
Chapter 7

Fractals and Dimension

Dimension

We say that a smooth curve has dimension 1, a plane has dimension 2 and so on, but it is not so obvious

at first what dimension we should ascribe to the Sierpinski gasket or the von Koch snowflake or even to

a Cantor set.

These are examples of fractals (the word is due to Mandelbrot in the 1970s, and is used to describe a

“jagged” or “broken” object). Most of the fractals we shall deal with have some sort of “self-similarity”

on different scales, often because they are constructed by some repetitive rule, and we can use this

self-similarity to compute the dimension.

Let S be a subset of the unit square I × I in the plane, for example a smooth line segment. Divide

the square up into into 1/n2 little squares, each of side length 1/n. If S is a smooth line segment, the

number of little squares that it meets will be (roughly) proportional to n. If S is a “2-dimensional shape”

(for example the interior of a polygon or of a circle) the number of little squares that it meets will be

(roughly) proportional to n2. We shall say that S has dimension α if the number of little squares that S

meets is proportional to nα as n tends to infinity.

Definition

If S is a bounded subset of Rn we set N(S, d) to be the number of boxes (little cubes) of side length d

needed to cover S. Then the (box-counting) dimension of S is defined to be:

dim(S) = lim
d→0

ln(N(S, d))
ln(1/d)

The box-counting dimension is only defined if this limit exists. There is a more technical definition (which

we shall see later) known as Hausdorff dimension which always exists for a bounded subset of Rn, and

which agrees with the box-counting dimension in most cases that the latter exists.

Example 1

Let Q be the unit square in R2. Then N(Q, 1/n) = n2, so

dim(Q) = lim
n→∞

ln(n2)
ln(n)

= 2
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Note that dimension is unchanged by the dimension of the space in which S is embedded. If we think

of our square S as sitting in R3, and we compute its dimension by covering it with little cubes of side

length 1/n, we will still have N(Q, 1/n) = n2 and so we will still get dim(Q) = 2.

Example 2

Consider the middle thirds Cantor set C. Here we have:

N(C, 1/3) = 2, N(C, 1/9) = 4 and inductively N(C, 1/3n) = 2n

Hence

dim(C) = lim
n→∞

ln(2n)
ln(3n)

=
ln(2)
ln(3)

(= log3(2))

But not all Cantor sets have this dimension. There are Cantor sets in the real line of every dimension

between 0 and 1 (including both extremes), and Cantor sets in the plane of every dimension between 0

and 2.

Example 3

Consider the Sierpinski gasket S of side length 1. It is easily seen that

N(S, 1) = 1, N(S, 1/2) = 3, N(S, 1/4) = 9 and inductively N(S, 1/2n) = 3n

Hence

dim(S) = lim
n→∞

ln(3n)
ln(2n)

=
ln(3)
ln(2)

(= log2(3))

We remark that for the Sierpinski gasket the observation that N(S, 1/2n) = 3n is even more obvious if

we use “little triangles of side length 1/2n” as our boxes, rather than little squares of side length 1/2n.

In fact it can be shown that one gets the same answer for the box-counting dimension whatever shape of

box one uses (provided of course that one uses the same shape on all scales).

Example 4

Let S be von Koch Snowflake, obtained by from the unit interval on the real line by replacing the

middle third by the other two sides of an equilateral triangle of side length 1/3, then repeating the same

construction of each of resulting four line segments, and so on. Covering the snowflake with little triangles

of side length 1/3n we see that N(S, 1/3n) = 4n, and hence

dim(S) = lim
n→∞

ln(4n)
ln(3n)

=
ln(4)
ln(3)

= 2
ln(2)
ln(3)
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Notes

1. The length of the von Koch snowflake S (also called the one-dimensional measure of S) is infinite,

since limn→∞(4/3)n = ∞.

2. The von Koch snowflake is an example of a more general construction, where one start with the unit

interval and replaces it with a copy of a generator, a shape made up of straight line segments each of side

length 1/k, then replaces each of these straight line segments by a small copy of the generator, and so

on. We can also construct space-filling curves, that is to say curves which fill the whole unit square, in a

similar way. Of course a space-filling curve has dimension 2.

Here is the definition of Hausdorff dimension (not for examination). Let S be a bounded subset of some

Rn. First we define the Hausdorff p-dimensional measure of S

M(S, p) = sup
ε>0

inf{
∞∑

i=1

(diam(Ai))p :
∞⋃

i=1

Ai ⊇ S and diam(Ai) < ε}

It can be shown that for every S there exists a non-negative real number D such that

M(S, p) = ∞ ∀p < D and M(S, p) = 0 ∀p > D

This value of D is called the Hausdorff dimension of S.

For example the von Koch snowflake has infinite 1-dimensional measure (length) and zero 2-dimensional

measure (area). So its Hausdorff dimension is somewhere in between - in fact it is the same as its

box-counting dimension, namely 2 ln(2)/ ln(3).

Iterated Function Systems

The middle thirds Cantor set C has some obvious self-similarities. Define maps f1 and f2 from I = [0, 1]

into I by

f1(x) = x/3 f2(x) = x/3 + 2/3

Each of these maps contracts C onto a smaller copy within C. Iterating f1 on its own we have simple

dynamics (an attractor at x = 0), and iterating f2 on its own we again have simple dynamics (an attractor

at x = 1). But if we iterate both together, choosing f1 or f2 at random at each iteration, with probability

1/2, we obtain the whole of C as an attractor for the system. The orbit of any initial point x0 approaches

closer and closer to C and moreover with probability 1 it approaches arbitrarily close to every point of

C. Note that if the initial point x0 is in C then its orbit remains in C. {f1, f2} is an example of what

Barnsley calls an iterated function system. It can be used to very efficiently plot the points of the middle

thirds Cantor set. We simply start our computer off at the point x0 = 0 and randomly apply f1 and f2
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(or we start at any point x0 ∈ I, but then we should not plot the first few dozen points at it might take

that long for the orbit to get close to C).

Definition

An iterated function system (IFS) for a closed bounded subset S of Rn is a set of maps {f1, f2, . . . , fm}

such that each fi is a map Rn → Rn, and such that

(i) each fi is a contraction (i.e. ∃k < 1 such that ||f(x)− f(y)|| ≤ k||x− y||∀x, y ∈ Rn), and

(ii)
⋃m

i=1 fi(S) = S.

The middle thirds Cantor set is an example, with f1 and f2 as above and the contraction ratio k = 1/3.

Another example is the Sierpinski gasket with maps f1, f2 and f3 contracting the triangle os side length

1 onto each of three triangles of side length 1/2. If (to make writing down explicit maps easier) instead

of an equilateral triangle we take as our starting triangle the one with vertices at (0, 0), (1, 0) and (0, 1)

then we can define an IFS for the “45 degree Sierpinski gasket” by taking the maps:

f1(x, y) = (x/2, y/2) f2(x, y) = f1(x, y) + (0, 1/2) f3(x.y) = f1(x, y) + (1/2, 0)

Here we have 3 maps, and each has contraction ration 1/2. Notice that if we have an IFS for a fractal S

with the properties that the fi all have the same contraction ratio λ, and the fi(S) do not overlap (if at

worst they meet at their edges) then we can use a box counting argument to deduce that the dimension

of S is ln(m)/ ln(1/λ), where m is the number of maps in the IFS.

If we have a picture which has appropriate self-similarities on different scales we can use the associated

IFS as a very efficient method of reproducing the picture. A beautiful example is Barnsley’s fern which

can be reproduced using an IFS consisting of just four linear maps (or three if you don’t mind not having

the stalks). To get the best pictures it often helps to assign different probabilities to the different maps

rather than to choose them at random with the same probability.

To get an idea of the mathematics behind the concept of an IFS, we need the idea of the “distance”

between two closed bounded subsets A and B of Rn. We set

d(A,B) = maxx∈Aminy∈Bd(x, y)

where d(x, y) is the Euclidean distance between x and y in Rn. Note that d(A,B) 6= d(B,A) in general:

for example if A ⊂ B but A 6= B then d(A,B) = 0 but d(B,A) 6= 0. We define the Hausdorff distance

between A and B to be:

D(A,B) = max{d(A,B), d(B,A)}
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It is easily shown that D(A,B) = 0 ⇔ A = B.

Let H(Rn) denote the set of all closed bounded subsets of Rn. Equip H(Rn) with the Hausdorff metric

(defined above). Then H(Rn) is a complete metric space (i.e. all Cauchy sequences have limits).

The Contraction Mapping Lemma

If X is a complete metric space and f : X → X is a continuous map such that there exists a constant

k < 1 with d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ X, then f has a unique fixed point, and all orbits of f

tend to that fixed point.

This is a very well known and very useful result. It is not deep or difficult, and while we shall not prove

it here, all that is needed to prove it is to know that a geometric series with ratio k < 1 has a finite sum.

The Contraction Mapping Lemma provides a mathematical justification of the technique of using an IFS

for a set S to draw a picture of S. Given an IFS {f1, . . . fm} on Rn, we simply observe that the map

F : Y → f1(Y ) ∪ f2(Y ) ∪ . . . ∪ fm(Y )

defines a contraction mapping on the complete metric space H(Rn). It follows from the Contraction

Mapping Lemma that F has a unique attractor S. This set S is the attractor of the IFS.
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