
6 Fundamental domains and examples of Kleinian groups

6.1 Fundamental domains

Let G be a Kleinian group, acting on H3
+, on Ĉ, or on H3

+ ∪ Ĉ, and let Ω(G) be the ordinary set for the action.

Definition A fundamental domain for the action of G on Ω(G) is a subset F of Ω(G) such that

(i)
⋃
g∈G

g(F̄ ) = Ω(G) and

(ii) g(F ) ∩ h(F ) = ∅ when g 6= h (g, h ∈ G)

(where in (i), F̄ denotes the closure of F ).

Thus the images of F tesselate Ω(G) (they cover it without overlapping).

Example The set {x + iy : 0 < x < 1} is a fundamental domain for the action of z → z + 1 on the complex
plane C (as indeed is the set {x+ iy : 0 ≤ x < 1}).

Note The precise definition of the term ‘fundamental domain’ varies from author to author: some require F
to be closed - in which case of course one must modify condition (ii) above to require only that g(F )∩ h(F ) be
contained in the boundary of both g(F ) and h(F ), rather than it be empty.

6.2 Dirichlet domains

The simplest construction of fundamental domains makes use of a metric. So for the time being we consider an
action of G on H3

+ (or, if G is Fuchsian, on H2
+).

Choose x ∈ H3
+ such that for all g ∈ G except the identity, gx 6= x. (Exercise: show that there are at most a

discrete set of points x ∈ H3
+ which do not have this property.) Now for each g ∈ G define the half-space

Hg = {y ∈ H3
+ : d(y, x) < d(y, gx)}

where d(y, x) denotes the hyperbolic distance from y to x.

Definition The Dirichlet domain centred at x is the set

Dx =
⋂

g∈G−{I}

Hg

Thus Dx consists of those points of H3 which are nearer to x than they are to any gx (g ∈ G− {I}).

This construction was introduced by Dirichlet in the 1850’s for the study of Euclidean groups, and later adapted
by Poincaré for the hyperbolic case.

Proposition 6.1 For any Kleinian group G, a Dirichlet domain Dx is a fundamental domain for the action of
G on H3

+.

Proof. We must prove that Dx satisfies conditions (i) and (ii) of the definition of a fundamental domain. We
first observe that

g(Dx) = {y : d(y, gx) < d(y, hx) ∀h ∈ G− {g}}

since
y ∈ g(Dx)⇔ g−1y ∈ Dx ⇔ d(g−1y, x) < d(g−1y, kx)⇔ d(y, gx) < d(y, gkx) ∀k ∈ G− {I}

Now take any y ∈ H3
+. Take g ∈ G (not necessarily unique) such that d(y, gx) is minimal. Then y ∈ g(D̄x) so

property (i) holds. Moreover it is clear that g(Dx) ∩ h(Dx) = ∅ if g 6= h so property (ii) holds too. QED
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Figure 10: Polygons (in the Poincaré disc model)

Recall that a subset X ⊂ H3
+ is said to be convex if given any x, y ∈ X the segment of geodesic joining x to y

is entirely contained in X.

Proposition 6.2 A Dirichlet domain Dx for a Kleinian group G is convex and locally finite (i.e. each compact
subset K of H3

+ meets only finitely many g(Dx)).

Proof. Convexity is obvious since Dx is defined to be an intersection of half-spaces, each of which is convex.
For local finiteness, take the Poincaré disc model of H3

+ and without loss of generality take x to be the origin
and K to be the closed ball with centre the origin and (hyperbolic) radius ρ. We claim that if g is any element
of G such that gD0∩K is non-empty then d(0, g0) ≤ 2ρ, which will prove local finiteness since G, being discrete,
contains only finitely many elements with d(0, g0) ≤ 2ρ (else the orbit of 0 would have an accumulation point
in H3

+, contradicting discontinuity of the action of G there). To prove the claim, take any y ∈ gD0 ∩K; then
d(0, y) ≤ ρ (since y ∈ K) and d(g0, y) ≤ d(0, y) (since y ∈ gD0) so d(0, g0) ≤ ρ+ ρ = 2ρ. QED

Definition A convex region P obtained as the intersection of countably many half spaces Hj in H3
+, with the

property that any compact subset of P meets only finitely many of the hyperplanes ∂Hj is called a polyhedron
(and a subset of H2

+ with the analogous property is called a polygon).

Thus Proposition 6.2 says that a Dirichlet domain is a polyhedron. Note that the proposition does not say that
Dx has only finitely many faces, at least it only says this when Dx is compact. When Dx has finitely many faces
(for some x) we say that G is geometrically finite.

Now consider any point y on the boundary of Dx, so y is on the boundary of Hg for one of the half-spaces
defining Dx, in other words d(y, x) = d(y, gx) for some g ∈ G. Then

d(g−1y, g−1x) = d(y, x) = d(y, gx) = d(g−1y, x)

so g−1y also lies in the boundary of Dx. Thus each face of Dx is carried to another face of Dx by an appropriate
element of G. We call these elements side-pairing transformations.

Example Consider the standard action of PSL(2,Z) on the complex upper half-plane. Then for any point iv on
the imaginary axis, with v > 1, the Dirichlet domain is the region {z ∈ H2

+ : |z| > 1, |Re(z)| < 1/2} illustrated
in Figure ??, and the side-pairing transformations on this domain are T : z → z + 1, S : z → −1/z. (Proof:
exercise.)

6.3 Poincaré’s Polyhedron Theorem

We have seen that given a Kleinian group G, Dirichlet’s construction allows us to find a fundamental domain
on which G acts by side-pairing transformations. Poincaré’s Polyhedron Theorem takes us in the opposite
direction: given a convex polyhedron in H3 (or polygon in H2) and a set of side-pairing transformations for that
polyhedron it gives us necessary and sufficient conditions for the group generated by those transformations to
be discrete (i.e. Kleinian) and for the given polyhedron to be a fundamental domain for the group action. The
precise conditions, though conceptually straightforward, are a little cumbersome to state, so we shall restrict
ourselves to the two-dimensional case for most of the time. Our main concern (in the next subsection) will be
to understand examples.

Let P be a polygon in H2
+. Note that the definition allows various possibilities. P may be compact (as on the

left in Figure 10), it may have ideal vertices (vertices on the boundary of H2
+, as in the middle in Figure 10),

or may have infinite area (as on the right in Figure 10).
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Definition A side-pairing transformation of P is an isometry gs of H2
+, sending one side s of P bijectively to

another, s′, and such that gs(P ) ∩ P = s′.

Notation

For xj a vertex of P which lies inside H2
+ (and so the two edges of P meeting at xj meet at a non-zero angle),

we let Nj denote an ε-neighbourhood (in the hyperbolic metric) of xj intersected with P .

For yj be an ideal vertex of P (so the two edges of P ‘meeting’ at yj have angle zero between them), we let N ′j
denote an ε-neighbourhood (in the Euclidean metric) of yj intersected with P .

Theorem 6.4 (Poincaré’s Polygon Theorem) Let P be a polygon in H2
+, equipped with a set of side-pairing

transformations gs, one for each side of P and with gs′ = g−1s if gs pairs s with s′. If there exists a real ε > 0
such that:

• for each vertex x0 ∈ H2
+ of P there are vertices x1, ..., xn of P (not necessarily all different) and isometries

f0 = I, f1, ...fn, fn+1 = I such that

(i) each fj+1 = fjgs for some s, and

(ii) fj(Nj) are non-overlapping and have union the disc centre x0 radius ε

and

• for each ideal vertex y0 of P there are ideal vertices y1, ..., yn of P and isometries f0 = I, f1, ...fn+1 with fn+1

fixing y0 and parabolic, and such that

(i)′ each fj+1 = fjgs for some s, and

(ii)′ the fj(N
′
j) are contiguous and non-overlapping

then

the group G generated by the side-pairing transformations gs is discrete, P is a fundamental domain for the
action of G on H2

+, and all relations in G are consequences of cycles fn+1 = I corresponding to vertices of P
in H2

+.

For a proof of this theorem see Beardon’s book on discrete groups, or Ratcliffe or Maskit.

Comments

1. The condition on ideal vertices does not introduce any new relations, but it does ensure that P/G is complete
(or equivalently that the translates of P cover the whole of H2

+).

2. The version for H3
+ (Poincaré’s Polyhedron Theorem) is analogous. Now the ‘sides’ that are paired by the

gs are two-dimensional faces and instead of conditions (i) and (ii) we ask that neighbourhoods of edges of P fit
together neatly (neighbourhoods of vertices then automatically fit together properly). Around edges which end
at ideal vertices we ask that there be parabolic cycles (as in (i)′,(ii)′ above). Each edge which has ends inside
H3 gives rise to a relation between the gs and all relations in G are consequences of these.

6.4 Examples of Fuchsian and Kleinian groups

Examples in PSL(2,R) (Fuchsian groups)

1. PSL(2,Z) (the modular group)

Take our standard fundamental domain with side-pairings given by S : z → −1/z and T : z → z + 1. Around
x1 = (1 + i

√
3)/2 the picture is just that around x0 = (−1 + i

√
3)/2, conjugated by T . The vertex y0 = ∞ is

ideal, and T is parabolic (z → z + 1). Poincaré’s Polygon Theorem tells us that

PSL(2,Z) =< S, T : S2 = I, (ST )3 = I >
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Figure 11: A truncated triangle and its first three reflections (Poincaré disc model)

2. Surface groups

Let P be a regular octagon with vertex angles all π/4. (To find such an octagon in the Poincaré disc model,
just take a small regular octagon centred at the origin and blow it up steadily in size until the angles are π/4:
this case must occur, by continuity, since in the limiting case when all vertices are ideal the angles are 0). Mark
a pairing of the sides of P by labelling pairs of (oriented) sides such a way that one circuit anticlockwise around
the boundary reads ABA−1B−1CDC−1D−1. Now think of A as an isometry carrying the first side marked A
to the second side marked A etc. Then P is a fundamental domain for the group

G =< A,B,C,D : [A,B][C,D] = I >

(where [A,B][C,D] = ABA−1B−1CDC−1D−1). Note that H2
+/G is a surface of genus two. (Higher genus

surfaces may be obtained similarly.)

Comment. The octagon need not be regular: all that is really needed is that the angles add up to 2π and that
the sides paired be of the same length. This is the beginning of the Teichmüller theory of hyperbolic stuctures
on surfaces.

3. Triangle groups

Consider a triangle inH2
+ with angles π/p, π/q, π/r, where p, q, r are positive integers such that 1/p+1/q+1/r <

1. We can always draw such a triangle in H2
+ by taking a small Euclidean triangle at the origin in the Poincaré

disc model and gradually enlarging it until the angles are those desired. The (hyperbolic) area of such a triangle
is π minus the angle sum. Now let G be the group generated by reflections in the sides of the triangles, and let G0

be its orientation-preserving subgroup (products of even numbers of reflections). G0 has generators g1 = R2R3

and g2 = R3R1. By Poincaré’s Theorem G0 is discrete, a quadrilateral made up of the initial triangle and one
of its reflections is a fundamental domain for G0, and a presentation for G0 is

G0 =< g1, g2 : gp1 = gq2 = (g1g2)r = I >

(Note that if 1/p+ 1/q + 1/r > 1 we can construct a spherical triangle and the group G0 is then finite.)

4. Limit sets of triangle and truncated triangle groups

When the fundamental polygon for G is compact, the limit set of G is the entire boundary circle S1 of the
Poincaré disc (the translates of P get smaller and smaller in the Euclidean metric as we move towards the
boundary circle, so the orbit of any point inside the disc accumulates everywhere on S1).

When the fundamental domain has ideal vertices the limit set remains the entire circle, but we can go further
and take for example a ‘truncated triangle’ for our polygon P (see Figure 11). As before let G be the group
generated by reflections R1, R2, R3, and G0 be the orientation-preserving subgroup (generated by R2R3, R3R1).
Now R2R3 is hyperbolic and the ‘gap’ between its fixed points is in Ω(G0) ⊂ S1. hence Λ(G0) 6= S1, so Λ(G)
has empty interior in S1. Hence Λ(G) is totally disconnected, but Λ(G) is infinite, perfect, closed and bounded,
so Λ(G) is a Cantor set. Note that G0 is freely generated by R2R3 and R3R1: there are no vertices so no
relations.
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Figure 12: The limit set of a truncated tetrahedron group (picture by McMullen)

Examples in PSL(2,C) (Kleinian groups)

1. Tetrahedron groups

Our ‘polygon’ now becomes a tetrahedron in H3
+ rather than a triangle in H2

+, and we consider the group G
generated by reflections in its faces, and the orientation preserving subgroup G0.

A tetrahedron in H3
+ is determined by its six dihedral angles (the angles between adjacent faces). To satisfy the

conditions of Poincaré’s Theorem we require them all to be of the form π/n with n integer.

A vertex inside H3
+ must have 1/p1 + 1/p2 + 1/p3 > 1, an ideal vertex must have 1/p1 + 1/p2 + 1/p3 = 1, a

truncated vertex must have 1/p1 + 1/p2 + 1/p3 < 1 and where there is a truncated vertex the tetrahedron must
meet the boundary of H3

+ in a π/p1, π/p2, π/p3 triangle.

One can show that all combinations of dihedral angles are actually realised by tetrahedra or truncated tetrahedra.
If all the vertices are internal or ideal then Λ(G) = Ĉ. If one or more vertices is truncated then Λ(G) is a circle-
packing (we get a circle as limit set for the triangle group around the truncated vertex, and then other elements
of G move this circle around). See Figure 12 for a picture on the Riemann sphere and see Bullett and Mantica
(Nonlinearity 1992) for more pictures and explanations.

2. ‘Strings of beads’

Here C1, ..., Cn are circles in Ĉ, each of the same size, touching the circle on each side and orthogonal to the
unit circle S1. Let Rm denote inversion in Cm, and extend Rm to a reflection in the hemisphere Hm spanning
Cm in H3

+. Now, by Poincaré’s Theorem, the part of H3
+ remaining after ‘scooping out’ all the hemispheres is

a fundamental domain for the action of G =< R1, ..., Rn > and the only relations are R2
m = I >.

Note that the limit set here is S1, but that if we pull the circles Cm apart the limit set becomes a Cantor set,
and that if we perturb the sizes and positions of the circles Cm, but keeping them touching adjacent circles,
the limit set becomes a quasicircle (a fractal homeomorphic to a circle). Going up in dimension an anologous
construction can be used to obtain a group having limit set a wildly embedded circle in S3.

3. Schottky groups

Take g ≥ 1 pairs of mutually disjoint circles C1, C
′
1, . . . Cg, C

′
g in C with mutually disjoint interiors. For each

j choose any Mobius transformation Aj that maps Cj to C ′j and the interior of Cj to the exterior of C ′j . The
group G generated by {Aj}1≤j≤g is called a Schottky group of genus g. Writing Dj and D′j for the interiors of

Cj and C ′j in Ĉ bounded by Cj , it is easy to see that Ĉ− (
⋃
j Dj ∪

⋃
j D
′j) is a fundamental domain for G (so

in particular G is discrete) that Λ(G) is a Cantor set, that G is a free group on the generators {Aj} and that
Ω(G)/G is a surface Sg of genus g. The quotient H3

+/G = Mg is a handlebody, a 3-manifold Mg constructed
by adding g handles to a sphere. The boundary of Mg is Sg. (Observe that in this example the fundamental

domain on Ĉ is not a Dirichlet domain, indeed PSL(2,C) does not preserve any metric on Ĉ.)
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7 Quadratic maps and the Mandelbrot Set

7.1 The Mandelbrot set and its connectivity

Proposition 7.1 Every quadratic map f(z) = αz2 + βz + γ with α 6= 0 is conjugate to qc(z) = z2 + c for a
unique c.

Proof The conjugacy h must send ∞ to itself, and hence have the form h(z) = kz + l.

hf(z) = k(αz2 + βz + γ) + l qch(z) = (kz + l)2 + c

These are equal (for all z) if and only if kα = k2, kβ = 2kl and kγ+l = l2+c. Thus we must have k = α, l = β/2
and c = αγ + β/2− β2/4. QED

Another useful parametrisation of the quadratic maps is given by the logistic family

pλ(z) = λz(1− z)

Clearly pλ is conjugate to qc if and only if c = λ/2− λ2/4 (by Proposition 7.1).

The qc parametrisation is more convenient when we are dealing with critical points, and the pλ parametrisation
is more convenient when we are dealing with fixed points and their multipliers. Note that qc has critical points
0,∞, the latter a superattracting fixed point, and pλ has fixed points 0 and 1 − 1/λ, with multipliers λ and
2− λ respectively.

Definition The Mandelbrot set is the subset of parameter space defined by

M = {c : J(qc) connected} ⊂ C

Theorem 7.2 M is the set of values of the parameter c such that the orbit qnc (0) of the critical point 0 does
not tend to the point ∞

Proof If the orbit of 0 does not tend to∞ then there is no critical value other than∞ in the basin of attraction,
B(∞), of ∞, and so there is no obstruction to extending the Böttcher coordinate (Section 5 of these notes)
from a neighbourhood of ∞ to the whole of this basin. Hence B∞ is homeomorphic to the open unit disc and
its complement Ĉ \ B∞ is therefore connected, as is their common boundary ∂B∞. But ∂B∞ is closed and
completely invariant, and cannot contain any points of the Fatou set (since any point in ∂B∞ has bounded
orbits, yet arbitrarily close to it are points with orbits going to ∞). So ∂B∞ is the Julia set J(qc).

Conversely, if the orbit of 0 does go to ∞ then J(qc) is totally disconnected (a Cantor set) by the argument
sketched earlier for the example |c| large. QED

Definition The filled Julia set of qc is K(qc) = {z : qnc (z) 6→ ∞}

Note that ∂K(qc) = J(qc), and that if c 6∈M then K(qc) = J(qc) = Cantor set.

Theorem 7.3 (Douady and Hubbard 1982) The Mandelbrot set M is connected

Proof In fact Douady and Hubbard proved a much stronger result, that there is a conformal bijection between
the complement Ĉ − M of the Mandelbrot set and the complement Ĉ − D of the open unit disc. It is an
immediate consequence of this that M is connected.

When c ∈M , the Böttcher coordinate defines a conformal bijection

φc : Ĉ−K(qc)→ Ĉ− D
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Figure 13: The Mandelbrot set

φc(z0) = z0(1 +
c

z20
)1/2(1 +

c

z21
)1/4(1 +

c

z22
)1/8...

(conjugating qc to z → z2). When c 6∈ M the map φc, though not defined on the whole of the complement of
Kc, is nevertheless defined on a neighbourhood of ∞ and as far as the critical value c of qc. Define

Ψ : Ĉ−M → Ĉ− D

Ψ(c) = φc(c)

This is a conformal bijection (see Douady and Hubbard, Comptes Rendues 1982, for more details). QED

Conjecture (‘MLC’) M is locally connected

A set X is called locally connected if every x ∈ X has arbitrarily small connected open neighbourhoods. If
M is locally connected then by a theorem of Carathéodory the map Ψ−1 extends to a continuous map from
the boundary of Ĉ − D (a circle) onto the boundary ∂M of the Mandelbrot set. This would give us a purely
combinatorial description of ∂M and many open questions concerning M would be resolved.

Definition A component of the interior of M is said to be hyperbolic if for every c in the component the map
qc has an attracting or superattracting periodic orbit.

Conjecture (‘Hyperbolicity is dense’) Every component of the interior of M is hyperbolic

Douady and Hubbard showed in their 1985 Orsay lecture notes that ‘MLC’ implies ‘Hyperbolicity is dense’.

Both conjectures seem to be very difficult to resolve. Over the past 3 decades there has been a great deal
of work on them. The set of points of ∂M at which local connectivity is known to hold has been steadily
increased: Yoccoz proved it for ‘all but infinitely renormalizable points’ and Lyubich extended this to certain
of these. Most experts seem to believe that MLC should be true, but it is known that the analogous set for
cubics in place of quadratics is not locally connected (Lavaurs, Milnor), and that there exist quadratic maps qc
having non-locally-connected Julia sets. As far as ‘Hyperbolicity is dense’ is concerned, this has been proved
for components of M meeting the real axis (Lyubich, McMullen, Swiatek: see McMullen’s 1994 book ‘Complex
Dynamics and Renormalization’) but the general question is still unresolved. Shishikura’s proved in 1994 that
the boundary ∂M of the Mandelbrot set has Hausdorff dimension 2.

7.2 The geography of the Mandelbrot set

We examine some of the more prominent features of M (Figure 13).
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Figure 14: Julia sets for c=-1, c=-0.5 and c=+0.25

Let

M0 = {c : qc has an attracting (or superattracting) fixed point}

= {c : J(qc) is a (topological) circle}

Lemma 7.4 M0 = {c : c = λ/2− λ2/4 for some λ with |λ| < 1}

Proof Consider the logistic map pλ. The multipliers of its fixed points are λ, 2− λ. Hence

M0 = {c : c = λ/2− λ2/4 for some λ with |λ| < 1 or |2− λ| < 1}

But λ/2− λ2/4 = (2− λ)/2− (2− λ)2/4. QED

Thus M0 is a cardioid (with a boundary that is smooth except at the cusp c = 1/4). Note that there is a
bijection between points of M0 and values of λ such that |λ| < 1. Thus M0 is parametrised by the multiplier of
the fixed point of qc. The maps qc with c ∈M0 \{0} are topologically conjugate to one another, indeed they are
quasiconformally conjugate to one another (as we shall see in Section 8). Note that they cannot be conformally
conjugate to one another as they have different multipliers at the fixed point. Note also that none of them can
be topologically conjugate to q0 : z → z2, since for q0 the critical point 0 is a fixed point, and this is not true
for any qc with c 6= 0.

7.2 The intersection of M with the real axis

We consider how the behaviour of qc varies as we vary the parameter c along the real axis. See Figure 14.

For c > 1/4, J(qc) is a Cantor set (it is an easy exercise to show that the orbit of 0 under qc tends to ∞).

At c = 1/4, there is a neutral fixed point z = 1/2, with multiplier 1.

For −3/4 < c < 1/4, qc has an attracting fixed point and J(qc) is a (topological, indeed quasi-conformal) circle,
with dynamics conjugate to that of the shift. In particular J(qc) contains a dense set of repelling periodic orbits.

At c = −3/4, both points on the repelling period 2 orbit collide with the attracting fixed point, at a neutral
fixed point (which has multiplier −1):

For −5/4 < c < −3/4, qc has an attracting period 2 orbit, and the topology of J(qc) is the same as that for the
(superattractive) case c = −1.

We digress briefly to justify the bounds −5/4 < c < −3/4:

Lemma 7.5 qc has an attracting period 2 orbit if and only if |1 + c| < 1/4
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Proof The points of period 1 or 2 are the solutions of q2c (z) = z. Expanding q2c (z)− z we have

qc(qc(z))− z = ((z2 + c)2 + c− z = (z2 − z + c)(z2 + z + 1 + c) = (z − α)(z − β)(z − u)(z − v)

where α, β are the fixed points and u, v is the period 2 cycle. The multiplier of the period 2 cycle is q′c(u)q′c(v) =
4uv = 4(1 + c). The period 2 cycle is attracting if and only if this has modulus less than 1. QED.

Returning to our journey in parameter space along the real axis:

For −2 < c < −5/4, as c decreases through this range, we have a sequence of period doublings until we reach the
Feigenbaum point (the ‘period-doubling limit point’. This is followed by the whole Milnor/Thurston sequence
of periods for real unimodal maps, familiar to dynamicists (in particular this contains all the natural numbers
in the Sarkovskii order). The most prominent component of int(M) along the axis after the period-doubling
limit is one corresponding to a period three attracting orbit, and we finish at c = −2 where the Julia set is the
real interval [−2,+2] (and qc is semi-conjugate to z → z2: see the exercise early on in these notes).

For c < −2, it is again easily proved that the orbit of the critical point 0 tends to ∞ and hence that the Julia
set is again a Cantor set.

The behaviour for c at different points along the real axis is is no surprise to real dynamicists since the quadratic
family is conjugate to the logistic family. However with c complex we can now leave the main cardioid M0 at
other points than just c = −3/4. When c is on the boundary of M0 at the point where λ = e2πip/q, qc
has a neutral periodic point with this as multiplier, and when c passes into the adjoining component qc has
an attracting period q orbit. There are then further bifurcations as we pass along a path through different
components of int(M). In the next subsection we shall find that studying the combinatorics of ‘external rays’
can give us a great deal of information about the overall structure of M

Exercise Compute the values of c where qc has a superattractive period three orbit (that is, where the point 0
has period three).

7.3 Internal and external rays: the ‘devil’s staircase’

When c ∈ M , for any θ ∈ [0, 1), the radial line arg(z) = 2πθ on Ĉ − D (where D is the unit disc) maps under

the inverse φ−1c of the Böttcher map to the external ray Rθ of argument 2πθ on Ĉ−K(qc).

Similarly, in the parameter plane, the radial line arg(z) = 2πθ on Ĉ − D maps under the inverse Ψ−1 of the

Douady-Hubbard map to the external ray Rθ of argument 2πθ on Ĉ−M .

A ray is said to land, if it accumulates at a unique point of J(qc) (in the dynamical case) or ∂M (in the parameter
case). If J(qc) (or ∂M respectively) is locally connected then all external rays land (by Carathéodory’s criterion).
Unfortunately there are examples where J(qc) is known not to be locally connected, and where certain external
rays do not land; moreover the conjecture ‘MLC’ is still unproved so we cannot be sure that all external rays
in the parameter space land.

An outline proof of the following theorem can be found in Carleson and Gamelin, and a full proof can be found
in the Douady-Hubbard Orsay notes.

Theorem 7.6 (Douady and Hubbard) Every parameter space external ray with rational angle θ lands at a
point c of ∂M . If θ is a rational with odd denominator then qc has a parabolic cycle. If θ is a rational with even
denominator then the critical point 0 of qc is strictly preperiodic.

We first consider the rational external rays which land on the boundary of the main cardioid, M0. Recall that
M0 is itself parametrised by the unit disc and we can therfore define internal rays inside M0. The internal ray
of argument ν is the set of values of c ∈M0 for which the multiplier of the fixed point of qc has argument 2πν.
Consider the end point on ∂M0 of the internal ray of argument ν = 1/3. This is the value of c for which the
fixed point α of qc has multiplier e2πi/3 (this c lies at the top of the cardioid: it is where the first period-tripling
occurs). The external rays 1/7, 2/7, 4/7 in the dynamical plane landing at α are as shown in Figure 15.
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Figure 15: External rays landing at the α-fixed point of Douady’s rabbit

Note that we can pick out two particular rays, which together enclose the component of int(K(qc)) containing
the critical value. These we have labelled θ−(1/3) and θ+(1/3). It can be shown that in the parameter space
the corresponding external rays with the same arguments, θ−(1/3) and θ+(1/3), land at c (an example what
Douady called ‘ploughing in the dynamical plane but harvesting in the parameter plane’).

More generally, for c at the end of each internal ray in M0 of rational argument p/q, the map qc has a (neutral)
fixed point α of rotation number p/q and we can pick out the pair of external rays enclosing the component of
int(K(qc)) containing the critical value c. How do we compute the values of θ−(p/q) and θ+(p/q) ? Since α
is a fixed point of rotation number p/q there are necessarily q external rays landing at α and the effect of qc
on these rays is to permute them in cyclic order. But the action of qc on arguments of rays is simply that of
t → 2t (mod Z), so our search for candidates for θ±(p/q) is reduced to a search for finite orbits of t → 2t on
the unit circle R/Z, arranged in the same order around the circle as an orbit of a rigid rotation through 2πp/q.
This is a purely combinatorial question and was answered (though in a slightly different context) by Morse and
Hedlund in their pioneering work on symbolic dynamics in the 1930’s:

Theorem 7.7 For each rational p/q there is a unique finite forward invariant orbit Ap/q of t→ 2t of rotation
number p/q on the circle R/Z.

(For a proof of this and other results concerning order-preserving orbits of the shift, see Bullett and Sentenac,
Math. Proc. Cam. Phil. Soc. 1994.)

But supposing we have found this orbit Ap/q, how are we to know which of its points are the special points
θ±(p/q) ? This turns out to be very straightforward.

Lemma 7.8 Any ordered orbit of t→ 2t on the circle R/Z is contained in a semicircle

Proof Since t→ 2t doubles distance, any three points on the circle have images in the same order around the
circle if and only the three original points lie in a common semi-circle. QED

As a consequence it makes sense to refer to the least and greatest points of the orbit Ap/q. We identify the
points θ±(p/q) by observing that the dynamical picure requires that the least point of Ap/q be (θ+(p/q))/2
and the greatest be (θ−(p/q))/2 + 1/2 (see the picture above for the case p/q = 1/3: the inverse image of the
component of int(K(qc)) containing the critical value c is that containing the critical point 0).

Algorithm for θ±(p/q)

There is a simple algorithm constructing the binary sequence of each of θ+(p/q) and θ−(p/q):

Draw a line of slope p/q, through the origin in R2. To construct θ−(p/q), take the integer ‘staircase’ lying just
below this line, but not touching it, and starting at the point (1, 0) write 1 for each horizontal step which is
followed by a vertical step, 0 for a horizontal step followed by another horizontal one. To construct θ+(p/q) do
the same with the staircase touching the line.
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Figure 16: θ−(2/5) = .01001 = 9/31 θ+(2/5) = .01010 = 10/31

Figure 17: The devil’s staircase assigning internal angle to external angles around the cardioid M0.

Example p/q = 2/5: See Figure 16.

Every point on ∂M0 at the end of an internal ray of irrational argument ν corresponds to θν = limp/q→νθ±(p/q).
The assigment of internal angles to external angles as we make a circuit of the boundary of the cardioid M0

has graph a ‘devil’s staircase’ (see Figure 17). We draw the graph this way round (rather than that assigning
external angles to internal angles) in order to have a continuous function. It is not difficult to prove that the
horizontal steps in the graph above have total length 1. A ‘devil’s staircase’ is the graph of a continuous function
that is constant on a set of full measure without being globally constant. This particular devil’s staircase another
interesting property: it is a theorem due to Douady that every irrational ν corresponds to a transcendental θν
(see Bullett and Sentenac, Theorem 4).

7.4 External rays landing at points outside the main cardioid

Rational external rays can be used to give us an overall picture of the geography of M . The next step is
to consider those landing on the boundary of a component of int(M) immediately adjacent to M0, say that
corresponding to rotation number p/q. This component (which we shall label Mp/q) has the property that
corresponding maps qc each have an attractive period q orbit. We can parametrise Mp/q by the multiplier of
this orbit and hence define internal rays inside Mp/q in just the same way as we did for M0. The r/s internal
ray in Mp/q is the landing point of external rays θ±(p/q, r/s) obtained from θ±(r/s) by replacing the digit 0 by
the repeating block (of length q) from θ−(p/q) and the digit 1 by the repeating block from θ+(p/q).

Example
θ−(1/3, 1/2) = .001010 θ+(1/3, 1/2) = .010001

By repeating the same process (which is known as ‘tuning’) we can compute the arguments of external rays
landing on the boundary of any component which is accessible from M0 by a finite number of boundary crossings.
But there are of course components of int(M) which are much further away than this from M0: for example all
components beyond the Feigenbaum point on the real axis are an infinite number of boundary crossings away
from M0. Methods of assigning ‘internal addresses’ to all hyperbolic components, and algorithms relating these
addresses to ‘kneading sequences’ associated to external rays landing on the components, were developed by
Penrose (1990) and by Lau and Schleicher (1994).

7.5 The combinatorial Mandelbrot set

We sketch an algorithm due to Lavaurs (Comptes Rendues 1986) which, if ∂M is locally connected, gives M as
the quotient of the unit disc by an equivalence relation defined via a lamination.
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Figure 18: Lavaurs’ algorithm

Lavaurs’ Algorithm

Write every rational which has odd denominator in the form p/(2k − 1) with k as small as possible.

1. Connect 1/3 to 2/3 (on ∂D) by an arc in D.

2. Assuming all rationals of form p/(2k−1 − 1) have been connected in pairs, connect pairs of form p/(2k − 1),
starting with the smallest number not yet connected, and connecting it to the next smallest one possible
without crossing arcs already constructed (see Figure 18 for the construction up to and including k = 4). The
(combinatorial) Mandelbrot set is now obtained by shrinking each of the arcs to a point.
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