
3 Fatou and Julia sets

The following properties follow immediately from our definitions at the end of the previous chapter:

1. F (f) is open (by definition); hence J(f) is closed and therefore compact (since Ĉ is compact).

2. F (f) is completely invariant, that is f(F (f)) = F (f) = f−1(F (f)). The fact that f−1(F (f)) ⊂ F (f) follows
from the definition of F (f) and the continuity of f ; the converse, F (f) ⊂ f−1(F (f)), is a consequence of the
fact that a rational map is open (i.e the image of an open set is itself open).

3. J(f) is completely invariant. (This follows at once from 2.)

What kinds of families F of analytic maps f : Ω→ Ĉ are equicontinuous ? Our first step towards an answer is
the following very useful Proposition which interprets Schwarz’s Lemma in the language of hyperbolic geometry:

Proposition 3.1 If f be a holomorphic map D→ D then f is non-increasing in the Poincaré metric.

Proof Let z0, z1 be any two points in D. Let f(z0) = w0 and f(z1) = w1. Choose isometries h, k of the Poincaré
disc D (Möbius transformations) such that h(0) = z0 and k(0) = w0. Let z′1 = h−1z1 and w′1 = k−1w1. Now
k−1fh is a holomorphic map of D to itself sending 0 to 0 and z′1 to w′1. Hence |w′1| ≤ |z′1| by Schwarz’s Lemma,
and so d(0, w′1) ≤ d(0, z1) in the Poincaré metric. But d(w0, w1) = d(0, w′1) and d(z0, z1) = d(0, z′1) (as h and k
are isometries). QED

Corollary 3.2 Every family of holomorphic maps D→ D is equicontinuous.

Proof It follows at once from Proposition 3.1 that every such family F is equicontinuous with respect to the
Poincaré metric on D. But we need to show that it is equicontinuous with respect to the spherical metric (where

we regard D as D ⊂ C ⊂ Ĉ). However given any point z0 we can find a small disc around z0 and a constant k
such that the distance between any two points z, z′ in this disc in the Poincaré metric is less than k times the
distance in the spherical metric. Equicontinuity at z0 follows, since the spherical distance between the images
f(z), f(z′) of two points under f ∈ F is less than or equal to the Poincaré distance betwen these images, this
being true for any pair of points in D. QED

Example The family {z → z2
n}n≥0 is equicontinuous on D: thus the Fatou set of z → z2 contains {z : |z| < 1}.

Conjugating by σ : z → 1/z we see that the Fatou set of z → z2 also contains {z : |z| > 1}. Since every point
on the unit circle is in the Julia set of z → z2, we now have a proof that the Fatou and Julia sets of this map
are as we claimed at the end of the previous chapter.

It follows at once from Corollary 3.2 that every bounded family of holomorphic maps D→ C is equicontinuous
(again with respect to the spherical metric).

There are two approaches to defining the Fatou set of a rational map f , either as the equicontinuity set of the
family of iterates of f , or as the normality set of this family. They give equivalent definitions, so it really makes
no difference which route we take, but it will be convenient for us to switch back and forth.

Definition Let Ω be a domain in Ĉ. A family F of maps Ω → Ĉ is called normal if every sequence in F
contains a subsequence which converges locally uniformly to a map f : Ω→ Ĉ (not necessarily in F).

Example {z → z2
n}n≥0 are a normal family on D, since they converge locally uniformly there to the constant

map z → 0.

Theorem 3.3 (Arzelà-Ascoli) Let Ω be a domain in Ĉ. Any family of continuous maps Ω→ Ĉ is normal if
and only if it is equicontinuous.

For a proof, see for example Ahlfors’ book ‘Complex Analysis’.

Comments

1. We remind the reader that we use the spherical metric on Ĉ, both in the definition of local uniform convergence
(used in defining the notion of a normal family) and in the definition of equicontinuity.
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Figure 5: A fundamental domain ∆ for the action of the group G on the upper half-plane (Theorem 3.4). The
two vertical lines are identified by z → z + 1, the two semicircles are identified by z → z/(2z + 1), and the
quotient ∆/G is a thrice punctured sphere.

2. It is more elegant mathematically to develop the whole Fatou-Julia theory via normality rather than equicon-
tinuity but the latter is perhaps easier to comprehend dynamically (Milnor follows the normality route).

3. It follows at once from Corollary 3.2 and Theorem 3.3 that every family of holomorphic maps from D to itself
is normal. One can also prove Corollary 3.2 directly from the definition of a normal family (see Milnor, Thm
3.2, for a general version): at the heart of the argument is the Bolzano-Weierstrass Theorem that in any metric
space a set is compact if and only if every infinite subset contains a convergent subsequence. Also relevant to
this circle of ideas is the Denjoy-Wolff Theorem (1926), which states that a holomorphic map f : D → D is
either a conformal bijection or the iterates of f converge locally uniformly to a constant map D→ ζ ∈ D̄.

This brings us to a theorem central to the development of the Fatou-Julia theory of rational maps:

Theorem 3.4 (Montel, 1911) let Ω be a domain in Ĉ. Every family of analytic maps Ω→ Ĉ− {0, 1,∞} is
normal (or equivalently, by Arzelà-Ascoli, equicontinuous).

Proof Without loss of generality assume Ω is an open disc (since equicontinuity and normality are local
properties), and indeed by scaling if necessary assume Ω = D, the unit disc. Since D is simply connected,

any map f : D → Ĉ − {0, 1,∞} lifts to a map f̃ from D to the universal cover of Ĉ − {0, 1,∞}, which is the
complex upper half plane H+, the group of covering translations being

G =

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
acting on the upper half plane in the usual way (Figure ??).

[Aside Here we recall that a universal cover of a manifold M is a simply-connected manifold M̃ which evenly
covers M , i.e. M̃ is equipped with a projection p : M̃ → M with the property that every x ∈ M has a
neighbourhood U such that p−1(U) is a disjoint union of copies of U , each mapped homeomorphically by p onto
U . Given a universal cover p : M̃ → M and a simply-connected space Y , every continuous f : Y → M has a
lift, f̃ : Y → M̃ such that pf̃ = f , and indeed there is a unique f̃ that lifts a chosen base point x ∈ M to any
specified point in p−1(x).]

Equivalently we may take the universal cover to be the Poincaré disc D. Observe that the set of all lifts
f̃ : D → D of elements f of F forms a normal family, since these lifts are self-maps of the disc. The Poincaré
metric on D projects under q : D → Ĉ − {0, 1,∞} to a metric on Ĉ − {0, 1,∞} in which the three missing
points are pairwise infinitely far apart. Taking the Poincaré metric on domain and range each f̃ is metric
non-increasing (by Proposition 3.1) and hence the same is true for each f : D → Ĉ − {0, 1,∞}. Given any
z0 ∈ D, we may restrict consideration to a small disc D′ ⊂ D centred on z0 (since equicontinuity and normality
are local properties). Since D′ has finite diameter, say k (in the Poincaré metric), each f(D′) has diameter ≤ k,

and so for a small disc neighbourhood N of at least one of the three missing points in Ĉ−{0, 1,∞}, there must

be an infinite sub-family F ′ ⊂ F such that f(D′)∩N = ∅ for all f ∈ F ′. Since Ĉ−N is a disc, the family F ′ is
equicontinuous with respect to the spherical metric (by Prop. 3.2), therefore normal, and hence so is F . QED

We can replace the points 0, 1,∞ in the statement of Montel’s Theorem by any other three points of Ĉ (just
compose with a suitable Möbius transformation). Montel’s Theorem is a much more powerful result than our
earlier observation that any family of maps with a common bound is equicontinuous. One should perhaps
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compare it with Picard’s Theorem that any holomorphic function C → Ĉ − {0, 1,∞} is constant, which is in
turn is much more powerful than Liouville’s Theorem that a bounded holomorphic function on C is constant.

Exercise Deduce Picard’s Theorem from Liouville’s Theorem and the fact that D is the universal cover of the
thrice-punctured Riemann sphere.

3.1 Counting critical points, and the exceptional set

Before considering the many properties of Julia sets which follow from Montel, we make a brief excursion into
topology to count critical points and derive some consequences for finite completely invariant sets.

Definition The valency of a critical point c of a rational map f is νc, where locally near c the map f has the
form z → kzνc (plus higher order terms). In other words the valency is the ‘degree of branching’ at c.

The following result gives the delayed precise formulation and proof of Proposition 2.3.

Proposition 3.5 (Riemann-Hurwitz Formula) If f is a rational map of degree d, then∑
c

(νc − 1) = 2d− 2

where the sum is taken over all critical points of f .

Proof Triangulate the target copy of Ĉ in such a way that the critical values of f are all vertices, and pull this
triangulation back, via f , to a triangulation of the source copy of Ĉ. The Euler characteristic of Ĉ (number of
triangles minus number of edges plus number of vertices) is 2. Apart from at critical points, f is a d to one
map and so we obtain the equation

2d−
∑
c

(νc − 1) = 2

and thus ∑
c

(νc − 1) = 2d− 2

QED

Corollary 3.6 Let f be a rational map with deg(f) ≥ 2, and suppose E is a finite completely invariant subset

of Ĉ. Then E contains at most 2 points.

Proof Suppose E contains k points. Then f must permute these points (since every surjection of a finite set to
itself is a bijection) and hence for some q the iterate fq = g is the identity on E. Suppose g has degree d. Each
point z ∈ E must be a critical point of g, of valency d, else g−1(z) would contain points other than z. Hence by
Proposition 3.5

k(d− 1) ≤ 2d− 2

and therefore k ≤ 2. QED

Definition The exceptional set E(f) of a rational map is the union of all finite completely invariant sets.
Corollary 3.6 says |E(f)| ≤ 2. Note that if |E(f)| = 1 then f is conjugate to a polynomial (just conjugate by
a Möbius transformation sending the exceptional point to ∞), and if |E(f)| = 2 then f is conjugate to some
z → zd, with d a positive or negative integer (just send the two exceptional points to ∞ and 0).

3.2 Properties of Julia sets

For a rational map of degree greater or equal to two we have the following:

1. J(f) 6= ∅.

Proof. Let f be a rational map of degree d ≥ 2. Then fn has degree dn (this can be proved various ways:
if you know about homology groups it follows from the fact that f∗ : H2(S2) → H2(S2) is the homorphism
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×d : Z → Z). If {fn}n≥0 form a normal family on the whole of Ĉ then some subfamily {fnj}j≥1 converges

locally uniformly to a function g, and since Ĉ is compact ∃J such that ∀j > J and all z ∈ Ĉ we have
d(fnj (z), g(z)) < π/2 in the spherical metric. But then ∀j, k > J we have d(fnj (z), fnk(z)) < π, and hence
that fnj is homotopic to fnk (by the ‘straight line homotopy’ along the shortest great circle arc between fnj (z)
and fnk(z)). Hence ∀j, k > J we have deg(fnj ) = deg(fnk) i.e. dnj = dnk , contradicting nj →∞.

2. J(f) is infinite.

Proof. By Corollary 3.6 the only possibilities for finite completely invariant sets are (up to conjugacy) the set
{∞} (for a polynomial) or {∞, 0} (for a map z → zd). But in both cases these exceptional sets are contained
in the Fatou set.

3. J(f) is the smallest completely invariant closed set containing at least three points.

Proof. The complement of a completely invariant closed set containing at least three points is an open
completely invariant set omitting at least three points, hence contained in the Fatou set, by Montel’s Theorem.

4. J(f) is perfect, that is, every point of J(f) is an accumulation point of J(f).

Proof. For if we let J0 be the set of accumulation points of J , then J0 is non-empty (by Property 2), closed
(by definition) and completely invariant (using the facts that f is continuous, open and finite-to-one). But J0
cannot be finite since it would then be exceptional and hence contained in F (f), so J0 = J by Property 3.

5. J(f) is either the whole of Ĉ or it has empty interior.

Proof. Write S = Ĉ− int(J). Then S is the union of the Fatou Set F and the boundary ∂J of J , and either
S is empty or it is an infinite closed completely invariant set, so containing J (by Property 3).

We remark in connection with Property 5 that there exist examples of rational maps f having J(f) = Ĉ (e.g.
the example of Lattès (1918): z → (z2 + 1)2/4z(z2 − 1)) but that for a polynomial map the Fatou set always
contains the point ∞ and hence is non-empty.

3.3 Useful results for plotting J(f)

Proposition 3.7 If deg(f) ≥ 2 and U is any open set meeting J(f), then
⋃∞
n=0 f

n(U) ⊃ Ĉ− E(f).

Proof If
⋃∞
n=0 f

n(U) misses three or more points of Ĉ then fn are a normal family on U by Montel, contradicting

U ∩ J 6= ∅. But if a non-exceptional z lies in Ĉ−
⋃∞
n=0 f

n(U) then for some m and n a point of f−m(z) must
lie in fn(U) (since

⋃
m≥0 f

−m(z) is infinite). Hence z ∈ fm+n(U). Contradiction. QED.

Corollary 3.8 If z0 is not in E(f), then J(f) ⊂
⋃
n≥0 f

−n(z0).

Proof Take any z ∈ J(f) and neighbourhood U of z. By Proposition 3.7 the given point z0 lies in some fn(U).
Hence f−n(z0) ∩ U 6= ∅. QED.

This gives us a very simple algorithm for plotting J(f). One just has to start at any (non-exceptional) z0
whatever and plot all its images under f−1, then all of their images under f−1 etc., or alternatively plot
z0, z1, z2, ... where each zj+1 is a random choice out of the (finite) set of values of f−1(zj). The resulting set
accumulates on the whole of J(f). Even better, if one starts at a point z0 known to be in J(f) (for example a
repelling fixed point) one has J(f) =

⋃
n≥0 f

−n(z0), so that all points plotted are actually in the Julia set, not
just accumulating there.

3.4 Julia sets and repelling periodic points

Obviously every repelling periodic point of f lies in the Julia set. However it is also true that every point of
the Julia set has a periodic point arbitrarily close to it:
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Theorem 3.9 If deg(f) ≥ 2 then J(f) is contained in the closure of the set of all periodic points of f .

Proof Let z0 ∈ J(f) and assume z0 is not a critical value of f (without loss of generality, since there are only a
finite set of critical values and J(f) is perfect). Then z0 has a neighbourhood U on which two distinct branches
of f−1 are defined. Denote these by h1 : U → U1 and h2 : U → U2 (where the sets U1 and U2 are disjoint).

Suppose (for a contradiction) that U contains no periodic point of f . For each z ∈ U set

gn(z) =
(fnz − h1z)
(fnz − h2z)

(z − h2z)
(z − h1z)

Then for each value of n, gn(z) 6= 0, 1,∞ for z ∈ U (else f would have a periodic point). So by Montel’s
Theorem the {gn} form a normal family. It follows (by an exercise in analysis) that the {fn} form a normal
family, contradicting the hypothesis that z0 ∈ J(f). QED

Comments

1. In fact with a little more work one can establish that J(f) is equal to the closure of the set of all repelling
periodic points of f : this follows from Theorem 3.9 together with the observations that every repelling periodic
point of f lies in the Julia set, and the result (of Fatou) that there are only finitely many non-repelling periodic
orbits. What Fatou showed was that non-repelling periodic points must either have critical points in their basins
of attraction or on the boundaries of their basins (we shall investigate these basins shortly). Shishikura (1987)
improved Fatou’s result to show that a degree d rational map has at most 2d− 2 non-repelling periodic orbits.

2. Earlier we observed that for the map z → z2 the Julia set (the unit circle) is the closure of the set of repelling
periodic points. Theorem 3.9 shows that this example typifies the general case.

3.5 The Julia set of qc : z → z2 + c for |c| large

Lemma 3.10 Let |c| > 1. Then |qc(z)| > |z|(|c| − 1) whenever |z| ≥ |c|.

Proof |qc(z)| ≥ |z|2 − |c| ≥ |z|2 − |z| = |z|(|z| − 1) ≥ |z|(|c| − 1). QED

Thus if |c| > 2 the orbit zn = qnc (0) converges to ∞ as n→∞, since z1 = c and |zn| ≥ |zn−1|(|c| − 1).

Definition A Cantor set is a topological space homeomorphic to the space C = {0, 1}N of all infinite sequences
of 0’s and 1’s, equipped with the product topology (that is, two sequences are close if and only if they have
the identical initial segments, and the longer these identical segments, the closer the points). Recall that every
perfect totally disconnected compact subset of Rn is homeomorphic to C (an example is the Cantor set obtained
by removing the open interval (1/3, 2/3) from the closed unit interval on the real line, then the ‘middle thirds’
(1/9, 2/9) ∪ (7/9, 8/9) of the remaining intervals, then the middle thirds of the remaining intervals and so on).

Proposition 3.11 For |c| sufficiently large, J(qc) is homeomorphic to the Cantor set C, and the action of qc
on J(qc) is conjugate to that of the shift σ on C.

Proof Let γ0 be the circle |z| = |c|, and let γ1 = q−1c (γ0). Then, if |c| > 2, γ1 lies inside γ0 (by Lemma 3.10)
and γ1 is a lemniscate (since 0 is the only critical point of qc on C). q−1c (γ1) now consists of a lemniscate inside
each lobe of γ1, and so on (Figure ??).

Let D be any disc containing γ1 and contained in γ0. Label the the two discs making up q−1c (D) as D0 and D1,
and label the components of q−2c (D) by

D00 = D0 ∩ q−1c (D0) D01 = D0 ∩ q−1c (D1) D10 = D1 ∩ q−1c (D0) D11 = D1 ∩ q−1c (D1)

Continue inductively, setting
D0s = D0 ∩ q−1c (Ds) D1s = D1 ∩ q−1c (Ds)

for any finite sequence s of 0’s and 1’s. Set

Λ =

∞⋂
1

q−nc (D)
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Figure 6: The circle γ0 and its inverse images (Proposition 3.11).

To show that Λ is a Cantor set we observe that for large |c| both branches of q−1c contract distances, by a
definite factor k < 1, on both D0 and D1 (the details are in Comment 1 below). Λ therefore consists of points
Ds, each labelled by an infinite sequence s of 0’s and 1’s, and the action of qc on Λ is conjugate to the action
of the shift σ on these sequences. Since Λ is a closed completely invariant set it contains J(qc); moreover since
Λ contains a dense orbit (just write down an infinite sequence of 0’s and 1’s containing all finite sequences) it
is a minimal closed completely invariant set and is therefore equal to J(qc). QED

Comments

1. To show that q−1c contracts on D0 and D1 we must show that qc expands on their inverse images. But qc
contracts at a point z if and only if |2z| < 1, which is to say if and only if |z| < 1/2. So it will suffice to show
that qc maps the disc having centre 0, radius 1/2, to the region outside the lemniscate γ1 (and hence outside
both D0 and D1). But qc maps this disc to the disc which has centre c and radius 1/4, and the largest modulus
of any point of γ1 is |

√
−2c| (exercise). It follows that if c is sufficiently large (for example |c| > 3) the image

disc lies outside γ1 and so q−1c contracts on D0 and D1 as required.

2. In fact Proposition 3.11 holds whenever qnc (0) → ∞, not just for ‘large’ |c|, but the proof requires a little
more work to show that the Ds (s an infinite sequence of 0’s and 1’s) are points. This is best done by an
argument appealing to ‘moduli of annuli’ (Grötzsch’s inequality) or by a normal families argument applied to
the branches of q−1c (see Beardon).

3. For maps in the family qc, the Julia set J(qc) is either a Cantor set or else is connected. For if the orbit
qnc (0) does not tend to ∞ one can show that the basin of attraction of ∞ is a (topological) disc, with boundary
a minimal closed completely invariant non-empty set, in other words J(qc).
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4 Fatou components and linearisation theorems

4.1 Counting components

Proposition 4.1 The Fatou set of a rational map f of degree at least two contains at most two completely
invariant simply-connected components.

Proof Any such component is homeomorphic to a disc D, and the restriction of f to D is a branched covering
of degree d. Since D has Euler characteristic 1 we deduce that f has d− 1 critical points on D (counted with
multiplicity). But f has only 2d− 2 critical points. QED.

Example The Fatou set for z → z2 has exactly two such components.

Omitting the words ‘completely invariant simply-connected’ and just counting components, we have:

Proposition 4.2 If F (f) has more than two components, it has infinitely many components.

Proof If F (f) has only finitely many components, D1, ...Dk, they must be permuted by f (since each component
has image a component and inverse image a union of components). Hence there exists an m such that g = fm

maps each Dj to itself. But F (g) = F (f) (from the definition of a normal family) and the Dj are completely
invariant for g. To apply Proposition 4.1 and complete the proof it remains to show that the Dj are simply-
connected. But each Dj has boundary ∂Dj closed and completely invariant under g, and hence ∂Dj = J(f).
It follows that

Ĉ− D̄1 = Ĉ− (J(f) ∪D1) = F (f)−D1 = D2 ∪ ... ∪Dk

Hence D2, ...Dk are the components of the complement of the connected set D1 and are therefore simply-
connected. Similarly D1 is simply-connected. QED

Examples

(i) z → z2 − 1. The basin of infinity is a completely invariant component. The components containing 0 and
−1 form a periodic 2-cycle. All other components are pre-periodic (fall onto the period two cycle after a finite
number of steps).

(ii) z → z2 + c with |c| large. Here F (f) has a single component, the complement in Ĉ of a Cantor set (but
note that this component is multi-connected).

A key theorem concerning the components of F (f) is:

Theorem 4.3 (Sullivan’s ‘No Wandering Domains Theorem’ 1985) Every component of F (f) is either
periodic or preperiodic

For a proof see Sullivan (Annals 1985), or Appendix F of Milnor’s book. The basic idea is that if there were a
wandering domain then it would be possible to construct an infinite-dimensional family of perturbations of f ,
all of them rational and topologically conjugate to f , but this is impossible since f is determined by a finite set
of data (as already remarked earlier). The key ingredient is the quasi-conformal deformation theory developed
by Ahlfors and Bers, in particular the ‘Measurable Riemann Mapping Theorem’, which we may consider later
in this course. The original conjecture that f could not have wandering domains was made by Fatou. Note that
Theorem 4.3 is a result about rational maps: the Fatou set of a transcendental map C→ C can have wandering
components (these are known as Baker domains).

The basin of an attractive fixed point z0 is the set {z : limn→∞ fn(z) = z0} and the immediate basin is the
component of this set containing z0. There are similar definitions for an attracting period n cycle: here the
immediate basin is the set of components of the basin containing points of the cycle.

Theorem 4.4 The immediate basin of an attractive periodic point (for a rational map f of degree at least two)
contains a critical point.

Proof Without loss of generality we suppose z0 to be an attracting fixed point. If z0 is superattracting, the
result is obvious. if z0 is attracting but not superattracting then there is a neighbourhood U of z0 such that
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f(U) ⊂ U and f |U is injective. Let V = f(U) and consider the branch of f−1 sending V to U . If f has no
critical value in U , this branch can be extended to the whole of U and hence f−2 has a well-defined branch
on V . Repeat. If some f−n(V ) contains a critical value then the basin contains a critical point. but if not,
then {f−n}n>0 are all defined on V and have images in the the immediate basin. But then they would form an
equicontinuous family (by Montel) and this is impossible since z0 is a repelling fixed point for f−1. QED

Corollary 4.5 If f has degree d then it has at most 2d− 2 attracting or superattracting cycles.

Shishikura (1987) improved this bound to ‘at most 2d− 2 non-repelling cycles’.

4.2 Linearisation Theorems

Dynamics of f near a fixed or periodic point

In the neighbourhood of a fixed point, which without loss of generality we take to be 0, f(z) = λz+O(z2) (Taylor
series), where λ is the multiplier at the fixed point. We say that f is linearisable if there is a neighbourhood U
on which f is conjugate to z → λz (by a complex analytic conjugacy).

Theorem 4.6 (Koenigs’ Linearization Theorem 1884) If λ 6= 0 and |λ| 6= 1 then f is linearizable

Proof Assume first that 0 < |λ| < 1. Set

hn(z) =
1

λn
fn(z)

Then, by construction hnf(z) = λhn+1(z), and it suffices to show that the {hn} converge locally uniformly to
a function h, since then hf = λh. See the example below for a sketch proof in the case of a particular example,
and Milnor (Theorem 8.2) for the general case, which proceeds along the same lines.

For the case 1 < |λ| <∞ one can proceed in exactly the same fashion, but with f−1 in place of f . QED.

Example

f(z) = λz + z2 (where |λ| < 1). Here the orbit of any initial point z0 is

z1 = f(z0) = λz0(1 + z0/λ)

z2 = f(z1) = λz1(1 + z1/λ) = λ2z0(1 + z0/λ)(1 + z1/λ)

...

zn = λnz0(1 + z0/λ)(1 + z1/λ)...(1 + zn−1/λ)

Thus hn(z0) = z0(1 + z0/λ)(1 + z1/λ)...(1 + zn−1/λ) where {zn} is the orbit of z0. As n tends to infinity, zn
tends to 0, and {hn} converge locally uniformly to

h(z0) = z0

∞∏
0

(1 +
zn
λ

)

Observe that we have used the dynamics to construct an explicit conjugacy: essentially we have followed an
orbit in to very close to the attracting fixed point, and then used the fact that very close the fixed point the map
f is very close to z → λz. One can also construct the coefficients of h recursively, directly from the functional
equation hf(z) = λh(z), but the dynamical motivation is then no longer so apparent.

Theorem 4.7 (Böttcher 1904) If f(z) = zk + O(zk+1) (k ≥ 2 integer) then f is conjugate to z → zk on a
neighbourhood of 0.

Proof Analogously to 4.6, we set hn(z) = (fn(z))1/k
n

. Then hnf(z) = (hn+1(z))k and the {hn} converge
locally uniformly to a function h conjugating f to z → zk. QED
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Figure 7: Dynamics of z → z + zn+1 for n = 1, n = 2 and n = 3.

The proof above is only a sketch. See Milnor (Theorem 9.1) for details. The right choice of branch of knth root
in the definition of hn is important, but rather than fill in the details in general, we consider an example, one
that will also be useful later.

Example Consider f : z → z2 + c near the fixed point ∞.

Write this map as z → z2(1 + c/z2).

z1 = f(z0) = z20(1 + c/z20)

z2 = f(z1) = z21(1 + c/z21) = z40(1 + c/z20)2(1 + c/z21)

...

zn = z2n−1(1 + c/z2n−1) = z2
n

0 (1 + c/z20)2
n−1

(1 + c/z21)2
n−2

...(1 + c/z2n−1)

So hn(z0) = z0(1 + c/z20)1/2(1 + c/z21)1/4...(1 + c/z2n−1)1/2
n

where the choice of each root is the obvious one
coming from the binomial expansion. As n tends to ∞ the zn tend to ∞ (since z0 is outside the filled Julia
set). Thus the hn converge (locally uniformly) to

h(z0) = z0

∞∏
0

(1 +
c

z2n
)1/2

n+1

Once again one could compute explicit formulae for the coefficients of h using recursion relations based on the
functional equation, but they are far less revealing than the dynamical approach above.

We shall come back to this example when we look at the Mandelbrot set later. Meanwhile, what can be said
about linearisability near a neutral fixed point ?

Suppose f(z) = λz +O(z2), with |λ| = 1.

Case 1: λ = e2πip/q (in this case z = 0 is called a parabolic fixed point).

Example f(z) = z + zn+1

See Figure ?? for ths example in the cases n = 1, n = 2 and n = 3. The ‘attracting petals’ bounded by dashed
lines are mapped into themselves and each initial point in a petal has orbit which eventually converges to to
the fixed point along a direction tangent to the mid-line of the petal. The Julia set (not marked) heads off from
the fixed point in directions tangent to the repelling axes (between the petals).

A rational map f is not linearizable around a parabolic fixed point (unless f(z) = λz), since fq 6= identity.
But by analysing the local power series expansion of f(z) it can be shown that the parabolic point itself lies in
the Julia set and its the basin of attraction lies in the Fatou set (See Milnor, Lemma 10.5). It can easily be
proved (via Montel) that this basin of attraction must contain a critical point. Similar considerations apply to
a parabolic cycle.

The local dynamics around a parabolic fixed point (or cycle) has a very particular topological dynamics, that
of a Leau-Fatou flower, with ‘attracting petals’ contained within the Fatou set, as illustrated in the examples
above. For λ = e2π1p/q this flower has kq petals, where k ≥ 1 (see, for example Milnor, Theorem 10.7). The
study of holomorphic germs around parabolic points and cycles contains deep and interesting results: Chapter
10 of Milnor’s book is an excellent starting point to learn more about this.
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Case 2: λ = e2πiα with α irrational.

Here it all depend on ‘how irrational α is’. Write α as a continued fraction

α = a0 +
1

a1 + 1
a2+...

= [a0, a1, a2, ...]

and let pn/qn (in lowest terms) be the value of its nth truncation [a0, a1, ..., an].

For example the golden mean [0, 1, 1, 1, 1, ...] has p1/q1 = 1/1, p2/q2 = 1/2, p3/q3 = 2/3, p4/q4 = 3/5, ....

Definition α satisfies the Brjuno condition if and only if

∞∑
1

log(qn+1)

qn
<∞

We write B for the set of real numbers satisfing the Brjuno condition.

Theorem 4.9 (Brjuno, 1965) α ∈ B ⇒ all complex analytic maps z → e2πiαz +O(z2) are linearisable.

Theorem 4.10 (Yoccoz, 1988) α /∈ B ⇒ z → e2πiαz + z2 is not linearisable.

When a linearisation exists its domain is known as a Siegel disc.

Notes

1. Yoccoz’s proof of the necessity of the Brjuno condition is motivated by ideas of renormalization.

2. The Siegel disc around a linearizable irrational neutral fixed point is in the Fatou set F (f). It can be shown
the Siegel discs ‘use up’ critical points in the sense that the boundary of a Siegel disc necessarily lies in the
accumulation set of the forward orbit of some critical point.

3. The irrational neutral points which are not linearizable are known as Cremer points (after Cremer 1928).
They lie in J(f) and the dynamics around them is complicated. In the 1990s Perez-Marco introduced invariant
structures he called ‘hedgehogs’ and showed they they exist at all Cremer points. These are the subject of
continuing research.

4.3 The classification of types of Fatou component

Sullivan’s proof of the ‘No Wandering Domains Theorem’ has the consequence that for a polynomial the only
possible components of a Fatou set are components of the basin of:

1. a superattracting periodic orbit;

2. an attracting periodic orbit;

3. a rational neutral periodic orbit;

4. a periodic cycle of Siegel discs.

There is one other type that can ocur for rational f (but not polynomial f), components of the basin of:

5. a periodic cycle of Herman rings. (A Herman ring is an annulus with dynamics conjugate to an irrational
rotation.)

For a proof of this classification see for example Milnor’s book (Chapter 16) or the original paper of Sullivan in
1985.

These are the 5 types of ‘regular behaviour’ of a rational map. To completely understand rational maps we
have to understand how they fit together with each other, and with the behaviour on the complement of the
regular domain, the Julia set. As we shall see, there are still unanswered questions even in the simplest case,
that of quadratic maps z → z2 + c.
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