (for appropriate cholce of 5}

Definitlon 3.%.1 Let n'(-) be a commutative Z/ p-theory

.
contalning classes « ¢ h' (BZ/p),ﬁka h (Bz/p) satisfying the
conditlions of Corollary %.1.3 Then 1if ﬁk is in the 1mage of

i* we call the triple (h*(-),v(k,[&k) a representative Z/p-theory

"
[If A = 1*$, for ghs,hz(BS' ) then B¥(Bs' )& n[r§,. 1] . As BS'= P~
choosing a particulasr polynomlel generator gk, of h*(BS') 1ls

eqgquivalent to assligning to each complex lline bundle a canonical

"Euler class” Skj .

3.4 Z/p-Formal Groups

We consider commutative (in the sense of 3.3.1) graded
elgebras &¥ over Z/p. (with A™= 0 for ny0,) Let & be a formal
veriable (graded 1) ahd A be a formal varlable (graded 2).

As 1In the Z/2 case we examine graded A*—algebra homomorph-
-isms m™ sending 1 to 1 :-

m*: A [[R1IOE [d—> a¥[[f,B. 110 B [, %, ]

These: are completely determined by:

e 7[5 5) = (EUEMED)
(ﬂ) (([3‘)1({31) FZ ([ﬁ;l):[f%)\)
As in the Z/2 case, we require F to satlsfy certain properties

corresponding to the group structure of Z/p (Cefes 2e1e6)4
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write ¥, for (3t) 1=1,2,3.

(1) #¢0,¥)= F(¥,0)=¢ ~identity
(2) FOYL,F(6,50)=F(F(Y,,Y,), %) -aessociativity
(3) F(Y,,82) =F(¥,Y,) ~commtativity

(4) L‘;o],,(bf)d:'E F(Y,F(¥,F(¥,...))}=0 -order p
Y. N sttt et

We have an sdditionsal property corresponding to 3.5 :-

Let h*(~) be a representative Z/p-~theory, so that we are
given classes &, B, , with n¥(Bs')es» n*(Bz/p)
N > /3,
m: 8% 5' => 5 induces m: B(8' S' )« BSx Bs-»Bs! (since §' is
abelian. }
This gives m*: n (BS')—>n™(Bs'x Bs')
W 5T u (3,5, 7]

5;»*—??"(5;,5:) say

Thus Fl( ;"),CE')): 1*(5(5’,5:)) (since i:Z/pC-ars‘ is a
group homomorphism, )

so F, involves only /%,/%:

This motivates the property:
(8) B ((),(%2)) 1s independant of « «
24 ) g 5 1independsant o , and 20

Definition 3.4.1 4An F = g,) satisfying (1),(2),(3),(4),& (5)

2

is called a Z/p-formal group law.

F, has the general form:

o ([ () oo By o S4B )+ 1,08,
‘i'o(‘d‘.zH-‘_( ﬁl ’/Sz)
(Note that (3) gives immedistely that HJ(g, ,3,)= Ho(fsp,) o)
° z

¥, has the general form:

(;:) (;s(:)) =43t Go (s o)
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Every representative Z/p-theory K¥(-) (see 3.3.1) carries a
Z/p-formal group law: H¥(B2/p)—>1¥(B2/p x BZ/p) induced by
e
HTIAe E (%]

the multiplication map: Z/px Z/p—>2/p.

Lefinltion %.4.2 A logarlthm 1 for F is & palr of seriles

l:-';.i( 1, ) :
la

L) =1, (Y) = e+ 0+ g By A g% i
1.¥) = 1,0¥) =ﬂ+xzﬁ,"‘+ x¢ﬁ3+ x‘ﬂ"'-a- ces
such that 1~L(F.(a’,,¥,.))) = 108 0+ 1) (1=1,2)

Fal¥ , %
(1, involves only /3 becaguse of (5). )

Proposition 3.4.3 Let h¥(-) be a representative Z/p-theory,

with formal group lew Fh’ and suppose the ring eplmorphism
/bt:h*(-)»ﬁ‘?H*(-;Z/p) hes a stable multiplicative natural
splitting ¥:HM(~;2/p)—>n (=), If v:H*(Bs/p;Z/p) > n(B2/p)
ol

is given by(d-)}-—-—-‘f f(oé;‘)z f, ({.4::) then £ 1s a logarithm

A fh £, G
for F . (c.f. 2.2.2)
Proof Because H¥(pt.;z/p)® Z/p is all in dimension 0, the
Z/p-formel group law on H*(BZ/p;Z/p) is given by:

o —> o+ o’ B> p'+p”

Then preclsely the same argument as 2.2.2 gilves:

! W s I

Kay (K = p{%h Ao,

so £ 1s a logarithm for Fk‘ ,

Remark 3.,4.4 As 1n 2,.,2.1 we can prove that any ¥ 1s determinec

by its value on the space BZ/p. (All that 1s needed is the
splitting principle used by Rourke { (34) or 3.1.2) ) For the
unlversgl theory V*(—),oonstmcted in later chapters, we can
show, as in 2.2.3, that each logarithm f of ¥y determines a
natural ring splitting ¥ of/A:V*(-)—wH*(-;Z/p). The canonical

logarithm (see 3.5.1 below) gives a cenonical splitting .
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3.5 The Universal Z/p-Formal Group

We use elaborations of methods of Lazard (25) to prove
that every Z/p=formsl group law has a logarithm. (The proof

is long and complicated). The structure of the unilverssl law

is an easy corollary.

Theorem 3.9.1 Let F be a Z/p-formal group law over ground

ring A%, and suppose

Fo((a)), (A2)) =it o o Ho (B, 8, )+ Al (A, ) + H,(f,8,)¢
+ & oH (845 B,)

P50, (52)) =B Bat G,(6,,p,)

Then (i} Ha(p,,pB.)=0
(i1) P has a logarithm, l.e. a pair of series l=(l:)
1y

ol N
L(p) =&+ aiR + g+ 0387+ Yo fB¥..s

ol 2 3 4 . . §
lz(ﬁ)'-‘ﬁ*x:ﬁ*xtfﬁ*x&ﬁ*“' (wit}:;ih,)y“oﬂb,

such that 1;/F, (d’:,h’) =1 (¥ )+ (%) (1=1,2)
F(X ¥ )

(¥ denotes (;’é))

This logarlthm 1s unique 1f we require that o3in =0 for i=pf-1 Y
X4y = O for 1=pr-1{v

Corollary 3.5.2 The universal Z/p-formal group law Fp 1lles

over the.ground ring At where
Ay = PLxa; 3140 - 1)@ ELoq 1y, 51407 -1]@ PLy;5 all 170]

{x,: Thas grading -21

o, -{2i+1)
i T =21 )
Fp = (F 1s the (unique) solﬁtion of 3
Fl
1';_(F1 (b",h’z)) = li(‘(l)-pl;,(b/l) (1=1,2) where 1; are
Fi(x"r'*‘-) as asbove.
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To prove 5.5.1 we need varlous lemmas snd corollariesy
%.5.3 is adapted from Lazard,(see Fr8hlich (14) for similar
results).

3.5.,4 1s Lazard's Theorem.
%.5.5,6,7 are proved using technigues based on Lazard's

methods.

Lemma 3.5.35 Let A be an algebra over Z/p, and [ (X,Y) a

homogeneous polynomlal of degree n over A, then:
(1) MX,0)={(0,x)=0
[M satisfies (%) (11) F(X,Y)+M(X+Y,2)= M (X, Y+2 )+ [(¥,2)
(1114)(X,Y)=(Y,X)
(1v) FOGXMT(X, 2X )+, FT(X, (p=1)X)= 0
L= [" is of the form a([Xi-Y]n-X“—Y“) for some & €A.
Proof (a) Functions of the form a([X+¥]“~X“-Yn) satisfy (¥&):-
{(1),(111),(1iv) are immediste.
L.hes. of (i1)= a([Xe¥]™-x"=y")ra([x+yeg]™[x+y] 2™ )
= a([x+y+ 2]"-x"-Y -2")= r.n.s. of (ii)

by symmetry.

(b) If [ sstisfies () then it is of the form
a([X+ Y] -X"=y") 1=

Suppose ['= é:; aLXLYw-L

(1) glves a,= an=0

(1121) gives af=a, L

LY‘P Zy.,-cc-i-j,) N

Equating coefficlents of X n (11) we

obtain: aw"(i-fj) = a;(ngi}
J

These glve sufficlent relations, for:
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Case 1: n not divisible by p

If ¥ is not divisible by p eilther, we have {(putting i=1, j=k-1):-

R G

If ¥ is divisible by p, then n«k 1s not, so:~

ak-.:ah“h.-___l_(n-l)alz.-__l_.. n\a,; .
n-k \n-k-1, ni{n-k

-t P oyi=b me i wni n n
Thus Zia;X‘Y)l; %fl. n a‘XLYﬁﬁs a,([X*Y] WX Y ) as required.
e=i = G et T
Case 2: n=p
Again ak=i(n-i)a, (1€x<n-1)
kilk~
Thus [M(X,Y)= a,{iﬁ[X*Y]r-Xp—Yr)) (division by p having an
p

obvious meaning here)

Now (iv) gives:

" p P p
a‘[gl;( rex]’ -x" xfs ESM—xr+ .. '+[pwxr9: 0.

il.e. a,{l.pXi): 0 so a, =0,
P

Thus (X, ¥)= 0 a([Xr¥d" -x"-¥") as required.

Case 3: n=pq {(g21)

a,  fkip-li= ay, n-k\ .
kep l( p-1 ) (p-—l)

k=1 gives a,= O,

k™ Tlk-1

For any k not divisible by p we have: a l(n-l)a[=-0.
Thus P(X,Y)E'FJ(Xr,Yr ) where fﬂ,is a homogeneous polynomial,
which clearly satisfies (1),(i1) & (1i1) (but not obviously (iv)
If g is not divisible by p we apply Case 1 to rﬁ(only (1),
(i1) & (1i1) were needed in the proof of Casel), and obtain:-
Mx, )= M (0, vP) = a([xte v TP oY)
aa([XfY]W-XM—Yr?) as required.
If g 1s divisible by p we apply the sbove process to r’

"
to get F, and repeat until we reach a g not divisible by p;
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)
the only remalning case 1s if we eventually arrive at a r

of degree g =p. {(l.e. when n=p ). Then we have, by the

Case 2 argument:

+ + -+ b r LES I 2T
Fx,y )= yP )= a Xyt Y -xF -y’ ))
TH T T

b
o, L(Dx+1]" -xF-x "))
Y
and as in Case 2, " satisfying (iv) gives a,= 0 (whether or
o)
not " satisfles
(1v). )

Tt ty gy

- P
Thus NM(X,Y)= 0% a([X+Y) -XP—YP ) as required, l

Corollary 3.5.4 {(Lazard's Theorem) Let A be an slgebra over

z/p, end F,(X,Y), s power serles over A satlsfying:

(1) F(0,X)= Fo(X,0)= X ~identity

(2) FolX,Fa(Y,2))= F(F, (X,Y),%) -assoclativity

(3) Fo(X,Y)=F {(Y,X) ~commutativity

(4)0p2 Fz(X)dzfn.F"(X’w: .)))=0 =~order p
Then there 1s a series 1,(X)= X+ X, X x4X3+... ¢ A[[X]] such
that 1,(F, (X,¥))= 1,{X)+ 1,(¥). 1, is unique if we require
that =x,.=0 for 1= p}-l.
Proof  Suppose 19" has been cditructed inductively to glve:

08, (X,¥)) =0 10%x)+ 15X ) En denotes = modulo terms

of degree > n)

teee 1T XE 0000, QT Ea XeY Leeauth)
The l.h.s. of (1) satisfies (1),{(2),(3},{4) because F, does
and they are easil'y seen to be properties preserved by power
series transformstions. Write l.h.s. of (t) as G{(X,Y):

Then G(X,Y)=,,, X+¥+(X,Y) (I" homogeneous of degree n)
" satisfies (1) & (1ii) of 3.5.3 because G satisfies (1) & (3)
" satisfies (ii) of 3.5.3 becaunse G(X,Y) satisfies (2):~

f.e. G(X,6(Y,2))=G(G(X,Y),2)
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50 X+ (Y4 2+M(Y,2)) H(X, Yeqer(Y ,z))gwﬂx+y+r1X,Y))+Z+F(X*Y*P(E3Y)

so NY,2)+ (X, Y+2 ), MX,Y)+M(X+Y,2)

" satisfies (iv) of 3.5.3 because G(X,Y)} satisfles (4):~

(X, G(X,0(X,y e00)))= 0
P

Now  G(X,X)=,, X+XeI"(X,X)
so G(X,G(X,X) ), (X+X+T(X, X))+ X4 (X, 2X+P(X, X))

= BXe (X, X )+ (X, 2X)

0% G(X,G(X,G(X, s0u)) )=, pXel(X, X+ M (X, 2X 00 o+ (X, (p-1)X)
e T

r
sol satisfies (iv).

n " ha!
Thus by lemma 3.5.3 I'= a“(D{H{] -X =Y } for some a, €4,
Now put f(X)= X-ahX“ and we have:(since G{X,Y )=, X+Y+I(X,Y} ):

FOGETNX), £70Y) ) Jmnn X¥Y

S0, putting 17(X) = £(I7AX)) we nave 1 XF,_ (1T '(x), (% (v)))=

ol XFY
' ) {n)
lee.  TNFL(X,Y) )% 1n(X)+ 10(Y)  completing the induction.

The existence of 1l; follows by the completeness of A[[X_ﬂ.

The &, are given unlquely in the proof above (by the proof of

d—

5.5.3) except when n=p° , 1In which case (agaln by the proof

-

of 3.5.3) "= 0, and we may then put x_.*0 for i=p&-1 and

obtain a unique logarithm. l
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Corollary 3.5.5 Let A be an algebra over Z/p, J(X,Y) a

power serles in X,Y over A, F,(X,Y) satlsfying (1),(2),(3) &
(4) of 3.5.4, then:
(1)  J(X,0)= 0=J(0,X)
J satisfies (x¥) (11) J(X,Y)*J(F;(K,Y),Z)=J(Y,Z)+J(X,EJY,Z}
(111) J{X,Y)=J(Y,X)
(1v) J(X,X)+J(X,Fa(X,X))+...
+ J{X,E (X,Fo(X,...X}))=4qQ
zé:£7' J is of the form: f(F,(X,Y))-f{X)~f(¥) for s;;; poOwWer
series f{X)= a, X+.us e AIXT1. The series is unigue (up to
multiplication by elements of A), if we require the coefficlent
of XP& to be zero for each j.
Proof (a) Functions of this form satisfy (w¥):-
(1),(1i1),{1iv) are immediate.
l.hes. of (11)= £{F, (X, X)) -f(X)~f (XM E(ELFLX,Y),2))
£ (F, (X,Y))-1(2)
= £(F (F (X,Y),2) )~ (X)-£(¥)-1{2)
=r.h.8. of (ii) by symmetry (F, 1is
associative).
(b) If J satisfies (k%) then it has the required form:-
Suppose fﬁwohas been constructed inductively to
give:
Jz“‘%HﬁafbwﬁFi(x’Y))'§w$X)‘§»$Y)

Jn-iy Satlsfies (%) (by (a)) and J does by hypot?-
. -esis,

Let;iﬂﬁg;}%Péﬂqrwxiyai(rahomogenebus of -degree nj
™ satisfies (1) & (111) of (%) 3.5.3 because J &
Ty 88tisfy (1) & (111) of (%)  (immedlate)

' satisfies (11)& (iv) of (k) 3.5.3 because J &
Jpu-ryS8bisfy (11)& (1v) of (k#*) (elmost lmmediate-

~uging F, (X,Y)= X+Ye¢..
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Thus [Y(X,Y )= a ([Xe¥] -X"-Y") for some a, by

lemma 2.5.3.

Hence J=dg, a ((F (X,¥))"=x"-¥"), completing

- S
the induction stepe.

The unigueness of the canonical form of f (with the coefficient

of XF} vanishing) follows in exactly the same way as the last

part of Corollary 3.5.4. l

Lemma 3.5,6 Let A be an algebra over Z/p, ["(X,¥) a homogeneous

polynomial of degree n over A, then:

(1) M(x,0)=0
" satisfies (1) (11) TUX, Y+ (X+Y ,2)= TV (X, Y+2)

(T11) (Y, X )+ (X+Y,2) = P(Y,2)+(Y+2Z,X)
4=> T 1is of the form a(X"-{X+Y]) for some aeA.
Proof (c.f. 3.5.3)

n n
(a) Functions of the form a(X —EX*Y] ) setlsfy (1) (by

direct substitution).

L
(b) If " satisfies (f) then it is of the form a(X - [X+¥}):-
n © el
Suppose | = ;EaLXLY .
=0
The term in X in (11) gives: a 48, =8, vo 8. =0,
s ey
Equating coefficlents of xty¥e” Ldgives us
From (i%) 84 1+j): a; ngi (1+3#n)

From (1ii) a;ﬁ(igj): ahd(nf%) (i+j¥n, 1#0)
J

Ceseids n -hot divisible by p

Putting Jj= k-1, 1=1, we get ak(k)z a,(n-l)
i

Hence for k not divisible by p: 8

If k 1s divisible by p, then n-k is not, and we have:

ap=1/ n\a, (from (i1ii))
n\n-k



Putting j=1, 1=0, gives: a,=na, .
n i on-t "
S0 iz_waixbff = _@L__a(xh-[)(*Y] ) as required.
n

Case 2: n=p

Agein, ak{k)= a.(n-l (l€£k<n-1)
1 k-1

So &kz_:l_._ n"'l aa .
kik-1

j=1, 1=0, gives a,= pa,= 0.
So M(X,Y)= a..'j(|° as required.

Case 3: n=pgq (q70)

j=1, 1=0, gives a,=na,=0

For any k not divisible by p we have:

ay,s ;(n-l a,= 0
k\k-1

P /
Sois of the form M(X,¥)=1 (x',¥l), where I" 1s
homogeneous of degree q. It 1is lmmedlate that
satlsfies (1),(11),(111} and the result follows by

induction, using Case 1 and Case 2. i

Corollary 3.5.7 Let A be an algebra over Z/p, K(X,Y} a

power series in X,Y over 4, and F,(X,Y) a power seriles
satisfying (1),(2),(3),(4) of 3.5.4, then:
(1) K(x,0)=0
K satisfies (tt) (11) K(X,Y)K(F, (X, Y),2)(1¢K(X,Y}) =
= K(X,F, (Y,2))
(111)K(Y, X))+ (1+K(Y, X)) K(F (X, Y),2)=
=K(Y,Z)+(1+K(Y,2) )K(F, (Y, 2),X)

L= K 1s of the form: f(X) -1z l+ypX+y X+ ¢X3+......~ . =1
fT5(X,Y)) 1:%,_‘?; x"'YTI“‘(, +3, X, ¥ e

for some yzLéA' Such Y. are unigue.



Proof (a) Functions of the form _ f£(X) -1 satisfy (T ]):-

f(F(X,Y))

(1) is obvious.

(11) 1 hes. = £{X) =1l FR(X,Y)) =-1f. f£(X}
fTE(X,Y)) PIR(FIX, ¥),%)) | £(E(XYT)

£(X) ~l:=r.h.s.(ELis assoclative)

f(F(F(X Y),%Z)

(1i1)l.hese = _ F(Y) =1y f£(Y) FAE(X,Y)) -
FE(Y, X)) £ (F{Y,X) ) IF(FAFIX,Y),2))

- £{Y) =1
f(F(F(X Y),%2))

), £Y) £(R(Y,2)) -]
TUE(Y,2)) | FUE(Y,Z0) [FOR(E(Y, 2),%))

=r.h.s (F,1s commutative & assoclative).

(b) If K satisfies (t}) then 1t has the required form:-
Suppose f,_j has been constructed inductively to gilve:

K “n K(I\"l) pvnd f;u-;ix) “"l
5T, (E(X,T7)

K satlsfles (tt) by (a) and K satisfies (t1) b
hypothesis.
Let K=

nH

Then [~ satisfles (1),(11), & (111) of (¥) 3.5.86

Ke*T(X,¥) (" homogeneous of degree n).

because K and K  satisfy (1),(ii) & (1ii) of (t1).

(F (X, Y)= X+Y+ ..0)

Thus M= a(X"=[X+Y1™)

S50 K Y f(ﬂ*l)(X)+ B.X =1 =, f_},\.n(}() + )‘L -1
Lol B{Z, X ) J+a(X+Y )" ™ £ (F(X,Y) )+a(p(x YODi

Putting f(X)= fup(X) + ax completes the induction
step. By the construction a 1s unique, and thus

by completeness, in the limit f£(X) is unique.
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Proof of Theorem 3.5.1

(1): The assoclativity rule ((2) of 3.4) for F gives (on the

F, term}:~
( F((R), w)) (*s)')ﬂ,(("") (F.u",&:),u‘éj)p)
Flpn) ) ps pa | Falats a)
Written out at length this is:
FUCAD s G e BURD s GO ) oS (R A0 )
-+d§.Ha(ﬁ3, Ff Byfa) 1+ HAE(BisBa) s )
+E((3), (“’iﬂ;) ) o BYF(F,f4) el =+ E( @, (g‘;) FaliB,EG,A))

+F( (a(-;) ’ (5.!3) ) oHD(F(PI;é) y/sx)*‘ H|(P"F1(Fx’/%) )
+o<F((7,‘*) ) ) H{BGFBsf) ) eeenreeiih

Picking out from A the term In < %, i~
H(a,4)+H{E0)e [ BAE(ELA),5,) ] =

:[:-L*HO(FI.’ﬂj)j.H)gﬂ]’F’-(‘ﬁ).’ﬁj)) ..OQCOOUOCCCOODOOOIAlaz
Now «m==d &, 50 the commutativity rule ((3) of 3.4) for F

gives: H({_’, yB)= -H(/g’,ﬁ) and in particular H}ﬁz,p’_‘)"; Go

Thus, putting A=A in Ay we obtain:
(1+Ho(/%’p3) ) 'Hzgﬁz’Fz(Fz’ﬁ3))= 0
Suppose the lowest term in H, has degree n, l.e. :

H(R,p, )%, g,‘a (ﬁ /5 /3$“fé)
iy

H, has degree >0 (since F satisfies (1) of 3.4) so:

H_E (.‘51, Fl(Fl’ﬁx) ) E,\,
Hence: B(fsp, 44,050

AF PR T \

s Sa (e T -plgan) )= 0
o Sa ) = B ™= 0
Take the least r; wlth a;#0, say T and divide b‘y[s? ;s then
the term in ﬁ3 glves: a&ﬂs =0. l.e. aé_—O. Thus all a;=0

80 H_)(_ﬁ,,)el)s 0
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(1i): Finding a logarithm 1s equivalent to solving:
lj(F‘l((:‘é:)’(?&;))) = l| (g:)"f' 1. (2:) s e s et e (I)

F]Spa’.ﬂz)
11..{F2.(.Bi’/;1)) = ll(ﬁl)ﬂf ll(ﬁz) oo--ooo.co(II)
(1),(2),(3) & (4) for F ensure F, satisfies the conditions
of Corollary 3.5.4 (Lazard's Theorem) and hence there 1ls a

unique solution to (II) of the required form, for 1,.

Writing out (I) at length:

FU(E 5 62) [LeaF B YELap ) v e o Jr Bl ol ol ELuf))* oee =
O{(l'l"y 'f'y#F to oo )+G‘ﬁ U'r’f“ o'*ot(l"'yﬁ'*'y;‘ﬁ e s 0 )+0’6+JF+0 .. s v e .(I})

Solving (I’) 1s equivalent to solving two equatlons (one for

the term independent ofd'& dzand one for the term in o ;that

in « 18 the same as for «,)

As usueal, put F((/;,‘) (ﬂ‘)) “;*szf‘l,(ﬂ,[&lﬁdﬁéﬁ,ﬁi )rH((}, ,ﬂz_) in (17)
(H,= 0)

Then the coefficlents ofsgin.(l ) glve us to solve:

[+ BB I 14gF B+ oo )= Loy fiee weevevinienn. (IID)

The coefflclents independent of o, & o, in (") give us to sgolve:

H(f ) (14 3E ) TAEC B 8) T o Tr e BB e (BRAR) 5o s
=g B+, b+ ..-'f’a:ﬁﬁ“cgé‘}‘... cesrrcesrrsssnealIV)

The proof now proceeds by showling that the formal group law

rules for F provide sufficlent conditlons to give a unique

solution of (III)} & (IV) for V,;» 7., of the required form. We
vt

gssemble the neceesary data:

The term of A independent of o, & o, givesi~

B{pap e BAE(R R,y A)E(A R0 HLE (R 04) 5 )=
= H{pop, HBIALE(RLL) )+ B(L 4 ) HIE(fap ),8) o0 o(al)
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The term of A Ino, gives:
H{J(F"’ﬁz)+Ha(Fl(ﬁi,.£;)’/23)(1+H0(ﬁ’.ﬂ';)): Ho(ﬁ,y;([y;,ﬁ;)) c-ooooco-oo-oo(AZ)
(The term of A in of 1s the same,by symmetry., )
The term of A In <« gives:

Ha(fsg,’ﬁl )'P (1+H0(ﬁ1’,6f) ) 'H}Fz(ﬁa’ﬁx) ’ﬁg) = H‘,( ‘q’é)+(l+Ho(F1’ﬁ3) )H‘Q(Fl((g;,ﬂj),ﬁj) e (A5

Also F((%),0)= o (by condition (1) of 3.4)
So Hc({g,O)r-O Ceesnernsee .(Bl)

& H’(g’O)':-O ..-.--.....(BZ.),

(A2).(A3),(Bl) give that HO(X,Y) satisfies the conditions (i),

(11), & (1i1) of Corollary 3.5.7. Thus Ho((i,,[;z) is uniquely

expressible as: T4V + Vol ¥ e -1
Tyi(p,p + T BB, )5 e o

i.e. we have g unique solution to (III).

It remains to solve (IV) for opis:-

Writing a—;ﬁﬂg(ﬁ—. ... as hig), (IV) 1s:

58 [Le3E (AR B fap) oo e J = B(A)en(a)-B(EB,4)) «onnulIV’)
Call the l.h.s. of (IV') J(B,a,).

Now 3.3%.5 glves us a unique solution of (IV/) for h if and
only if J(ﬁr’f%) satisfles (x%x*) of 3.5.85, so this 1s all that it

remains to check to complete the proof of 3.5.1.
(B2) glves that J(ﬁ’ﬂ) satisfies (1) of (%),

F,((?;:),("ﬁ(:)h E((?}:),(ﬁ:)) (by condition (3) of 3.4)

so that J(g,ps) satlafies (Li%of (xx).

To show J{(AB,r) satisfies (#x)(11):

Substituting Ho(ﬂ.’ﬁ;} s L+ VoBitoeve -1 in (Al)} we have:
l*y:,Fl(ﬂ;’ﬁ;)q- .o

l.h.s= H( 5, s ':.) l'fl"“?ﬁ;.(ﬁ'}ﬂﬁ)*‘oco -U+ H ( ¥ '1.)’ )
tfﬁ 1+YZ(F1(F1({5.:ﬂL)aﬁ3))+-' ﬂ '(E'ﬂ P ﬁ3

- 1 Lo tRap 3w pap)sp) |

1+y1(F1(Fl(p‘,(;1) ’ﬁs) Hooas
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Similarly r.h.s = J{Bsp e (8, F(fB,e))
milarly l*y(F(ﬁ’F(ﬂ!(’)))-i[; ﬂﬂz %t zﬂﬁ; ]

As F,1s associatlive, the denominators are equal, and putting
l.hes of (Al)}= r.h.s of (Al)} gives us that J(Fn’/;,,) satisfies

(#%){11).

To show that J{(£,B.) satisfles (y+x}(iv)
(Cn] (a’).)_ Bl FEFEGED,..0)) (r=(%))

m1plY)
(s0 [n]pl¥), = [n]F,_tfn )
[n] (N =F, [n-211.0Y)) gives:
[n1e(1),= o #n-10 o (¥) 48 (A, [n-1T6(B) )¢ [n-l]F(X),-HO([n-ljr(fs iy
+ H,(,@',{n-l]_%%n
Let G,(2) be the term of [n].(Y), not involving,
Then: G.(2)= G, (A)+G (A).H, ([n-l],_;(ﬁ),ﬂhﬂl(ﬁ’ [n..l]ﬁ([g)) .

Substituting Ho(ﬂn’ﬁz}” 1+y,ﬁ,+ ~1 we geb:
1+yE Fﬁ,/g )+. .o

Gulp)= G _(8) AIn=-10r(B) )+ e - H(B, [n=11-(B))
P et (ﬁg [:113,,; Ji4aee )+H'ﬁ (n=ddefP

Th Gy (p) = (My{[ndc(g))+eee ) sH(B, [n-1]1-(g})
w02 o LRI B oL e

+(Ltyf [n-l]ép) Jtees) 'H.(ﬁ’ [n-z]r([i) )+

+... +

1y (2] (8040 ) B(Bp) ]

.

So  Gp(p)- - ([15 —— 3 o-1T e )+ B o2 ] (s ) )t s
TIMP Fﬁ '*'ooo ...'f‘.]'(/_';,/%)]

But (4} of 3.4 gives: ij,:(lr)ao , 80 Gr(ﬁ)=0.
Thus J satisfies (iv) of (k#*),of 3.5.5 , completing the proof

Of 345ele l
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Proof of Corollary 3.5.2

It is sufflcient to check the equations

11(1«1 (hj,l(,,)) =1, )+ 1) (1=1,2) do indeed define a
F,(¥,,¥,)

unique Z/p-formal group law Fh:(Fq .
F‘J—

(For then, given any Z/p- formal group (4,F) we have a

canonical ring homomorphism ¢ :A, > A under which the

coefficlents xﬁ!gﬁ,q&*,of(lq map to the corresponding
*

coefficients of the ceanonical logarithm for F, and this map
¢ 1s the unique ring maep sending F, to F ; x,; & y,. poly.
and O:uaGXt' give the largest ring allowed by the

conmutativity condltilons)

We need to show first that 'l,)has a unique inverse
11
e ((1”: ),) such that 17(1)=4id. i.e. such that

P LG NE o . (1)
%a¢)

(lﬂ‘) ‘l,(o(i; 2/ sasee {(11)
%h%ﬁf

e -
Consider (11):(1,(%5): O and 1 (z)set.e. 8O (l'%L(ﬁ) is
Independent of «., Thus (17'), 1s uniquely defined and 1is
just 17"+ (since 1.(X)=X+ ...y 1, has & unique inverse

-1
series 1, ).

Consider (1): let g(%)=<&+ aJ%+bgﬁ-+a3ﬂ{»b¢g§} ces
| = 1+bB+b A% ceu)+ af+8,8% vue
Then g(l, (‘}é)) = (x+oipr g B s e mtbm-h-.)(1+bllm(ﬂ)+b‘*(lz([s);_+..}
ha (3 va1,(alra (1,(0) ) ...
)))-ﬁo(,éf)’ (143, 78% oo o) (14D, 1, (#)+b, (L, ()¢ o.)= ]
ceenees (1i1)

Thus g(i,g

TRABR

& (Gprmp o) (1eb, 1, (a)+ e )ra 1 (p)ees =0
s es o (iV)
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Since ll(P)=/3+ «+s we can use (111) to define b,; inductively

(iv) to define a,;,; inductively

These are unique, and so we have a unique inverse 17 to 1,

1

i.e. FA-:(E) is unlquely defined by F, ((;g;),(°(§;))=1“(1(75‘;)+1(@)
2

It only remains to check that F, satisfles (1),(2),(3),
(4} & (5) of 3.4 and so 1s a Z/p~formal group law. This is
straightforward, e.g. for (2):=-
F, (B, (5,60 ,0))= 1710 (G 1G0)+1 ()
(l(,g')+l(/v1+l(“3))
= F, (a",FA(ﬂ;,QfS)) The other conditions

are just as easy. I

Remark 3.5.8

Ctnsider the cohomology theory H¥(-;Z/p)® 4, = K'(-).
If 1 is the canonical logarithm of F, on A,, and

l"("‘- ol.+ﬂa,+:xﬂb +4 8 e e
[5) /3+r9 h.g.ﬁc.;- oCQ )

put [&p)=/alepoa, +afBb, +.00) /0 (BZ/p)
(e egssieny o) ER)

This then gives an "algebraic" reallsation of the universal
Z/p-formal group law as a cohomology theory, since under
m: BZ/pxBZ/p~>BZ/p we have:
’ "
m¥z (% p—->°““°<) l‘{k) + l("(k)
) L ( i o

oo w () = )= R ) 5 )

However, what 'we would llke is a geometric theory V¥(-)
where the o, & Ay are naturally occuring "Euler classes" (as
with e, In the Z/2-case}. This will be developed in the

following sections.



