
5 Hyperbolic 3-space and Kleinian groups

Definition H3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0}

Just as in the two-dimensional case we may define an infinitesimal metric:

ds =
1

x3
((dx1)2 + (dx2)2 + (dx3)2)1/2

With this metric H3
+ becomes the upper half-space model of hyperbolic 3-space. The geodesics are the semicircles

in H3 orthogonal to the plane x3 = 0.

Now think of the plane x3 = 0 in R3 as the complex plane C ((x1, x2, 0) ↔ x1 + ix2), add the point ‘∞’, and

think of Ĉ as the boundary of H3
+. Every fractional linear map

α : z → az + b

cz + d
(a, b, c, d ∈ C, ad− bc 6= 0)

mapping Ĉ to Ĉ, has an extension to an isometry from H3
+ to H3

+. One way to see this is to break down α into
a composition of maps of the form

(i) z → z + λ (λ ∈ C) (ii) z → λz (λ ∈ C) (iii) z → −1/z

We extend these as follows on H3
+ (where z denotes x1 + ix2):

(i) (z, x3)→ (z + λ, x3) (ii) (z, x3)→ (λz, |λ|x3) (iii) (z, x3)→
(

−z̄
|z|2 + x23

,
x3

|z|2 + x23

)

The expressions above come from decomposing the action on Ĉ of each of the elements of PSL(2,C) in question

into two inversions (reflections) in circles in Ĉ. Each such inversion has a unique extension to H3
+ as an inversion

in the hemisphere spanned by the circle and composing appropriate pairs of inversions gives us these formulae.
It is now an exercise along the lines of Proposition 2.12 to show that PSL(2,C) preserves the metric ds on H3

and another exercise, along the lines of Proposition 2.13 to show that the geodesics are the arcs of semicircles
as claimed. Moreover every isometry of H3 can be seen to be the extension of a conformal map of Ĉ to itself,
since it must send hemispheres orthogonal to Ĉ to hemispheres orthogonal to Ĉ, hence circles in Ĉ to circles in
Ĉ. Thus all orientation-preserving isometries of H3 are given by elements of PSL(2,C) acting as above, and all

orientation-reversing isometries are extensions of anti-holomorphic Möbius transformations of Ĉ.

Comments

1. The fact that the orientation-preserving isometry group of H3
+ is PSL(2,C) was first observed by Poincaré.

2. To verify that the extension of the action of PSL(2,C) from Ĉ to H3
+ is well-defined we should check that

when we decompose an element of PSL(2,C) into a product in different ways we get the same extension to H3
+.

We can avoid this problem by writing down a single formula for the action of an element of PSL(2,C) in terms
of quaternions. (Regard R3

+ as quaternions of the form x+ yi+ tj(+0k) with t > 0: see Exercise Sheet 3.)

3. In practice we may do many of our computations in H3
+ by taking a hyperplane ‘slice’ that looks like H2

+:

given any two points P and Q in H3
+, the plane through these points orthogonal to the boundary Ĉ of upper

half-space is a copy of H2, and so d(P,Q) = | ln(P,Q;A,B)| where A and B are the endpoints of the semicircle

through P and Q orthogonal to Ĉ.

4. The disc model for hyperbolic three-space is the interior D3 of the unit disc in Euclidean three-space R3,
equipped with the metric

ds =
((dx1)2 + (dx2)2 + (dx3)2))1/2

1− r2
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(where r2 = x21 + x22 + x23). Geodesics are arcs of circles orthogonal to the boundary sphere S2 of the disc.

5. One can construct higher dimensional hyperbolic spaces Hn+ in the analagous way. In each case the conformal
transformations of the boundary extend uniquely to give the isometries of the interior.

5.1 Types of isometries of hyperbolic 3-space

Non-identity elements α ∈ PSL(2,C) are of four types.

Definition α is said to be

elliptic ⇔ α fixes some geodesic in H3
+ pointwise;

parabolic ⇔ α has a single fixed point in Ĉ;

hyperbolic ⇔ α has two fixed points in Ĉ, no fixed points in H3
+, and every hyperplane in H3

+ which contains

the geodesic joining the two fixed points in Ĉ is invariant (mapped to itself) under α;

loxodromic ⇔ α has two fixed points in Ĉ, no fixed points in H3
+, and no invariant hyperplane in H3

+.

Note The distinction between hyperbolic and loxodromic is not always made: some authors use either word for
an isometry having two fixed points in Ĉ and none in H3

+.

Lemma 5.1 α is elliptic/parabolic/hyperbolic/loxodromic

⇔ (tr(α))2 ∈ [0, 4) ⊂ R≥0 / = 4 / ∈ R≥0− [0, 4] / ∈ C−R≥0 (where α has been normalised to have det = 1).

Proof

If α has two fixed points in Ĉ we may assume (after conjugating α by an appropriate Möbius transformation)
they are at 0 and ∞ and that α has the form z → λz (and tr(α) = λ1/2 + λ−1/2).

Case 1: |λ| = 1, say λ = eiθ. Then on Ĉ α is a rotation about 0 through an angle θ, and fixes the x3-axis in
H3

+ pointwise. As a matrix, normalised to determinant 1,

α =

(
eiθ/2 0

0 e−iθ/2

)
and so (tr(α))2 = 4 cos2(θ/2) ∈ [0, 4).

Case 2: |λ| 6= 1. then α acts on the x3-axis in H3
+ as multiplication by |λ|. Writing λ = |λ|eiθ we have

α =

(
|λ|1/2eiθ/2 0

0 |λ|−1/2e−iθ/2
)

so (tr(α))2 ∈ C− [0, 4]. Now if λ is real (i.e. θ = 0 or π) α is hyperbolic and (tr(α))2 ∈ R≥0 − [0, 4] and if λ is
not real, α is loxodromic and (tr(α))2 ∈ C− R≥0.

Finally if α has a single fixed point in Ĉ then we can place this fixed point at∞ (by conjugating α if necessary)
in which case α has the form z → z + λ (indeed we may even conjugate it to z → z + 1). Then α is parabolic
and (tr(α))2 = 4. QED.

Dynamics of Möbius transformations on H3
+ ∪ Ĉ

In the first example in Figure 8 the fixed points 0,∞ on Ĉ are neutral. For z → eiθz with θ real, all orbits on
H3

+ have finite period if θ is a rational multiple of π, and densely fill circles around the x3 axis if not.

In the second example all orbits in H3
+ head away from a repelling fixed point 0 and towards an attracting fixed

point ∞, spiralling around the x3 axis as they go. We have this behaviour in general for z → keiθz (k real > 1)
but the nature of the spiralling depends on θ: in particular if θ = 0 or π each orbit remains in a hyperplane.
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Figure 8: Dynamics of (i) z → e2πi/3z (ii) z → 2e2πi/3z (iii) z → z + 1

Figure 9: The modular group action on the upper half-plane

In the third example the (unique) fixed point∞ is neutral (multiplier 1) and all orbits on H3
+ head towards the

fixed point under both forward and backward time. Any parabolic map α will have this behaviour.

5.2 The ordinary set of a Kleinian group

Definition A Kleinian group is a discrete subgroup G < PSL(2,C).

Thus for a subgroup G < PSL(2,C) to be called Kleinian we require that there be no sequence {gn} of distinct
elements of G tending to a limit g ∈ PSL(2,C). Here the topology on PSL(2,C) is that induced by the norm∣∣∣∣∣∣∣∣( a b

c d

)∣∣∣∣∣∣∣∣ =
√
|a|2 + |b|2 + |c|2 + |d|2

on SL(2,C) (so that two elements of PSL(2,C) are close together if and only if they are representable by
A1, A2 ∈ SL(2,C) with ||A2 −A1|| small).

Note If G is discrete then for any N > 0 the number of elements of G having norm ≤ N is finite, since every
infinite sequence with bounded norm has a convergent subsequence. Hence every discrete G is countable.

Definition The action of G is discontinuous at z ∈ Ĉ if there exists a neighbourhood U of z such that
g(U) ∩ U = ∅ for all but finitely many g ∈ G.

Example (See Week 3 Exercises) G = PSL(2,Z) acts discontinuously on Ĉ − R̂. For z in the region ∆ =
{z : |z| ≤ 1, Re(z) ≤ 1/2, Im(z) > 0} (Figure 9) each z 6= i,±1/2 + i

√
3/2 has a neighbourhood U such that

g(U) ∩ U = ∅ for all non-identity g ∈ G, the point z = i has a neighbourhood U such that g(U) ∩ U = ∅ for
all g ∈ G − {I, S} where S : z → −1/z, and the point z = −1/2 + i

√
3/2 has a neighbourhood U such that

g(U) ∩ U = ∅ for all g ∈ G− {I, ST, (ST )2} where ST : z → −1/(z + 1), etc.
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Definition The set of all z ∈ Ĉ at which the action of G is discontinuous is called the ordinary (or discontinuity
or regular) set Ω(G).

Comments

1. It follows at once from the definition that Ω(G) is open and G-invariant.

2. In the example in figure 9 observe that the origin 0 is not in Ω(G), since any U containing 0 has g(U)∩U 6= ∅
for all

g =

(
1 0
n 1

)
with n sufficiently large. In fact in this example Ω(G) = Ĉ− R̂.

5.3 The action of a Kleinian group on H3
+

We next consider the action of a subgroup G < PSL(2,C) on H3
+ rather than just on its boundary Ĉ.

Theorem 5.1 A subgroup G < PSL(2,C) is discrete if and only if it acts discontinuously on H3
+.

Proof. If G is not discrete there exists {gn} ∈ G with limit g ∈ PSL(2,C). So for all x ∈ H3
+, g−1m gn(x)→ x as

m,n→∞. Thus for any x ∈ H3
+ and neighbourhood U of x, for m and n sufficiently large g−1m gn(U) ∩ U 6= ∅.

Hence G does not act discontinuously at x.

Conversely, if G does not act discontinuously at x ∈ H3
+, then for any neighbourhood U of x there exist a

sequence {xn} ∈ U and (distinct) gn ∈ G such that each gn(xn) ∈ U . Take U compact. Then by passing to
subsequences we may assume the xn tend to a point y and the gn(xn) tend to a point z (with both y and z
in U). Now let k be an isometry of H3

+ having k(z) = y and let {hn}, {jn} be sequences of isometries, both
tending to the identity, and having hn(y) = xn and jngn(xn) = z respectively. Consider fn = kjngnhn. For
each n this fixes y (by construction). But the isometries of H3

+ fixing a common point of H3
+ are a compact

group (the Euclidean rotations, in the Poincaré ball model with the common point the origin). Hence the {fn}
have a convergent subsequence. Hence so do the {gn}, in other words G is not discrete. QED

5.4 Limit sets of Kleinian groups

One can define the notion of the limit set Λ(G) of a Kleinian group G, either in terms of its action on H3
+, or

in terms of the action on the boundary Ĉ of H3
+. We shall see later that the two definitions are equivalent.

Definition 1. Let x be any point of H3
+. Then set

Λ(x) = {w ∈ Ĉ : ∃gn ∈ G with gn(x)→ w as n→∞}

(where convergence is taken in the Euclidean metric on the Poincaré disc model of H3
+). Note that the {gn(x)}

cannot have accumulation points in H3
+, since G acts discontinuously there. Thus an alternative description of

Λ(x) is as the accumulation set in H3
+ ∪ Ĉ of the orbit Gx on H3

+. This accumulation set is independent of
the initial point x ∈ H3

+, since if we choose another initial point y the hyperbolic distance from g(x) to g(y) is
constant for all g and therefore the Euclidean distance from g(x) to g(y) tends to zero as g(x) and g(y) approach

the boundary Ĉ of the Poincaré disc. We define Λ(G) to be Λ(x) for any x ∈ H3
+.

Definition 2. Let z be any point of Ĉ. Set

Λ(z) = {w ∈ Ĉ : ∃gn ∈ G with gn(z)→ w as n→∞}

(where convergence is taken in the spherical metric on Ĉ). It can be shown that when G is non-elementary (see

below for definition) Λ(z) is independent of z ∈ Ĉ. We define Λ(G) to be Λ(z) for any z ∈ Ĉ.
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Comments

1. The restriction that G be ‘non-elementary’ is included in definition 2 in order to exclude just one class
of examples where the limit Λ(z) depends on z. Consider G = {gn : n ∈ Z}, where g is loxodromic, with
fixed points z0 and z1. The limit set by definition 1 is Λ(G) = {z0} ∪ {z1}, but definition 2 gives Λ(z0) = z0,
Λ(z1) = z1 (although Λ(z) = {z0} ∪ {z1} for any other choice of z).

2. We shall adopt definition 2 until we have proved the equivalence of the two notions (later in this section).
Meanwhile we remark that the underlying reason that the definitions are equivalent is that to an observer inside
H3

+ an orbit of G of H3
+ is viewed as accumulating at Λ(G) on the ‘visual sphere’ Ĉ.

3. A third equivalent definition is that Λ(G) consists of the points z ∈ Ĉ where the family g ∈ G fail to be a
normal family (with respect, as always, to the spherical metric). We shall prove also later.

4. It follows at once from definition 2 (or indeed from definition 1) that Λ(G) is both closed and G-invariant.

It is clear from the definitions of Ω(G) and Λ(G) that Ω(G) ∩ Λ(G) = ∅, but we shall prove the stronger

statement that Λ(G) is the complement of Ω(G) in Ĉ. First we deal with some special cases.

5.5 Elementary Kleinian groups

Definition A Kleinian group G is called elementary if there exists a finite G orbit on either H3
+ or Ĉ.

All elementary Kleinian groups G belong to the following three classes. For a proof see for example Beardon’s
book ‘Geometry of Discrete Groups’ or Ratcliffe’s book ‘Foundations of Hyperbolic Manifolds.’

(i) G is conjugate to a finite subgroup of SO(3) acting on the Poincaré disc by rigid rotations fixing the origin
(for example the symmetry group of a regular solid). In this case Λ(G) = ∅.

(ii) G is conjugate to a discrete group of Euclidean motions of C (i.e. fixing ∞ ∈ Ĉ). (For example the group
generated by z → z + 1 and z → z + i). Then |Λ(G)| = 1.

(iii) G is conjugate to a group in which all elements are of the form z → kz or z → k/z for k ∈ C. Then
|Λ(G)| = 2.

It is not hard to see that if G is Kleinian then Λ(G) = ∅ ⇒ G elementary of type (i), |Λ(G)| = 1⇒ G elementary
of type (ii), and |Λ(G)| = 2⇒ G elementary of type (iii), so elementary groups are characterised by the size of
their limit sets. Indeed

Proposition 5.2 A Kleinian group G is elementary if and only |Λ(G)| ≤ 2, and non-elementary if and only if
Λ(G) is infinite.

Proof. If Λ(G) is finite and non-empty then any G orbit in Λ(G) is a finite G orbit on Ĉ so G is elementary
by definition and has |Λ(G)| = 1 or 2 by the above classification. QED

5.6 Properties of ordinary and limit sets

Theorem 5.3 Every Kleinian group G acts discontinuously on Ĉ − Λ(G). Hence Ĉ is the disjoint union of
Ω(G) and Λ(G).

Proof. (Outline.) For groups G with |Λ(G)| = 0, 1 the result can be verified by checking the corresponding
types of elementary Kleinian groups, so we may assume |Λ(G)| ≥ 2. Now let C(G) be the convex hull of Λ(G)

in H3
+ ∪ Ĉ, i.e. the space obtained by joining every point of Λ(G) to every other point of Λ(G) by a geodesic in

H3
+ and then ‘filling in the interior’ to obtain a convex set in H3

+ ∪ Ĉ. (An equivalent definition of C(G) is that
it is the space obtained from H3

+ by ‘scooping out’ every open half 3-ball bounded by a round 2-disc contained
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in Ĉ − Λ(G)). The set C(G) is closed and G-invariant, since Λ(G) is. There is a uniquely defined retraction
map

ρ : H3
+ ∪ (Ĉ− Λ(G))→ C(G)

sending each point of H3 to the nearest point of C(G) (in the hyperbolic metric). This map ρ is continuous and

commutes with the action of G. Now let z be any point of Ĉ − Λ(G) and U ⊂ Ĉ − Λ(G) be a neighbourhood
of z. Then ρ(U) is contained in a neighbourhood V of ρ(z), and by taking U small (in the spherical metric)
we can take V as small as we please (in the hyperbolic metric). But now since the action of G is discontinuous
(by Theorem 5.1) V meets g(V ) for at most finitely many g ∈ G. Hence gρ(U) meets ρ(U) for at most finitely
many g ∈ G, and so g(U) meets U for at most finitely many g ∈ G, in other words z ∈ Ω(G). QED

Proposition 5.4 Let G be a non-elementary Kleinian group. Then any non-empty closed G-invariant subset
S of Ĉ contains Λ(G)

Proof. Let z be any point of S having an infinite orbit under G. Since S is G-invariant it contains the orbit
Gz, and since S is closed it contains the accumulation set of Gz. But this accumulation set is Λ(G). QED

Corollary 5.5 Let G be a Kleinian group. Then either Λ(G) = Ĉ or Λ(G) has empty interior.

Proof. In the elementary case Λ(G) has empty interior. In the non-elementary case apply Proposition 5.4 to

Ĉ− intΛ(G). QED

Corollary 5.6 Let G be a non-elementary Kleinian group. Then Λ(G) is the closure of the set of all fixed points
of loxodromic and hyperbolic elements of G.

Proof. If z ∈ Ĉ is a fixed point of a hyperbolic or loxodromic element g ∈ G then z lies in Λ(G) by definition
2. For the converse we remark that the set of fixed points of loxodromic and hyperbolic elements of a non-
elementary group is non-empty (by a standard exercise) and is G-invariant since if z is fixed by g, then hz is
fixed by hgh−1. The result now follows by Proposition 5.4. QED

Comment. If G has any parabolic elements their fixed points must lie in Λ(G), but elliptic elements may have
fixed points in either Ω(G) or Λ(G).

Corollary 5.7 Let G be a non-elementary Kleinian group. Then Λ(G) is perfect (and hence, in particular,
uncountable).

Proof. The set of accumulation points of Λ(G) is closed and G-invariant. Now apply Proposition 5.4. QED

Corollary 5.8 Definitions 1 and 2 for the limit set Λ(G) of a non-elementary Kleinian group G are equivalent.

Proof. We show that the limit set as defined by definition 1 has exactly the same characterising property as
that specified by Proposition 5.4 for Λ(G) (where we used definition 2). Let S be any closed G-invariant subset

of Ĉ (note that S must be infinite, since G is non-elementary). Then C(S), the convex hull of S in H3
+ ∪ Ĉ, is

also closed and G-invariant. Take any x ∈ C(S)∩H3
+. Its orbit Gx is contained in C(S) and the accumulation

set of this orbit is contained in C(S) ∩ Ĉ = S. Hence S contains the definition 1 limit set of G. QED

5.7 Comparison with Fatou and Julia sets

The results we have proved so far for regular and limit sets for Kleinian groups exhibit a very close analogy
with our earlier results on Fatou and Julia sets for rational maps. This raises the question as to whether we
can make the definitions analogous too. The answer is yes.

Proposition 5.9 Let G be a Kleinian group. Then Ω(G) is the largest open subset of Ĉ on which the elements
of G form an equicontinuous family.
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Proof. Assume G non-elementary (as usual elementary groups can be dealt with on a case by case basis). Then
Λ(G) contains at least three points (in fact infinitely many) so Ω(G) is contained in the equicontinuity set by
Montel’s Theorem. But given any z ∈ Λ(G), by Corollary 5.6 there must be a repelling fixed point of some
g ∈ G arbitrarily close to z, so the family of maps G cannot be equicontinuous at z. QED

We deduce the following two consequences (useful for plotting Λ(G)).

Theorem 5.10 Let G be a non-elementary Kleinian group, and U be any open subset of Ĉ meeting Λ(G). Then⋃
g∈G

gU = Ĉ

Proof. The union
⋃
g∈G gU covers all of Ĉ except at most two points (else the family G would be equicontinuous

on U by Montel’s Theorem). But the complement of this union is a finite G-invariant set and therefore empty
(since G is non-elementary). QED

The following corollary is immediate.

Corollary 5.11 Let G be a non-elementary Kleinian group, and U be any open subset of Ĉ meeting Λ(G).
Then ⋃

g∈G
g(U ∩ Λ(G)) = Λ(G)

Comments

1. A discrete subgroup of PSL(2,R) is called Fuchsian. All our results for Kleinian groups in this chapter have

obvious specialisations to the Fuchsian case, with H3
+ replaced by H2

+, and Ĉ replaced by R̂.

2. ‘Sullivan’s Dictionary’ is a continually evolving correspondence between definitions, conjectures and theorems
in the realm of iterated rational maps and definitions, conjectures and theorems in the realm of Kleinian groups.
Some entries are obvious, e.g. Julia set ↔ limit set, but not everything works in exactly the same way in the
two areas, for example:

Ahlfors 0 − 1 Conjecture, formulated by Ahlfors in the 1960s and proved by him for geometrically finite
Kleinian groups, states in its most general form that for any finitely generated Kleinian group G either Λ(G) = Ĉ
or Λ(G) has 2-dimensional Lebesgue measure zero. This was finally proved in 2004 as a consequence of work
by many authors (see Marden, Theorem 5.6.6).

Fatou’s Question. Can the Julia set of a polynomial have positive 2-dimensional Lebesgue measure? This
question was finally answered in 2005 by Xavier Buff and Arnaud Chéritat, who proved that there exist quadratic
polynomials, z → z2 + c, with positive area Julia sets. The proof is very technical, but see their paper at the
2010 Intenational Congress of Mathematics in Hyderabad for an overview of their method.

I don’t know that the current contents of this dictionary are all written down in one place, but see Chapter 5 of
the book by S.Morosawa, Y.Nishimura, M.Taniguchi and T.Ueda for the situation in 2000. More recently Dick
Canary gave a talk about the dictionary at Dennis Sullivan’s 70th birthday conference at Stony Brook in 2011
and you can find this on the web.
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