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Overview

Rational maps are self-maps of the Riemann sphere of the form z → p(z)/q(z) where p(z) and q(z) are polynomi-
als. Kleinian groups are discrete subgroups of PSL(2,C), acting as isometries of 3-dimensional hyperbolic space
and as conformal automorphisms of its boundary, the Riemann sphere. Both theories experienced remarkable
advances in the last two decades of the 20th century and are very active areas of continuing research. The aim
of the course is to introduce some of the main techniques and results in the two areas, emphasising the strong
connections and parallels between them.

Topics to be covered in 5 two-hour lectures

(This list may change as the course progresses, depending on the interests of the group)

1. Dynamics of rational maps: The Riemann sphere and rational maps (basic essentials from complex
analysis); conformal automorphisms of the sphere, plane and disc; Schwarz’s Lemma; the Poincaré metric on
the upper half-plane and unit disc; conjugacies, fixed points and periodic orbits (basic essentials from dynamical
systems); spherical metric; equicontinuity; Fatou and Julia sets (definition).

2. Fatou and Julia sets: Normal families and Montel’s Theorem; characterisations and proporties of Fatou
and Julia sets; types of Fatou component; linearization theorems (Koenigs, Böttcher, Siegel, Brjuno, Yoccoz).

3. Hyperbolic geometry and Kleinian groups: Hyperbolic 3-space and its isometry group; Kleinian
groups; ordinary sets and limit sets; fundamental domains, Poincaré’s polyhedron theorem; examples of Fuchsian
and Kleinian groups and their limit sets.

4. Quadratic maps and the Mandelbrot set: The Mandelbrot set and its connectivity; geography of the
Mandelbrot set: internal and external rays; introduction to kneading theory (Milnor-Thurston); open questions.

5. Further topics (selection from the following): The Measurable Riemann Mapping Theorem and
its applications to holomorphic dynamics and Kleinian groups; polynomial-like mappings and renormalisation
theory; Thurston’s Theorem (characterizing topological branched-covering maps equivalent to rational maps);
conformal surgery, matings; the ‘Sullivan Dictionary’ between holomorphic dynamics and Kleinian groups.

Prerequisites

Undergraduate complex analysis, linear algebra and elementary group theory.
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1 Introduction

1.1 Overview

The objective of these lecture notes is to develop some of the main themes in the study of iterated rational
maps, that is to say maps of the Riemann sphere Ĉ = C ∪∞ to itself of the form

z → p(z)

q(z)

(where p and q are polynomials with complex coefficients), and the study of Kleinian groups, discrete groups of

maps from Ĉ to itself, each of the form

z → az + b

cz + d

(where a, b, c, d are complex numbers, with ad− bc 6= 0).

We shall develop these studies in parallel: although there is no single unifying theory encompassing both areas
there are tantalizing similarities between them, and results in one field frequently suggest what we should look
for in the other (Sullivan’s Dictionary).

The study of iterated rational maps had its first great flowering with the the work of the French mathematicians
Julia and Fatou around 1918-20, though its origins perhaps lie earlier, in the late 19th century, in the more
geometric work of Schottky, Poincaré, Fricke and Klein. It has had its second great flowering over the last 30
years, motivated partly by the spectacular computer pictures which started to appear from about 1980 onwards,
partly by the explosive growth in the subject of chaotic dynamics which started about the same time, and not
least by the revolutionary work in three-dimensional hyperbolic geometry initiated by Thurston in the early
1980’s. In the intervening period Siegel (in the 1940s) had proved key results concerning local linearisability
of holomorphic maps, and Ahlfors and Bers (in the 1960s) following pioneering work of Teichmüller (in the
late 1930s) had developed quasiconformal deformation theory for Kleinian groups: the stage was set for an
explosion of interest, both experimental and analytical. Some of the names associated with this second great
wave of activity are Mandelbrot, Douady, Hubbard, Sullivan, Herman, Milnor, Thurston, Yoccoz, McMullen
and Lyubich. Both subjects are still very active indeed: as we shall see, some of the major conjectures are
still waiting to be proved. But the remarkable mixture of complex analysis, hyperbolic geometry and symbolic
dynamics that constitutes the subject of holomorphic dynamics yields powerful methods for problems which
at first sight might appear only to concern only real mathematics. For example the most conceptual proof of
the universality of the Feigenbaum ratios for period doubling renormalisation of real unimodal maps is that of
Sullivan (1992) using complex analysis.

We start our study of rational maps and Kleinian groups - as we mean to go on - with motivating examples.

1.2 The family of maps z → z2 + c

(i) c = 0

Here the dynamical behaviour is straightforward. When we iterate z → z2 any orbit started inside the unit
circle heads towards the point 0, any orbit started outside the unit circle heads towards∞, and any orbit started
on the unit circle remains there. The two components of {z : |z| 6= 1} are known as the Fatou set of the map
and the circle |z| = 1 is called the Julia set. On the unit circle itself the dynamics are those of the shift, namely
if we parametrise the circle by t ∈ [0, 1) ⊂ R (t = arg(z)/2π): then z → z2 sends t→ 2t mod 1.

Any t ∈ [0, 1) of the form t = m/(2n − 1) (for 0 ≤ m < 2n − 1 integer) is periodic, of period n (exercise: prove
this). Hence the periodic points form a dense set on the unit circle. Moreover the map z → z2 has sensitive
dependence on initial condition, since the map on the unit circle doubles distance.

2



Figure 1: Julia set for z → z2 − 1

Figure 2: Lamination for z → z2 − 1 (first few leaves).

(ii) c = −1

When we vary c just a little from 0 the dynamical picture remains like that for z → z2. There is a single
attractive fixed point (but this is no longer 0 itself), the Fatou set is a pair of (topological) discs, the basins of
attraction of the finite fixed point and ∞ respectively, and the Julia is a (fractal) topological circle separating
these discs. However as |c| becomes larger the Julia set becomes more and more distorted and eventually self-
intersects. For example once c has reached −1 the dynamical behaviour is rather more complicated to describe
(see Figure 1). The Fatou set now has infinitely many components. There is a fixed point at ∞ to which
every orbit started in the component of the Fatou set outside the ‘filled Julia set’ is attracted, and a period 2
cycle 0 → −1 → 0 → −1 → ... towards which every orbit started in any other component of the Fatou set is
attracted. An orbit which starts on the common boundary of the two attractors (the ‘Julia set’, which we shall
define formally soon) remains on that boundary. Combinatorially, the Julia set in this example is a quotient of
the circle, and the dynamics are those of the corresponding quotient of the shift. Figure 2 shows the first few
identifications on the unit circle in the construction of this quotient: contracting the leaves on the closed unit
disc gives a model of the filled Julia set for z → z2 − 1.

(iii) c = i

See Figure 3. Note that the point 0 is preperiodic for this map (0 → i → −1 + i → −i → −1 + i...). It can be

Figure 3: Julia set for z → z2 + i
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Figure 4: The modular group action on the upper half-plane

proved that whenever c is such that the critical point 0 of z → z2 + c is preperiodic but not periodic, the Julia
set is a dendrite (that is a connected, simply-connected set with empty interior).

(iv) c = −2

Here again 0 is preperiodic, and the dendrite (not drawn here) is the real interval [−2, 2].

Exercise Show that h : z → z+1/z is a semiconjugacy from f : z → z2 to g : z → z2−2 (that is, h is a surjection
satisfying hf = gh) and that h sends the Julia set of f (the unit circle) onto the real interval [−2,+2].

For |c| sufficiently large the Julia set becomes disconnected - in fact it becomes a Cantor set. The set of all
values of c ∈ C such the Julia set is connected is known as the Mandelbrot Set.

1.3 The modular group PSL(2,Z)

The modular group PSL(2,Z) is the group of Möbius transformations

z → az + b

cz + d

such that a, b, c, d are integers with ad− bc = 1. It is easy to see that PSL(2,Z) maps the open upper half H+

of the complex plane to itself, the open lower half plane H− to itself and the extended real axis R̂ = R ∪∞ to
itself (see Figure 4).

We remark that the modular group is generated by S : z → −1/z and T : z → z+1. All relations in the group are
consequences of the pair of relations S2 = I, (ST )3 = I. The region ∆ = {z : |z| ≤ 1, Re(z) ≤ 1/2, Im(z) > 0}
is a fundamental domain for the action of PSL(2,Z) on the upper half plane: H+ is ‘tiled’ by the translates of
∆ under elements of the group. Similarly H− is tiled by the mirror image of ∆ and its translates. Both sets
of tiles accumulate on R̂. Just as is the case for rational maps, the action of a Kleinian group G partitions the
Riemann sphere into two disjoint completely invariant subsets, an ordinary set Ω(G) (in the case of the modular
group this is H+∪H−), and a limit set Λ(G) (in this case R̄) on which the system exhibits sensitive dependence
on initial conditions: arbitrarily close to any point in Λ(G) we can find another point and an element of G
sending the two points arbitrarily far apart.
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2 Dynamics of rational maps

2.1 The Riemann sphere

The extended complex plane is C together with an extra point ‘∞’. The topology on C∪ {∞} can be described
as follows. Let S2 denote the unit sphere in R3, regard C as the plane R2 ⊂ R3 (which cuts through S2 at
its equator), and let N = (0, 0, 1) denote the ‘north pole’ of S2. Stereographic projection from N defines a
homeomorphism π : S2 − {N} → C. Extending π to send N to ∞ we obtain a homeomorphism from S2 to
C ∪∞, where the latter is topologised by taking as neighbourhoods of ∞ the sets {z : |z| > R} ∪∞. However
we need more than just a topology on C ∪∞: we give S2 the structure of a Riemann surface by equipping it
with charts (homeomorphisms) φ1 : C → S2 − {N} and φ2 : C → S2 − {S} such that φ−12 φ1 is an analytic
bijection on the overlap. We may take φ1 to be the inverse π−1 of stereographic projection from the north pole
and φ2 to be the inverse of sterographic projection from the south pole, followed by complex conjugation. The
overlap φ−12 φ1 is then z → z̄/|z|2 = 1/z.

Equivalently we can put a complex structure on C ∪∞ by regarding it as the complex projective line

CP1 = {C2 − (0, 0)}/R

where R is the relation (z, w) ∼ (λz, λw) for λ ∈ C − 0. An equivalence class [z, w] contains (z/w, 1) if w 6= 0
or (1, w/z) if z 6= 0, so we may think of CP1 as the union of two copies of the complex plane glued together,
C1 ∪ C2/(z1 ∼ 1/z2). The bijection

CP1 ↔ Ĉ
is given by [z, w] ↔ z/w when w 6= 0 and [z, 0] ↔ ∞. We shall use the term Riemann sphere interchangeably

for Ĉ or CP1, but we shall tend to use the notation z ∈ Ĉ rather than [z, w] for an individual point, just for
convenience: all polynomial expressions in the former form can if necessary be re-written in the latter form
simply by introducing a homogenising variable w.

2.2 Basic essentials from complex analysis

Definitions An open connected set Ω ⊂ C is called a domain.

f : Ω→ C is said to be differentiable at z0 ∈ Ω if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
exists.

f : Ω→ C is said to be holomorphic if f is differentiable at all z0 ∈ Ω.

Theorem 2.1 Let f be holomorphic on the domain Ω ⊂ C and let z0 ∈ Ω. Let R denote the radius of the
largest disc which has centre z0 and is contained in Ω. Then for all z with |z − z0| < R the Taylor series∑∞
n=0 an(z − z0)n for f at z0 converges absolutely to the value f(z).

This is a classical theorem of complex analysis. The coefficients an are given by the formulae

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz

where C is a positively-oriented circle around z0, or equivalently by

an =
fn(z0)

n!

A function expressible as a power series is called analytic. Thus Theorem 2.1 says that a holomorphic function
on a domain Ω ⊂ C is analytic. The converse is also a well known result: every function expressible as a
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power series is holomorphic on the disc of convergence of the series, and its derivative is given by term-by-term
differentiation.

There is a geometric interpretation for the statement that a function f is differentiable at z0. If f ′(z0) 6= 0,
then near z0 we have f(z) − f(z0) ∼ f ′(z0)(z − z0) so f acts on z − z0 by multiplying it by the scaling factor
|f ′(z0)| and turning it through an angle arg(f ′(z0)). Thus in particular if f ′(z0) 6= 0 the function f is conformal
(angle-preserving) at z0. If f ′(z0) = 0, then on a small disc centred at z0 we have f(z) ∼ f(z0) +an(z− zo)n for
the first coefficient an 6= 0 and f acts on this disc as an n-to-1 branched covering map (branched at z0): note
that f is then not conformal at z0, indeed it multiplies angles at z0 by n.

If f : Ω → C is holomorphic except at isolated singularities (isolated points where f is undefined or not
differentiable) then we say that f is meromorphic if all these singularities are either removable or poles, or
equivalently if for each z0 ∈ Ω there is a disc neighbourhood D of z0 such that the Laurent series for f in the
punctured disc D−{z0} has the form

∑+∞
n=−m an(z−z0)n. Recall that z0 is said to be a pole of order m if m > 0

is such that a−m 6= 0 but a−n = 0 for all n > m, and that z0 is said to be removable if a−n = 0 for all n > 0.
When z0 is a removable singularity we can set f(z0) = a0 and thereby extend f to a function differentiable at z0,
and when z0 is a pole limz→z0 f(z) =∞ so we can extend the definition of f by setting f(z0) =∞ and regard

f as a continuous function f : Ω→ Ĉ = C∪∞. This extension is generally called meromorphic too. (Note that
if our original f : Ω → C has any essential singularities there is no way to assign values at these singularities
to obtain a continuous extension f : Ω→ C ∪∞ since in any neighbourhood of an essential singularity f takes
values arbitrarily close to any given value.)

There is a nice way to characterise a meromorphic function f : Ω → Ĉ (Ω a domain in C), making use of the
‘duality’ between ‘0’ and ‘∞’. Let σ denote the function z → 1/z. Then around any pole z0 of f the function
σf is analytic, since f(z) has an expression as a Laurent series

f(z) = (z − z0)−m
∞∑
n=0

bn(z − z0)n (b0 6= 0)

and taking the reciprocal of this expression we obtain for σf(z) a series of the form

σf(z) = (z − z0)m
∞∑
n=0

cn(z − z0)n

where c0 = 1/b0. It follows that f : Ω→ Ĉ is meromorphic if and only if f is analytic at those points z0 where
f(z0) 6=∞ and σf is analytic at those where f(z0) 6= 0.

Finally, for full generality, we allow Ω to be a domain in Ĉ = C∪∞ and not just in C and we say that f : Ω→ Ĉ
is meromorphic at ∞ if fσ is meromorphic at 0. The class of functions f : Ĉ → Ĉ which are meromorphic on
C and at ∞ are precisely the functions we are interested in: they are the functions which, provided we replace
f by σf, fσ or σfσ as appropriate, have a Taylor series expansion at every point of Ĉ.

Definition Ĉ→ Ĉ is holomorphic if f is meromorphic at every point of C and at ∞.

2.3 Rational maps and critical points

Theorem 2.2 f : Ĉ → Ĉ is holomorphic if and only if f is a rational function, that is to say there exist
polynomials p(z), q(z), with complex coefficients, such that f(z) = p(z)/q(z) for all z ∈ Ĉ.

Proof It is an elementary exercise to show that any rational map f is meromorphic both at points of C and at
∞, since by the Fundamental Theorem of Algebra f has the form

f(z) = c
(z − α1)m1 ...(z − αr)mr

(z − β1)n1 ...(z − βs)ns
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For the converse, let f : Ĉ → Ĉ be holomorphic. Then f has finitely many poles (else 1/f has a convergent
sequence of zeros, which, by Theorem 2.1, is only possible if 1/f is identically zero). Let these poles be β1, ..., βs,
of order n1, ...ns respectively. Then

g(z) = (z − β1)n1 ...(z − βs)nsf(z)

is analytic on C, and so g can be written in the form

g(z) =

∞∑
n=0

anz
n

Since f is meromorphic at ∞ so is g. Thus gσ is meromorphic at 0. In other words
∑∞
n=0 anz

−n has a pole
or a removable singularity at z = 0. It follows that only finitely many of the an are non-zero and hence g is a
polynomial. QED

Comments

1. This is a very powerful result: it tells us that any holomorphic f : Ĉ → Ĉ is determined by a finite set of
data, for example the poles and zeros of f together with the value of f at one other point.

2. We can write a rational map f(z) = p(z)/q(z) : Ĉ → Ĉ in terms of homogeneous coordinates on CP1 as
follows: write

p(z) =

d∑
m=0

amz
m; q(z) =

d∑
m=0

bmz
m

(where if necessary extra zero coefficients have been added to give p and q the same degree). Now define

f([z, w]) = [

d∑
m=0

amz
mwd−m,

d∑
m=0

bmz
mwd−m]

Let f(z) = p(z)/q(z), where p and q are polynomials of degree dp and dq respectively, with no common zeros.

Then a general point ζ ∈ Ĉ has max(dp, dq) inverse images (just consider the equation ζ = p(z)/q(z), that is
to say p(z)− ζq(z) = 0: this has max(dp, dq) solutions z for any ζ in general position). We define the degree of
f to be max(dp, dq). Thus, for example, rational maps of degree 1 have f(z) = p(z)/q(z) where p(z) = az + b
and q(z) = cz + d (but ad− bc 6= 0 else p is a constant multiple of q).

Definition A critical point of a rational map f is a point z0 where the degree one term of the Taylor series for
f vanishes, in other words the derivative f ′(z0) vanishes.

As usual we replace f by fσ here if z0 =∞, by σf if f(z0) =∞ and by σfσ if both are∞, so that an appropriate
Taylor series exists. Looked at topologically a critical point of f is a branch point of f , a point z0 such that
f(z)− f(z0) has a factor (z− z0)n for some n > 1, and thus in particular where f−1f(z0) consists of less than d
distinct points. (But for d > 2 it does not follow that z0 is a critical point just because f−1f(z0) consists of less
than d distinct points (exercise!).) Writing f(z) = p(z)/q(z), we see that f ′(z) = 0⇔ q′(z)p(z)− p′(z)q(z) = 0.

Proposition 2.3 A degree d rational map has 2d− 2 critical points (counted with multiplicity)

Proof In the generic case both p and q have degree d and q′(z)p(z) − p′(z)q(z) is generically a polynomial of
degree 2d − 2 (since q′(z)p(z) and p′(z)q(z) have the same degree 2d − 1 term). In the non-generic case we
obtain the same result if we adopt the right notion of ‘multiplicity’: this is best proved topologically using an
argument based on Euler characteristics (see later for a full proof). QED

2.4 Conformal automorphisms of Ĉ, C and D

The invertible holomorphic maps f : Ĉ → Ĉ are the conformal automorphisms of the Riemann sphere. They
form a group Aut(Ĉ).
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Proposition 2.4 The conformal automorphisms of Ĉ are the rational maps of form

f(z) =
az + b

cz + d

having a, b, c, d ∈ C and ad 6= bc.

Proof By Theorem 2.2 for f to be holomorphic it must be rational, but to be injective it must have degree 1.
Conversely, any f of this form is invertible since it has inverse f−1(z) = (dz − b)/(−cz + a). QED

Maps of the form f(z) = (az+ b)/(cz+d) having a, b, c, d ∈ C and ad 6= bc are called fractional linear or Möbius
transformations.

Properties of Möbius transformations

1. Any invertible linear map α : C2 → C2 has the form

(
z
w

)
→
(
a b
c d

)(
z
w

)
=

(
az + bw
cw + dw

)
and passes to a map CP1 → CP1 which in our coordinate z/w on Ĉ = C ∪∞ is

z/w → az + bw

cz + dw
=
az/w + b

cz/w + d

(where (a∞+ b)/(c∞+ d) is to be interpreted as a/c and so on).

2. Composition of linear maps passes to composition of Möbius transformations. The group of all Möbius
transformations is therefore

PGL(2,C) =
GL(2,C)

{λI;λ ∈ C− {0}}
=
SL(2,C)

{±I}
= PSL(2,C)

where GL(2,C) denotes the group of all invertible 2× 2 matrices and SL(2,C) denotes those of determinant 1.

3. Given any three distinct points P,Q,R ∈ Ĉ, there exists a unique Möbius transformation sending P →
∞, Q→ 0, R→ 1, given by

α(z) =
(P −R)(Q− z)
(Q−R)(P − z)

(Uniqueness follows from the easy exercise that the only Möbius transformation fixing 0, 1 and∞ is the identity.)

It follows that given any other three distinct points P ′, Q′, R′ ∈ Ĉ there exists a unique Möbius transformation
sending P → P ′, Q → Q′ and R → R′, for if α is as above and β sends P ′ → ∞, Q′ → 0, R′ → 1 then β−1α
has the required property.

4. Given any four distinct points P,Q,R, S ∈ Ĉ, their cross-ratio is defined to be

(P,Q;R,S) =
(P −R)(Q− S)

(Q−R)(P − S)
∈ Ĉ− {0.1,∞}

(Warning: There are several different definitions of a cross-ratio in common use.) It follows from the preceding
remark that (P,Q;R,S) = α(S), where α is the unique Möbius transformation sending P → ∞, Q → 0 and
R→ 1. Hence if γ is a Möbius transformation then (γ(P ), γ(Q); γ(R), γ(S)) = (P,Q;R,S), for αγ−1 is then a
Möbius transformation sending γ(P ) → ∞, γ(Q) → 0, γ(R) → 1 and has (αγ−1)γ(S) = α(S) = (P,Q;R,S).
Thus cross-ratios are preserved by Möbius transformations.

Möbius transformations are conformal (since they are invertible and therfore have non-zero derivative every-
where). But conformality is just a local property and we can prove a much stronger result:

Proposition 2.5 Möbius transformations send circles in Ĉ to circles in Ĉ (where a ‘circle through ∞’ is a
straight line in C).
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Proof Any ‘circle’ in Ĉ (including those through ∞) has the form

α(x2 + y2) + 2βx+ 2γy + δ = 0 (α, β, γ, δ ∈ R)

in other words
Azz̄ +Bz + B̄z̄ + C = 0

where A = α ∈ R, B = β − iγ ∈ C, C = δ ∈ R. Let

z =
aw + b

cw + d

Now a direct substitution for z in the equation above gives an equation of the same form for w once the
denominator has been cleared. QED

Corollary 2.6 Any four distinct points P,Q,R, S ∈ Ĉ lie on a common circle if and only if their cross ratio
(P,Q;R,S) is real.

Proof Send P,Q,R to ∞, 0, 1 by a Möbius transformation. QED

Proposition 2.7 The conformal automorphisms of C are the maps f(z) = az + b having a, b ∈ C and a 6= 0.

Proof Let f be a conformal automorphism of C. Then limz→∞ f(z) =∞ (this follows from the fact that f is a
homeomorphism). Hence σfσ has a removable singularity at 0 and so f extends to a conformal automorphism

of Ĉ. The result follows by Proposition 2.4. QED

We next identify the conformal automorphisms of D. The neatest method is via Schwarz’s Lemma, which will
be an important tool for us later for other purposes.

Lemma 2.8 (Schwarz’s Lemma) If f is holomorphic D → D and f(0) = 0 then |f ′(0)| ≤ 1. If |f ′(0)| = 1
then f(z) = µz for some µ ∈ C with |µ| = 1. If |f ′(0)| < 1 then |f(z)| < |z| for all 0 6= z ∈ D.

Proof Let f(z) have Taylor series a1z + a2z
2 + ... on D, and set g(z) = a1 + a2z + ...(= f(z)/z). Then g is

holomorphic D→ C and on the circle C having centre 0 and radius ρ we see that

|g(z)| = |f(z)|
|z|

≤ 1

ρ

so by the Maximum Modulus Principle |g(z)| has the bound 1/ρ for all z inside C too. Letting ρ tend to 1
(from below) we deduce that |g(z)| ≤ 1 for all z ∈ D, and in particular |g(0)| ≤ 1, that is |f ′(0)| ≤ 1. If there
is any z0 ∈ D with |g(z0)| = 1 (for example if |g(0)| = 1), then |g(z)| = 1 for all z ∈ D (again by the Maximum
Modulus Principle) in which case g must be constant, say g(z) = µ, with |µ| = 1. If there is no such z0 then
|g(z)| < 1 for all z ∈ D, i.e. |f(z)| < |z| for all z ∈ D. QED

Proposition 2.9 The conformal automorphisms of D are the maps of form

f(z) = eiθ
z − a
1− āz

, θ ∈ R, a ∈ D

Proof Let f be a conformal automorphism of D. Then f−1(0) = a ∈ D. The Möbius transformation

g(z) =
z − a
1− āz

sends a to 0 and the unit circle to itself, so it sends D to itself. Thus fg−1 is a conformal automorphism of D
sending 0 to 0. From Schwarz’s Lemma it follows that fg−1(z) = µz for some µ with |µ| = 1. QED

Corollary 2.10 The conformal automorphisms of the upper half-plane H+ are the Möbius transformations

f(z) =
az + b

cz + d
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having a, b, c, d ∈ R and ad 6= bc.

Proof. Take any Möbius transform M which sends the upper half plane H+ bijectively onto D (exercise: write
one down). The conformal automophisms of H+ are the maps M−1gM where g runs through the conformal
automorphisms of D given by Proposition 2.9 (details: exercise). QED

We recall that not only is there is a conformal bijection between H+ and D, but that the Riemann Mapping
Theorem states that for every simply-connected domain U ⊂ C (U 6= C) there is a conformal bijection between
U and D. An important generalisation of this that we shall repeatedly use explicitly or implicitly, but which
we will not prove in this course, is the following (proved by Poincaré and Koebe):

Theorem 2.11 (The Uniformisation Theorem) Every simply-connected Riemann surface is conformally

bijective to one of Ĉ, C or D.

2.5 The Poincaré metric on the upper half plane

Define the infinitesimal Poincaré metric on the upper half plane by ds =

√
(dx)2+(dy)2

y .

Proposition 2.12 ds is invariant under PSL(2,R)

Proof Every element of PSL(2,R) can be written as a composition of transformations of the type z → z + λ
(λ ∈ R), z → µz (µ ∈ R>0) and z → −1/z, and it is easily checked that each preserves ds. QED

A path in H+ is called a geodesic from P to Q in H+ if it is a path of shortest length.

Proposition 2.13 There is a unique geodesic between any two distinct points P and Q in H. It is the segment
between P and Q of the (unique) euclidean semicircle through P and Q which meets R̂ orthogonally. The
distance between P and Q (in the Poincaré metric) is ln(|(P,Q;A,B)|) where A and B are the points where

the semicircle meets R̂.

Proof In the case that P and Q are on the imaginary axis, the straight line path γ1 from P to Q is shorter
than any other path γ2 from P to Q, since∫

γ2

1

y

√
(dx)2 + (dy)2 >

∫
γ2

1

y
dy =

∫
γ2

1

y
dy

For P = i and Q = it (real t > 1) the hyperbolic distance from P tp Q is∫ t

1

1

y
dy = ln t = ln |(i, it; 0,∞)|

The result follows, since given any P ′, Q′ in H+ there is an element of PSL(2,R) which sends P to P ′ and Q
to Q′, and moreover this Möbius transformation sends the positive imaginary axis to a semicircle with ends on
the extended real axis R̂ and preserves corss-rations. QED

Corollary 2.14 The group of conformal automorphisms of the upper half-plane, PSL(2,R), is also the group
of orientation-preserving isometries of the upper half-plane (equipped with the Poincaré metric).

Proof (sketch) It is obvious that every element of PSL(2,R) preserves the Poincaré metric since it preserves
the upper half-plane, the real axis and cross-ratios. For the other direction, observe that an isometry of the
Poincaré metric must send geodesics to geodesics, and it must send orthogonal pairs of geodesics to orthogonal
pairs of geodesics (since othogonal pairs of geodesics are pairs of semicircles with end points on R̂ having cross-
ratio −1). It follows that an isometry must satisfy the Cauchy-Riemann equations everywhere and is therefore
a conformal automorphism. QED

We can transfer the Poincaré matric to D, using any Möbius transformation M sending H+ → D.

Exercise. Show that the infinitesimal metric 2|dz|
1−|z|2 on D is invariant under Aut(D), show that the distance

between 0 and t ∈ (0, 1) ⊂ D ∩ R in this metric is ln |(0, t;−1,+1)| and deduce that this is the infinitesimal
Poincaré metric, transferred from H+ to D.
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2.6 Conjugacies, fixed points and multipliers

Definition Rational maps f, g are said to be conjugate if there exists a Möbius transformation h such that
g = hfh−1, in other words such that the following diagram commutes:

-

-

? ?

Ĉ Ĉ

Ĉ Ĉ
f

g

h h

Conjugate maps have identical dynamical behaviour (think of h as a ‘change of coordinate system’). In particular
h sends fixed points of f to fixed points of g, periodic points of f to periodic points of g etc, as we shall see
below. We can often put a rational map into a simpler form by applying a suitable conjugacy.

Examples

1. A rational map f is conjugate to a polynomial if and only if there exists a point z0 ∈ Ĉ such that f−1(z0) =
{z0}. (Proof: Move z0 to ∞ by a Möbius transformation h. Details: exercise.)

2. A rational map f is conjugate to a polynomial of the form z → zn (some n > 0) if and only if there exist

distinct points z0, z1 ∈ Ĉ such that f−1(z0) = {z0} and f−1(z1) = {z1}. (Proof: Move z0 to ∞ and z1 to 0 by
a Möbius transformation h. Details: exercise.)

3. Every degree 2 polynomial z → αz2 + βz + γ (α 6= 0) is conjugate to a (unique) one of the form z → z2 + c.
(Proof: Exercise: h can be taken of the form az + b since we do not have to move ∞).

Fixed points and multipliers

Definitions A fixed point of a rational map f is a point z0 ∈ Ĉ such that f(z0) = z0.

The multiplier of f at such a fixed point is the derivative f ′(z0) = λ. We say that z0 is

attracting if |λ| < 1 (if λ = 0 we say z0 is superattracting);

repelling if |λ| > 1;

neutral if |λ| = 1, i.e. λ = e2πiθ for some θ ∈ R.

As we shall see, the dynamical behaviour around a neutral periodic point depends on whether θ is rational or
irrational, and the irrational case can be further subdivided into ‘linearisable’ and ‘non-linearisable’.

Proposition 2.15 When the function f is conjugated by a Möbius transformation h any fixed point z0 of f
is sent to a fixed point w0 = h(z0) of g = hfh−1 and the multiplier of the fixed point w0 for g is equal to the
multiplier for the fixed point z0 for f .

Proof If z0 is a fixed point of f and w0 = h(z0) then

g(w0) = gh(z0) = hf(z0) = wo

and, by the chain rule for differentiation,

g′(w0) = h′(w0)f ′(z0)(h−1)′(w0)

but since h is differentiable, has differentiable inverse and sends z0 to w0, we know that

(h−1)′(w0) =
1

h′(z0)
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and hence g′(w0) = f ′(z0). QED

Note that we cannot expect the derivative of a rational map f at a point z0 to be a conjugacy invariant when z0
is not a fixed point, since there is no reason to expect any relation between h′(z0) and (h−1)′(hf(z0)). However
the property of having zero derivative does turn out to be a conjugacy invariant (exercise). This should not
surprise us as this is a topological property of the map: the critical points are the branch points of the map,
that is to say the points where it fails to be locally one-to-one.

Proposition 2.15 says that a conjugacy sends a fixed point of f to a fixed point of g having the same dynamical
behaviour (attractor, repellor etc). Analogous results hold for periodic orbits:

Definition A point z0 is said to periodic of period n for f if fn(z0) = z0 but f j(z0) 6= z0 for 0 < j < n. The
multiplier of the periodic orbit {z0, f(z0) = z1, f(z1) = z2, ..., f(zn−1) = z0} is defined to be (fn)′(z0). Note
that (fn)′(z0) = f ′(z0)f ′(z1)...f ′(zn−1) by the chain rule.

Proposition 2.16 When the function f is conjugated by a Möbius transformation h any orbit of period n of f
is sent an orbit of period n of g = hfh−1, and the two orbits have the same multiplier.

Proof Denote the periodic orbit of f by {z0, f(z0) = z1, f(z1) = z2, ..., f(zn−1) = z0}. Then gjh(z0) =
hf j(z0) = h(zj). So gjh(z0) 6= h(z0) for 0 < j < n (h being injective) and gnh(z0) = h(z0). Hence h(z0) is
periodic of period n for g. The orbits have the same multiplier by Proposition 2.15 applied to fn. QED

2.7 The spherical metric and the Fatou and Julia sets of a rational map

We define the spherical metric on the unit sphere S2 by setting the distance between two points to be the
shortest Euclidean length of a great circle path between them. On the Riemann sphere, parameterised as the
extended complex plane C ∪∞, the infinitesimal spherical metric is:

ds =
2|dz|

1 + |z|2

WARNING The spherical metric is not preserved by Aut(Ĉ), but conjugating by any particular conformal

automorphism sends the spherical metric to a Lipschitz equivalent metric, since Ĉ is compact.

Definition Let f be a rational map and z0 be a point of Ĉ. We say that the family of iterates {fn}n≥0 is
equicontinuous at z0 if given any ε > 0 there exists δ > 0 such that for all n ≥ 0 d(fn(z), fn(z0)) < ε whenever

d(z, z0) < δ. (Here d is the spherical metric on Ĉ).

Think of this as saying that ‘any orbit which that starts near z0 remains close to the orbit of z0’.

Definitions The Fatou set F (f) of f is the largest open subset of Ĉ on which the family {fn}n≥0 is equicon-

tinuous at every point. The Julia set J(f) of f is Ĉ− F (f).

The Julia set should be thought of as the set of points the orbits of which exhibit ‘sensitive dependence on
initial conditions’.

Example

f(z) = z2 has Fatou set F (f) = {z : |z| 6= 1}, and Julia set J(f) = {z : |z| = 1}.

Since f doubles length along the unit circle it is clear that {z : |z| = 1} ⊂ J(f). It is not quite so obvious
that points not on the unit circle are in F (f). One can give a direct formal proof of this, but the details are a
little messy in practice: the problem is that orbits started close together near (but not on) the unit circle will
move apart for a large number of iterations before they start approaching each other again. For a more general
method of proof, see the next chapter.

Remark If g = hfh−1 where h ∈ Aut(Ĉ), then F (g) = h(F (f)) and J(g) = h(J(f)). This follows from the
remark about Lipschitz equivalent metrics in the warning above.
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