
8 Quasiconformal mappings: the Measurable Riemann Mapping
Theorem and its applications

8.1 The moduli space and the Teichmüller space of a torus

Given any two Riemann surfaces S1,S2 which are homeomorphic to a sphere, there is conformal homeomorphism
S1 → S2. This follows from the Uniformisation Theorem, which tells us that every Riemann surface has universal
cover Ĉ, C or D. But Riemann surfaces which are homeomorphic to the torus are another matter. Every such
surface S has universal cover C, and the group Γ of covering transformations of S is a subgroup of Aut(C)
isomorphic to Z×Z. Thus Γ is generated by two translations of C in directions which are linearily independent
over R. By conjugating by a scaling and a rotation of C we may assume that one of the translations is z → z+1
and the other is z → z + λ, some λ ∈ C− R.

Proposition 8.1
Let S1 be the torus C/Γ1, where Γ1 is generated by z → z + 1 and z → z + λ1, and let S2 be the torus C/Γ2,
where Γ2 is generated by z → z+1 and z → z+λ2. Then there is a conformal homeomorphism (i.e. an analytic
bijection) between S1 and S2 if and only if λ2 = g(λ1) for some g ∈ PSL(2,Z).

Proof First observe that if λ2 = λ1 + 1 then Γ2 = Γ1 so S1 and S2 are the same torus, and if λ2 = −1/λ1 then
the lattice Γ2 ⊂ C is obtained from the lattice Γ1 by rotating and rescaling C, so S2 is isomorphic to S1. Since
these two operations generate the action of PSL(2,Z) on λ1, it follows that if λ2 = g(λ1) for any g ∈ PSL(2,Z)
then S2 is isomorphic to S1.

Conversely, if S2 is isomorphic to S1 then by the Uniformisation Theorem there must exist an automorphism
of C, fixing the origin and conjugating the generators z → z + 1 and z → z + λ1 of Γ1 to a pair of generators
of Γ2, that is to say there must exist 0 6= µ ∈ C such that Γ2 is the group generated by z → µ and z → µλ1.
Since Γ2 is also generated by z → z + 1 and z → z + λ2 this implies there exist a, b, c, d ∈ Z with ad − bc = 1
such that (

λ2
1

)
=

(
a b
c d

)(
λ1
1

)
and so λ2 is the image of λ1 under an element of PSL(2,Z). QED

Thus we get a different complex structure on a topological torus for each different point λ in our fundamental
domain ∆ for the action of the modular group PSL(2,Z). The complex structures on the torus therefore
correspond to the points of the moduli space

M = H2
+/PSL(2,Z)

which is a sphere with a puncture point (corresponding to ∞), a cone point of angle π (corresponding to i) and
a cone point of angle 2π/3 (corresponding to (−1 + i

√
3)/2). Given a Riemann surface of genus 1, we can mark

it by choosing two homotopy classes of loops which generate the fundamental group. This corresponds in the
universal cover to choosing generators of the covering transformation group Γ = Z × Z. The marked complex
structures on the torus correspond to the points on the universal cover of M, the Teichmüller space T = H2

+.

Remark. For a genus g surface Sg, with g ≥ 2, the Teichmüller space T (Sg) is a copy of R6g−6 (one can
give explicit coordinates in terms of lengths of certain loops on Sg), and the moduli space is the qutioent of
Teichmüller space by the mapping class group of Sg.

However one can construct a homeomorphism from a Riemann surface of genus g to any other Riemann surface
of the same genus if we weaken the requirement of conformality to a requirement that the homeomorphism
should ‘send infinitesimal circles to infinitesimal ellipses having bounded ratios of internal to external diameter’.
Such homeomorphisms are called quasiconformal homeomorphisms.

Example Figure 19 illustrates a quasiconformal homeomorphism which sends the small circles on the left hand
torus to the small ellipses on the right hand torus.
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Figure 19: There is a quasiconformal homemorphism between these two tori

8.2 Quasiconformal homeomorphisms and the Measurable RiemannMapping The-
orem

An invertible linear map R2 → R2 sends a circle centred at the origin to an ellipse centred at the origin, so a
C1-diffeomorphism f : R2 → R2 sends an infinitesimal circle at each point x ∈ R2 to an infinitesimal ellipse at
f(x).

Definition A homeomorphism f between open sets in C is said to be K-quasiconformal if it sends infinitesimally
small round circles to infinitesimally small ellipses which have ratio of semi-major axis length to semi-minor axis
length less than or equal to K. (Technical point: we do not require that f be C1, only that f have “distributional
derviatives in L1” . See Milnor, Appendix F.)

We can write f as a function of z and z̄ (if f were conformal it would just be function of z). We can then
associate to f the Beltrami form:

µ(f) =
∂f

∂z̄
/
∂f

∂z

and it is straightforward to prove that f is K-quasiconformal, with K = (1 + k)/(1 − k), if and only if µ(f)
is defined almost everywhere and has essential supremum ||µ||∞ = k < 1. (See, for example, Carleson and
Gamelin.)

Recall that the Riemann Mapping Theorem asserts that if U is a bounded open simply-connected subset of C,
then there exists a conformal orientation-preserving homeomorphism φ : U → D, where D denotes the open unit
disc in C. Clearly φ is unique up to post-composition by orientation-preserving conformal homeomorphisms of
D, that is to say fractional linear maps which send the unit disc D to itself.

The Measurable Riemann Mapping Theorem asserts the analogous result in the case that in addition to U we are
given an assigned complex dilatation µ(z) at every point z ∈ U (except possibly at points in a set of Lebesgue
measure zero) and rather than seeking a conformal homeomorphism φ from U to D, what we are looking for is
a quasiconformal homeomorphism f : U → D which has the prescribed dilatation µ(z) at almost every point
z ∈ U . We only require that the assignment z → µ(z) be measurable, not that it be continuous.

The Measurable Riemann Mapping Theorem is due to Morrey, Bojarski, Ahlfors and Bers. It has various versions
appropriate for different applications. The statement below is that of Théorème 5 in Douady’s paper in LMS
Lecture Notes Volume 274 ‘The Mandelbrot set. Theme and Variations’ (edited by Tan Lei): it is expressed in
terms of functions defined on the whole of C, but can be adapted to suit other situations, for example when the
domain of µ is a bounded simply-connected open subset U of C and we seek a quasiconformal homeomorphism
f : U → D or indeed when the domain of µ is the Riemann sphere Ĉ = C ∪ {∞} and we seek a quasiconformal

homeomorphism f : Ĉ→ Ĉ.

Theorem 8.2 (The Measurable Riemann Mapping Theorem.) Let µ be any L∞ function C→ C with
||µ||∞ = k < 1. Then there exists an orientation-preserving quasiconformal homeomorphism f : C → C which
has complex dilatation µ(f) equal to µ almost everywhere on C. This homeomorphism is unique if we require
that f(0) = 0 and f(1) = 1. Furthermore if µ depends analytically (respectively continuously) on a parameter λ
then the homeomorphism f also depends analytically (respectively continuously) on λ.
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8.3 1st Application: maps in the same hyperbolic component of the interior of
the Mandelbrot set are quasiconformally conjugate

For simplicity consider the component consisting of the interior of the main cardioid M0. We know that for
any c′ 6= c, both in int(M0), qc is not conformally conjugate to qc′ since they have different multipliers at the
attracting fixed point. However, provided both c and c′ are non-zero, qc′ is quasiconformally conjugate to qc. To
prove this, consider a small circle γ0 around the attracting fixed point of qc (sufficiently small that it does not
contain the critical value c). The circle γ0 and its image γ1 = qc(γ0) bound an annulus A; the map qc identifies
the outer boundary γ0 of A with its inner boundary γ1 and the quotient of A under this identification is a torus
S. Similarly for q′c we obtain an annulus A′ and a torus S ′. Although S ′ is not conformally homeomorphic
to S (since the multipliers of the two quadratic maps at their respective attracting fixed points are different),
they are quasiconformally homeomorphic, since this is true for any pair of Riemann surfaces of genus 1. Let h
be quasiconformal homeomorphism S → S ′. The derivative of h sends the field of infinitesimal circles on S to
a field of infinitesimal ellipses on S ′. We can ‘spread’ this field of ellipses to the whole of the attracting basin
int(K(qc′)) of the fixed point of qc′ by repeatedly applying qc′ and q−1c′ to the lift A′ of S ′. This ellipse field,

together with the infinitesimal round circle field on Ĉ− int(K(qc′)), provides us with an ellipse field on Ĉ which

is preserved by the map qc′ . Applying the Measurable Riemann Mapping Theorem to this ellipse field on Ĉ
yields a quasiconformal conjugacy from qc′ : Ĉ→ Ĉ to a map q : Ĉ→ Ĉ which is

(i) holomorphic (because q preserves the field of infinitesimal round circles),

(ii) a polynomial (because q(∞) =∞ = q−1(∞)), and

(iii) necessarily conformally conjugate to qc (because by construction q has the correct multiplier at its
attracting fixed point).

We can apply a similar argument to any hyperbolic component of the interior of the Mandelbrot set M ,
replacing ‘attracting fixed point’ by ‘attracting periodic cycle’ and ‘qc’ by ‘(qc)

n’. But note that each hyperbolic
component of int(M) contains one special value c0 where the attracting cycle is superattracting (i.e. the critical
point 0 is periodic), and that qc0 is not even topologically conjugate to the other qc’s: nevertheless the Julia set
J(qc0) for this ‘postcritically finite’ map qc0 is still quasiconformally homeomorphic to the other J(qc)’s, a fact
that can be proved by remembering that the Julia set is the closure of the set of all repelling periodic points,
and applying the theory of ‘holomomorphic motions’ to this set.

Remark Notice that when we have a periodic attractor, once we have deformed the complex structure on
the ‘fundamental torus’ A for the attractor, this determines the deformation everywhere in the basin of the
attractor. If there were to exist a ‘wandering component’ of the Fatou set F (qc) for some c, we would have
much more freedom to deform qc: in fact (as Sullivan proved) we would have an infinite dimensional space of
quadratic polynomials none of which would be conformally conjugate to another. This would contradict the
fact that up to conformal conjugacy there exists only a one-complex-dimensional family of qc’s. (See Milnor,
Appendix F, for the details of Sullivan’s proof).

8.4 2nd Application: Bers simultaneous uniformisation: matings between Fuch-
sian groups

Recall that a Fuchsian group is a discrete subgroup of PSL2(R). Let G1 be a geometrically finite Fuchsian group
(a Fuchsian group which has a fundamental domain with a finite number of sides). Then G1 acts (by fractional

linear maps) on the upper half U of the complex plane. Suppose the limit set of this action is R̂ = R∪{∞}. Of
course G1 also acts (by fractional linear maps) on the lower half plane L and the limit set of this action is also

R̂ = R∪{∞}. Let G2 be another geometrically finite discrete subgroup of PSL2(R), such that G2 is isomorphic
to G1 as an abstract group, and such that the action of G2 on U is topologically conjugate to that of G1 on U .

Theorem 8.3 (Bers’ Simultaneous Uniformisation Theorem)

Given subgroups G1 and G2 of PSL2(R) with the properties described above, there exists a discrete subgroup G

of PSL2(C) the action of which on the Riemann sphere Ĉ has the following properties:
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Figure 20: Fundamental domains for G1 and G2 on the upper and lower half-planes

(i) The limit set of the action is a quasicircle Λ ⊂ Ĉ.

(ii) On one component, U , of Ĉ− Λ the action of G is conformally conjugate to the action of G1 on U .

(iii) On the other component, L, of Ĉ− Λ the action of G is conformally conjugate to the action of G2 on L.

In the situation described by (i),(ii) and (iii) we might call the Kleinian group G (discrete subgroup of PSL2(C))
acting on Ĉ a mating between the Fuchsian group G1 (discrete subgroup of PSL2(R)) acting on U and the
Fuchsian group G2 acting on L. The action of G is a holomorphic realisation of the dynamical system obtained
by gluing together the actions of G1 on U and G2 on L by means of a (topological) homeomorphism from the
boundary ∂U of U to the boundary ∂L of L, which conjugates the action of G1 on ∂U to that of G2 on ∂L.

Bers’ Simultaneous Uniformization Theorem may be proved using the Measurable Riemann Mapping Theorem,
as we now outline. Since G1 is geometrically finite, the orbit space L/G1 is a Riemann surface with a finite
number of marked cone points and puncture points. The orbit space L/G2 is a Riemann surface with a combi-
natorially identical set of data. It follows by standard Riemann surface theory that there exists a quasiconformal
diffeomorphism h : L/G1 → L/G2, sending marked points to marked points. The complex dilatation µ of h,
when composed with the orbit projection, yields an L∞ function µ : L → C, which we may extend to the whole
of Ĉ by defining µ(z) to be zero on Ĉ − L = U . Equivalently, if one prefers to think in terms of measurable

fields of ellipses, the field of ellipses defined by µ on L/G1 is pulled back to L and extended to the rest of Ĉ
by the standard (round) circle field on U . By the measurable Riemann Mapping Theorem there now exists

a quasiconformal diffeomorphism φ : Ĉ → Ĉ having complex dilatation µ. But, as is easily verified by the
chain rule, each element of G = φG1φ

−1 has complex dilatation zero, and so maps infinitesimal round circles
to infinitesimal round circles. Thus G is a group of conformal automorphisms of Ĉ, that is to say a subgroup of
PSL2(C). The limit set of G is the set Λ = φ(R̂), which is a quasicircle by definition, since it is the image of a

round circle under a quasiconformal homeomorphism φ : Ĉ → Ĉ. Moreover φ provides a conformal conjugacy
between the actions of G1 on U and G on U = φ(U), and φ ◦ h−1 : L → L = φ(L) provides a conformal
conjugacy between the actions of G2 on L and G on L = φ(L), where here h : L → L denotes the lift of our
quasiconformal diffeomorphism h : L/G1 → L/G2.

A family of examples: once-punctured torus groups

Consider discrete representations of the free group F2 on two generators X,Y in PSL2(R). Let A and B be
elements of PSL2(R) representing X and Y , and restrict attention to the case that A and B are hyperbolic
and their commutator ABA−1B−1 is parabolic. A generic representation of this kind has fundamental domain
a quadrilateral in the upper half-plane, with all four vertices on the (completed) real line and all four sides
geodesics in the hyperbolic metric, that is to say arcs of semicircles orthogonal to the real line: the group
elements A and B identify pairs of opposite sides of this quadrilateral, and the orbit space is a punctured
torus. The cross-ratio of the four vertices of a fundamental domain is a conjugacy invariant of the group (as a
subgroup of PSL2(R)). Any two representations G1 and G2 of this kind (which in general will have different
have different cross-ratios) provide examples of groups to which we may apply Bers’ Theorem. We consider G1

acting on the upper half-plane and G2 acting on the lower (Figure 20). In general their actions will only match
combinatorially on their common limit set, the completed real axis, but if we glue them together combinatorially
the conclusion of Bers’ theorem tells us that we can realise this topological mating as a holomorphic dynamical
system, a Kleinian group (discrete subgroup of PSL2(C)) which has as its limit set a quasicircle in place of R̂.
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Figure 21: The Straightening Theorem

8.5 3rd Application: Polynomial-like mappings

In their paper On the dynamics of polynomial-like mappings (Ann Sci Ec Norm Sup 1985), Douady and Hubbard
defined the notion of a polynomial-like map. This is a proper holomorphic surjection p : V → U where U
and V are simply-connected open sets in C with U ⊃ V . Such a map has a well-defined filled Julia set
K(p) =

⋂
n≥0 p

−n(V ).

Theorem 8.4 (The Straightening Theorem of Douady and Hubbard) For every polynomial-like map-
ping p there is a genuine polynomial map P which is hybrid equivalent to p.

Here hybrid equivalent means that there is a quasiconformal conjugacy h between p and P on neighbourhoods of
K(p) and K(P ) such that the Beltrami form of h vanishes on K(p) (so in particular h is conformal on int(K(p)).
In the case that K(p) is connected, we can think of this as a mating between the polynomial-like map p on its
filled Julia set and the polynomial z → zn on its filled Julia set.

At the heart of the proof of the Straightening Theorem is the Measurable Riemann Mapping Theorem. The
idea is as follows. We suppose, for simplicity, that U and V are topological discs with smooth boundaries. A
polynomial-like map p has a well-defined degree (the number of times p winds ∂V around ∂V , or equivalently
the number of points in a generic p−1(z)). Suppose this degree is n. A = U − V is an annulus equipped with
a map p of degree n from its inner boundary onto its outer boundary. Let B be the annulus between a circle
γ0 of radius r > 1 in C centred at the origin and its image γ1 under z → zn. See Figure 21. It can be shown
that it is possible construct a quasiconformal homeomorphism h : A → B conjugating the boundary map on
A to the boundary map on B. Pull back the associated ellipse field on U − V to an ellipse field on U −K(p),
by repeatedly applying p−1, and extend it to the whole of U by using the standard field of round circles on
K(p). Now add the disc D = {z : |z| ≥ r} ∪ {∞} to U by pasting the annulus A to the annulus B using the
quasiconformal homeomorphism h to do the pasting. The maps p on V and z → zn on D fit neatly together
to give a map a degree n map Q : Ĉ→ Ĉ which preserves the ellipse field. Applying the Measurable Riemann
Mapping Theorem to the ellipse field yields a quasiconformal homeomorphism f : Ĉ → Ĉ straightening it to
the field of round circles and now fQf−1 : Ĉ→ Ĉ is a genuine polynomial with the desired properties. QED

Tuning, renormalisation and baby Mandelbrot sets

It turns out that there are many parameter values c in the Mandelbrot set M where in some region of the
dynamical plane the first return map (qc)

n is a quadratic-like map, which is then hybrid equivalent to some qc′ .
This process of ‘renormalisation’ is the dynamical counterpart to the phenomenon of ‘tuning’ (replacing digits
0 and 1 in external ray addresses by finite strings of digits θ− and θ+), discussed briefly in Section 7; it follows
from the Straightening Theorem that the Julia set of qc then contains copies of J(qc′). Families of quadratic-like
first return maps satisfying certain conditions are called ‘Mandelbrot-like families’ by Douady and Hubbard in
their paper (Ann Sci Ec Norm Sup 1985) : these give rise to ‘baby Mandelbrot sets’ - small copies of M on
finer and finer scales. Indeed every point on the boundary of the Mandelbrot set M is an accumulation point
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Figure 22: A quadratic rational map mating Douady’s rabbit with z → z2 − 1

Figure 23: A holomorphic correspondence mating z → z2 − 1 with the modular group

of baby Mandelbrot sets (see McMullen’s paper in the LMS Lecture Notes volume edited by Tan Lei).

Matings of polynomials

The construction described in the outline proof of Theorem 8.4 (the Straightening Theorem) can equally well
be used to mate qc with qc′ for any pair c, c′ in the interior of the cardioid M0, that is to construct a rational
map q of degree two which has Julia set J(q) a quasicircle and which is conformally conjugate to qc on one

component of Ĉ− J(q) and to qc′ on the other component. A more challenging task is to mate qc with qc′ for
c and c′ elsewhere in the Mandelbrot set, as J(qc) and J(qc′) are now quotients of the circle (in the case that
they are locally connected) and of course in general they will be different quotients. Mary Rees and Tan Lei
proved that hyperbolic quadratic polynomials qc, qc′ can be mated if and only if c′ is not in the conjugate limb
of M to that of c (the proof involves an application of Thurston’s criterion for when a topological branched
covering of the sphere is ‘equivalent’ to a rational map). See Figure 22. Finally we remark that if we extend our
notions of rational maps and Kleinian groups to include holomorphic correspondences, it becomes possible to
mate a hyperbolic quadratic polynomial with the modular group (Figure 23), but that is another story.... See
the forthcoming book of Bodil Branner and Núria Fagella for the technical details of ‘quasiconformal surgery’
and many more applications.

The list of ‘references’ on the next page contains only books. Relevant journal articles have been referred to
individually in the course of these Notes.
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mathématiques d’Orsay 1984/85

[8] Bodil Branner and Núria Fagella, Quasiconformal Surgery in Holomorphic Dynamics, Cambridge Univer-
sity Press (to appear 2013/14)

[9] Edson de Faria and Wellington de Melo, Mathematical Tools for One-Dimensional Dynamics, Cambridge
studies in advanced mathematics No. 115, CUP 2008

[10] G.Jones and D.Singerman, Complex Functions, an Algebraic and Geometric Viewpoint, CUP 1987

[11] B.Maskit, Kleinian Groups, Springer Verlag 1988

[12] Al Marden, Outer circles: an introduction to hyperbolic 3-manifolds, CUP 2007

[13] Wellington de Melo and Sebastian van Strien, One-Dimensional Dynamics, Springer Verlag 1993

[14] John Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies No. 160, Princeton
University Press 2006

[15] S.Morosawa, Y.Nishimura, M.Taniguchi and T.Ueda, Holomorphic Dynamics , Cambridge studies in ad-
vanced mathematics No. 66, CUP 2000

[16] Curtis T. McMullen, Complex Dynamics and Renormalization, Annals of Math. Studies No. 135, PUP
1994

[17] Curtis T. McMullen, Renormalization and 3-manifolds which fibre over the Circle, Annals of Math. Studies
No. 142, PUP 1996

[18] D.Mumford, C.Series and D.Wright, Indra’s Pearls, the Vision of Felix Klein, CUP 2002

[19] K.Pilgrim, Combinations of Complex Dynamical Systems, Lecture Notes in Mathematics No. 1827, Springer
Verlag 2003

[20] J.G.Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics Vol 149, Springer Verlag
1994

[21] Mary Rees, Views of Parameter Space: Topographer and Resident, Astérisque 288, Soc. Math. France, 2003
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