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LECTURE 1. INTRODUCTION

The study of iterated complex maps had its first great flowering with the the work of
the French mathematicians Julia and Fatou around 1918-20, though its origins perhaps lie
earlier, in the late 19th century, in the more geometric work of Schottky, Poincaré, Fricke
and Klein. It has had its second great flowering over the last 25 years, motivated partly by
the spectacular computer pictures which started to appear from about 1980 onwards, partly
by the explosive growth in the subject of chaotic dynamics which started about the same
time, and not least by the revolutionary work in three-dimensional hyperbolic geometry
initiated by Thurston in the early 1980’s. Some of the names associated with this second
wave of activity are Mandelbrot, Douady, Hubbard, Sullivan, Milnor, Thurston, Yoccoz
and McMullen. The subject is still very much in a ferment of activity: as we shall see, some
of the major conjectures are still waiting to be proved. But the methods are powerful: for
example the only conceptual analytic proof of the universality of the Feigenbaum ratios
for period doubling in real unimodal maps is that of Sullivan (1992) using techniques from
complex iteration theory.

The objective of these lecture notes is to give a brief introduction to the remarkable
mixture of complex analysis, hyperbolic geometry and symbolic dynamics that constitutes
the subject of complex dynamics. The idea is to give the flavour of the subject, outline some
of the main techniques (without detailed proof) and discuss some of the main theorems
and open conjectures. As we proceed, we shall also see connections with the symbolic
dynamics of maps of the both the real interval and the circle: the complex world is ideal
for ‘unfolding’ problems in the real world.

1.1 Examples of the behaviour of quadratic maps z — 22 + ¢
(1) ec=0

Here the dynamical behaviour is straightforward. When we iterate z — 2? any orbit
started inside the unit circle heads towards the point 0, any orbit started outside the unit
circle heads towards oo, and any orbit started on the unit circle remains there. The two
components of {z : |z| # 1} are known as the Fatou set of the map and the circle |z| = 1
is called the Julia set.

On the unit circle itself the dynamics are those of the shift.
Parametrise the circle by ¢t € [0,1) CR (¢t = arg(z)/27): then z — 22 sends ¢ — 2t
mod 1.

7N
¢ period 2otk fixed poinl
hi%’ = 0Ll £ =0'=..000..
12 ~.00010. T /
L3 { in binary) —

Any t € [0,1) of the form ¢ = p/(2" — 1) (for p integer) is periodic, of period n. Hence
the periodic points form a dense set on the unit circle; moreover that the map z — 22 has
sensitive dependence on initial condition, since it doubles arguments.
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(i) e = -1

Here the dynamical behaviour is much more complicated:

The Fatou set has infinitely many components this time. There'is an attracting fixed
point at oo to which every orbit started in the component of the Fatou set outside the
‘filled-in Julia set’ is attracted, and a period 2 cycle 0 — —1 — 0 — —1 — ... towards which
every orbit started in any other component of the Fatou set is attracted. An orbit which
starts on the common boundary of the two regions (the ‘Julia set’, which we shall define
formally soon) remains on that boundary. Combinatorially, the Julia set in this example
is a guotient of the circle, and the dynamics are those of the corresponding quotient of
the shift. The figure below shows the first few identifications on the unit circle in the
construction of this quotient.

(ifi) ¢ = i
(For an illustration see the middle picture on the right-hand side on the next page.)

Note that the point 0 is preperiodic for this map (0 — ¢ — —1+¢ — —i — —144..). It
can be proved that whenever c is such that the critical point 0 of z — 22 + ¢ is preperiodic
but not periodic, the Julia set is a dendrite (that is a connected, simply-connected set with
empty interior).

(iv) c = -2 - + 2.

Here again 0 is preperiodic, and the dendrite is a particularly simple one, the real
interval [—2,2].

Ezercise

Show that the map h : 2 — 241/ is a semiconjugacy from f : 2 — 22 to g : z — 22 —2
(that is, h is a surjection satisfying hf = gh) and that h sends the Julia set of f (the unit
circle) onto the real interval [—2, 42].



Typical Julia sets of quadratic maps z — 22 + ¢




1.2 The Riemann sphere and rational maps: basic essentials from complex
analysis

We summarise some basic results of complex analysis before giving the formal defini-
tions of Julia and Fatou sets and beginning the study of their main properties.

The Riemann sphere and rational maps
The Riemann sphere is the complex projective line,

CP' = {C?*-(0,0)}/R

where R is the relation (z,w) ~ (Az,Aw) for A € C — 0. Any equivalence class [z, w]
contains (z/w,1) if w # 0 or (1,w/z2) if z # 0, so we may think of the Riemann sphere as
the union of two copies of the complex plane glued together, C; UCs/(z1 ~ 1/22), or even
more simply as the extended complez plane C = C U oco. The bijection

CP! & C

is given by [z,w] <> z/w when w # 0 and [2,0] <+ co. Yet another way to picture the
Riemann sphere is as the unit sphere $2 in R3: if we remove the north pole N = (0,0,1)
the remainder of S? maps bijectively onto the (z,y, 0)-plane under stereographic projection
from N, and sending N — co completes this to a bijection S? ++ CUoco = C. With this
picture we can define the spherical metric on C, corresponding to the usual metric on the
unit sphere. In what follows it will usually be most convenient to think of the Riemann
sphere as C=cCcu 00, but it might sometimes also be helpful to think in terms of one of
the other definitions.

We next want to define what we mean by differentiable maps from the Riemann sphere
to itself. We approach the definition in stages, recalling some terminolgy from complex
analysis.

An open connected set Q C C is called a domain.
f: Q2 — Cis called differentiable if for each zg €

F0) — 1 £ = F0)

Z—r2n Z— Z0

exists. If f is differentiable then for each zy € £ there is a disc neighbourhood of zy on
which the value of the function f(z) is equal the sum of the Taylor series Y >°  an(z—2o)"
for f at zp (Taylor’s Theorem). For this reason a differentiable function is often called an
analytic function.

If f'(20) # 0, then near zo we have f(z) ~ f(z0)+ f'(20)(2 — 29) so f acts on z— zy by
multiplying it by the scaling factor |f'(29)| and turning it through an angle arg(f'(29)).
Thus in particular if f'(z9) # 0 the function f is conformal (angle-preserving) at zo.

If f'(z0) = 0, then on a small disc centred at zo we have f(z) ~ f(20) + an(z — 25)"
for the first coefficient a,, # 0 and f acts on this disc as an n to 1 branched covering map
(branched at zp): note that f is then not conformal at 2.
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f:Q—C=CUx (©2 still a domain in C) is called meromorphic if the only singular-
ities of f on © are poles, or equivalently if for each zg € 2 there is a disc neighbourhood of
2o on which the value of f(2) is equal to the sum of the Laurent series S mon(z—20)"
for f at zy (where m = 0 if f(20) # 00, and zg is a pole of order m if f(z) = 00).

Let j denote the function z — 1/z. Note that f : QO — C is meromorphic if and
only if f is analytic at those points zg where f(zg) # oo and jf is analytic at those where

If Q is now a domain in C we say that f : Q — C is meromorphic at oo if fj is
meromorphic at 0.

Theorem 1.1 f: C — C is meromorphic if and only if f is a rational function, that is to
say there exist polynomials p(z),q(z), with complex coefficients, such that f(z) = p(z)/q(z)
for all z € C.

Proof It is an elementary exercise to show that any rational map is meromorphic. For
the converse, let f : C — C be meromorphic. Then f has finitely many poles (else 1/ f
has a convergent sequence of zeros, which, by Taylor’s Theorem, is only possible if 1/f
is identically zero). Let these poles be Bi,..., Bm, of order ny,...n, respectively. Then
9(z) = (z — B1)™...(z — Bm)™ f(z) is analytic C — C and equal to its Taylor series
Yoo o anz™ everywhere on C. In particular g is meromorphic at oo; that is to say gj is
analytic at 0, or in other words Zf:o anz~ ™ has a pole (or a removable singularity) at
z = 0. Thus only finitely many of the a,, are non-zero and hence g is a polynomial. QED

This is a very powerful result: it tells us that any meromorphic f : C 5 Cis
determined by a finite set of data, for example the poles and zeros of f together with the
value of f at one other point.

Degree of a rational map

Let f(z) = p(z)/q(z), where p and ¢ are polynomials of degree d;, and d, respectively,
with no common zeros. Then a general point ¢ € C has max(dp, dq) inverse images (just
consider the equation ¢ = p(z)/q(z), that is to say p(z) — (q(z) = 0: this has maz(dy, dq)
solutions z for any ¢ in general position). We define the degree of f to be maz(dp, dg).

Corollary 1.2 The invertible meromorphic maps f : C — C are the rational maps of
form f(z) = (az + b)/cz + d) having a,b,¢,d € C and ad # be.
Proof By Theorem 1.1 for f to be meromorphic it must be rational, but to be injective

it must have degree 1. Conversely, any f of this form is invertible since it has inverse
f~Yz) = (dz — b)/(—cz + a). QED

Critical Points

A critical point of a rational map f of degree d is a point zp is a point where the degree
one term of the Taylor series for f vanishes, in other words the derivative f'(z) vanishes.
Looked at topologically it is a branch point of f, a point where locally f has the form
z — ag + 2" for some n > 1, and thus in particular where f~1f(z) consists of less than
d distinct points. (But for d > 2 it does not follow that zg is a critical point just because
f~1f(z0) consists of less than d distinct points. Why ?) Writing f(2) = p(2)/q(2), we see
that f'(z) = 0 ¢'(2)p(2) — p'(z)¢(z) = 0 and deduce:
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Proposition 1.3 A degree d rational map has 2d — 2 critical points (counted with multi-
plicity)
Mobius transformations

Maps of the form f(z) = (az + b)/cz + d) having a,b,c,d € C and ad # bc are called
fractional linear or Mobius transformations.

Properties
1. Any invertible linear map a : C? — C? has the form

2\ (@ b z\ _ faz+bw
w c d w/) \cz+dw
and passes to a map CP' — CP* which in our coordinate z/w on C=CPl'is

az+bw _az/w+b
cz+dw  cz/w-+d -

z/w —

(where (aco + b)/(coo + d) is to be interpreted as a/c and so on).

2. Composition of linear maps passes to composition of Mébius transformations. The
group of all Mobius transformations is therefore

PSL(2,C) = SL(2,C)/+I

where SL(2, C) denotes the group of all 2 x 2 matrices of determinant 1.

3. Given any three distinct points P, Q, R € C, there exists a unique Mobius trans-
formation sending P — 00,Q — 0, R — 1.

4. A Mobius transformation preserves the cross-ratio

g (S-QE-P
N G ()

of any four distinct points P,Q, R, S.

5. Mobius transformations send circles to circles (where a ‘circle through oo’ in C is
a straight line in C).

1.3 Conjugacies, fixed points,and periodic orbits

Conjugacies

Rational maps f, g are said to be conjugate if there exists a Mobius transformation h
such that g = hfh~1.

Conjugate maps have identical dynamical behaviour (think of 4 as a ‘change of coor-
dinate’). In particular h sends fixed points of f to fixed points of g, periodic points of f to
periodic points of g etc. We can often put a rational map into a simpler form by applying
a suitable conjugacy.



Examples

1. A rational map f is conjugate to a polynomial if and only if there exists a point
zp € C such that f~(zp) = {20}. (Proof: Move z to co by a Mébius transformation .
Details: exercise.)

2. A rational map f is conjugate to a polynomial of the form z — 2™ (some n > 0) if
and only if there exist distinct points zp, z; € C such that f~1(20) = {20} and f~1(z;) =
{z1}. (Proof: Move z; to co and z; to 0 by a Mobius transformation h. Details: exercise.)

3. Every degree 2 polynomial z — az® + Bz + v (o # 0) is conjugate to a (unique)
one of the form z — 2% +c. (Proof: Exercise. Note that h can be taken of the form az+b
since we do not have to move oo).

Fixed points, periodic points and their types

A fized point of a rational map f is a point zg € C such that f(z0) = 2z9. The multiplier
of f at such a fixed point is the derivative f’(z9) = A\. We say that z is

attracting if [A| < 1 (if A = 0 we say 2z is superattracting);

repelling if |A| > 1;

neutral if |\| = 1.

The last case is subdivided into rational if A = 1 for some n and irrational otherwise.

Exercise Show that multipliers at fixed points of f are preserved when the function f is
conjugated by a Mobius transformation (Hint: differentiate hfh~! using the chain rule).

We shall write f™ for the nth iterate of f (not to be confused with the nth derivative
of f, which we shall denote f(™ if we ever need it). The orbit of a point z under f is the

sequence z, f(z), ..., f™(2), ...

When 2 is an attracting fixed point of f, every point z of C sufficiently close to z has
orbit converging to zg (as is easily proved using the Taylor expansion of f at zo, which has
the form f(z) = 2o + A(z — 20)+ higher order terms). When z, is a repelling fixed point
we know that for z sufficiently close to zo we have |f(2) — f(20)| > |z — 20|, though it may
be that the orbit returns to near zo at some later stage. When 2y is a neutral fixed point
the behaviour can be much more complicated (as we shall see later).

A point zg € C is said to be a periodic point of f if there exists some n > 0 such
that f"(z0) = zo. The least such n is called the period. The multiplier A of the orbit
20, f(20), ---» f™(20) = 2o is the derivative of f™ at its fixed point zy, which, by the chain
rule is equal to the product f'(zp)f’(21)...f' (2n—1) (where z,, denotes the mth point f™(z)
of the orbit of zy). For periodic orbits we have the same classification into types as for
fixed points.

Ezercise Let f be the rational map

—2z—-1

%.———_
z 2244242

Find the critical points of f and their orbits. Deduce that f is conjugate to z — 2% — 1.
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1.4 Fatou and Julia sets: equicontinuity, normal families, and Montel’s Theo-
rem

Definition Let f be a rational map and zy be a point of C. We say that the family of
iterates {f™}n>0 is equicontinuous at zo if given any € > 0 there exists 6 > 0 such that for
all n > 0 d(f™(z), f™(20)) < € whenever d(z,z9) < 6. (Here d is the spherical metric on
C.)

Think of this as saying ‘Orbits that start near zo remain close to the orbit of zp '

Definitions

The Fatou set F(f) of f is the largest open subset of C on which {f™},>0 are equicon-
tinuous at every point.

The Julia set J(f) of f is C — F(f).

The Julia set should be thought of as the set of points where we have ‘semsitive
dependence on initial conditions’.

Example

J(2) = 22 has Fatou set F(f) = {z: |z| # 1}, and Julia set J(f) = {2 : |2| = 1}.

(Since f doubles length along the unit circle it is clear that {z : |z| = 1} C J(f). It
is not quite so obvious that points not on the unit circle are in F'(f). One could try to
give a direct formal proof of this, but the details would be messy in practice: the problem
is that orbits started close together near (but not on) the unit circle will move apart for
a large number of iterations before they start approaching each other again. For a more
general method of proof, see the example a few lines below.)

Properties ‘ X

1. F(f) is open (by definition); hence J(f) is closed and therefore compact (since C
is).

2. F(f) is completely invariant, that is f(F(f)) = F(f) = f~YF(f)). (This follows
from the definition of F'(f) and the fact that a rational map is continuous and open.)

3. J(f) is completely invariant. (This follows at once from 2.)

What kind of families F of analytic maps f : Q2 — C are equicontinuous 7 Firstly, if
all the f € F have a common bound on Q, say |f(z)] < M for all z € C and all f € F,
then it is an easy exercise using Cauchy’s integral formula for f(")(z) to show that for each
n, on each compact subset K C € there is a uniform bound on |f™(z)| (depending only
onn, M and K, not f). By considering Taylor series it follows that in this case the family
F is equicontinuous. In particular

Example Any family of analytic maps of the open unit disc D into itself is equicontinuous.
For example {z — 22" }n>0 are equicontinuous on D: thus the Fatou set of z — 2% contains
{z : |z| < 1}. Conjugating by j : z — 1/ we see that the Fatou set of z — 22 also contains
{z : |2| > 1}. Since every point on the unit circle is in the Julia set of z — 2%, we now
have a proof that the Fatou and Julia sets of this map are as claimed above.

Definition A family F of maps Q — C is called normal if every infinite set of maps in F
contains a sequence of maps which converges locally uniformly to a map f : Q — C (not
necessarily in F).



Example {z — zzn}nzo are a normal family on D, since they converge locally uniformly
there to the constant map z — 0.

Theorem 1.4 (Arzeld-Ascoli) Let Q be a domain in C. Any family of continuous maps
2 — C 1is normal if and only if it is equicontinuous.
(For a proof see any sufficiently large complex anaylsis textbook.)

This brings us to the key theorem for Fatou-Julia theory:

Theorem 1.5 (Montel, 1911) let Q be o domain in C. Every family of analytic maps
2 = C —{0,1,00} is normal (or equivalently, by Arzeld-Ascoli, equicontinuous).
(For a proof, see, for example, Beardon’s book ‘Iteration of rational functions’.)

We can replace the points 0, 1, 0o in the statement of Montel’s Theorem by any other
three points of C (just compose with a suitable Mobius transformation). Montel’s Theorem
is a much more powerful result than our earlier observation that any family of maps with a
common bound is equicontinuous. One should perhaps compare it with Picard’s Theorem
that any analytic function C — C — {0,1} is constant, which is in turn a much more
powerful result than Liouville’s Theorem that a bounded analytic function on C is constant.
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LECTURE 2. PROPERTIES OF FATOU AND JULIA SETS
2.1 Julia sets: properties and characterizations

Before listing a sequence of properties of Julia sets which mostly follow directly from
Montel’s Theorem, we make a brief excursion into topology to consider finite completely
invariant sets.

Lemma 2.1 Let f be a rational map with deg(f) > 2, and suppose E is a finite completely
invariant subset of C. Then E contains at most 2 points.

Proof Suppose E contains k£ points. Then f must permute these points and hence for
some ¢ the iterate f?¢ = g is the identity on E. Suppose g has degree d. Each point z €
must be a critical point of g, of valency d (i.e. locally g looks like z — 2%), else g~ 1(2)
would contain points other than z. But since the Euler characteristic of C is 2, we know

that
2d =2+ (v.—1)
[ed

(the ‘Riemann-Hurwitz formula’). Here the sum is taken over all critical points ¢ of g, and
V. denotes the valency of c¢. Hence

k(d—1)<2d -2

and therefore k < 2. QED

Definition The exceptional set E(f) of a rational map is the union of all finite completely
invariant sets. Lemma 2.1 says |E(f)| < 2. Note that if |E(f)| = 1 then f is conjugate to
a polynomial (just conjugate by a Mobius transformation sending the exceptional point to
o), and if |[E(f)| = 2 then f is conjugate to some z — z¢, with d a positive or negative
integer (just send the two exceptional points to co and 0).

Properties of Julia sets of rational maps of degree at least two

1. J(f) # 0. (See Beardon or Carleson and Gamelin. The basic idea is that if { f"}n>0
form a normal family on the whole of C then some subfamily (with degrees tending to
infinity) converges locally uniformly to a rational function, which is impossible.)

2. J(f) is infinite. (By Lemma 2.1 the only possibilities for finite completely invariant
sets are (up to conjugacy) the set {oo} (for a polynomial) or {c0,0} (for a map z — 2¢).
But in both cases these exceptional sets are contained in the Fatou set.)

3. J(f) is the smallest completely invariant closed set containing at least three points.
(The complement of a completely invariant closed set containing at least three points is an
open completely invariant set omitting at least three points, hence contained in the Fatou
set, by Montel’s Theorem.)

4. J(f) is perfect, that is, every point of J(f) is an accumulation point of J(f).
(For if we let Jy be the set of accumulation points of J, then J; is non-empty, closed and
completely invariant - using the facts that f is continuous, open and finite-to-one - and Jy
cannot be finite since it would then be exceptional and hence contained in F'(f), so Jo = J
by Property 3.)
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5. J(f) is either the whole of C or it has empty interior. (Write S = C — int(J).
Then S is the union of the Fatou Set F' and the boundary 8J of J, and either S is empty
or it is an infinite closed completely invariant set, so containing J (by Property 3).)

We remark in connection with Property 5 that there exist examples of rational maps
f having J(f) = C (e.g. the example of Lattes (1918): z — (22 +1)2/42(2%2 — 1)) but that
for a polynomial map the Fatou set always contains the point co and hence is non-empty.

Useful results for plotting J(f)

Proposition 2.2 If f is rational of degree at least 2, and U is any open set meeting J(f),
then Up2y f*(U) > C — E(f).

Proof If ;> , f™(U) misses three or more points of C then f™ are a normal family on U
by Montel, contradicting U N J # @. But if a non-exceptional z lies in C — (5, f*(U)
then for some m and n the point f~™(z) must lie in f*(U) (since |, ,~o f~™(2) is infinite).
Hence z € f™*"(U). Contradiction. QED. -

Corollary 2.3 If zy is not in E(f), then J(f) C U, >0 f™(20)-
Proof take any z € J(f) and neighbourhood U of z. By Proposition 2.2 the given point
zp lies in some f“(U). Hence f™™(29) NU # 0. QED.

This gives us a very simple algorithm for plotting J(f). One just has to start at any
(non-exceptional) 2y whatever and plot all its images under 1, then all of their images
under f~* etc., or alternatively plot zo, 21, 22, ... where each z;; is a random choice out of
the (finite) set of values of f~1(z;). The resulting set accumulates on the whole of J(f).
Even better, if one starts at a point 2o known to be in J(f) (for example a repelling fixed
point) one has J(f) = {J,;>o f~™(%0), so that no redundant points are plotted with either
algorithm.

Julia sets and repelling periodic points

Obviously every repelling periodic point of f lies in the Julia set. However it is also
true that every point of the Julia set has repelling periodic points arbitrarily close to it:

Theorem 2.4 let f be rational of degree at least two. then J(f) is the closure of the set
of all repelling periodic points of f.
We omit the proof (which can be found in Beardon or in Carleson and Gamelin), but

we remark that we had already observed in a simple example, z — 22, that the Julia set
(the unit circle) contains a dense set of repelling periodic points.

The Julia set of z — 22 + ¢ for |c| large
Lemma 2.5 Let |c| > 2. Then for all z with |z| > |c|, ¢?(z) = 00 asn — o0
Proof Let |z| = r. Then |g.(2)| > 72 —r > (e[ — 1) = |2|(|c| — 1). QED

Definition The Cantor set C is the space {0, 1} of all infinite sequences of 0’s and 1’s,
equipped with the product topology (that is, two sequences are close if and only if they
have the same initial segments). Recall that every perfect totally disconnected compact
subset of R™ is homeomorphic to C (for example the ‘middle thirds’ set on the real line).

Proposition 2.6 For |c| sufficiently large, J(q.) is homeomorphic to the Cantor set C,
and the action of q. on J(q.) is conjugate to that of the shift o on C.
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Proof Let 7o be the circle |z| = |c|, and let 11 = g¢ 1(4p). Then v lies inside T (by
Lemma 2.7) and -, is a lemniscate (since 0 is the only critical point of g. on C). gz '(71)
now consists of a lemniscate inside each lobe of 1, and so on:

Let D be any disc containing y; and contained in 7. Label the the two discs making
up ¢; }(D) as Do and Dy, and label the components of q;%(D) by

Doo = DoNg; (Do) Dor = DoN . *(D1) Dw=DiNn ¢:*(Dg) Dii=DinN ;' (D1)
Continue inductively, setting
Dos = DoNg; Y (Ds) Dis=DiNg; (Ds)

for any finite sequence s of 0’s and 1’s. Set

Then A is a Cantor set (for large |c| it is easy to show that that ¢ 1 is contracting, by
a definite amount, on both Dy and D), its points are labelled by infinite sequences of
0’s and 1’s, and the action of g. on it is conjugate to the action of the shift ¢ on these
sequences. Since A is a closed completely invariant set it contains J(gc); moreover since A
contains a dense orbit (just write down an infinite sequence of 0’s and 1’s containing all
finite sequences) it is a minimal closed completely invariant set and is therefore equal to

J (QC)' QED
In fact Proposition 2.6 holds whenever ¢7(0) — oo, not just for ‘large’ |c|, but the proof
requires a little more work.

2.3 Counting components of the Fatou set

Proposition 2.7 The Fatou set of a rational map f of degree at least two contains at most
two completely invariant simply-connected components

Proof Any such component is homeomorphic to a disc D, and the restriction of ftoD
is a branch-covering of degree d. Since D has Euler characteristic 1 we deduce that f has
d— 1 critical points on D (counted with multiplicity). But f has only 2d —2 critical points.
QED.

Example The Fatou set for z — 22 has exactly two such components.
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Dropping the words ‘completely invariant’ and just counting components, we have:

Proposition 2.8 If F(f) has more than two components, it has infinitely many compo-
nents.

Proof If f has only finitely many components, Dy, ... Dy, they must be permuted by f
(since each component has image a component and inverse image a union of components).
Hence there exists an m such that g = f™ maps each D; to itself. But F(g) = F(f)
(from the definition of a normal family) and the D; are completely invariant for g. To
apply Proposition 2.7 and complete the proof it remains to show that the D; are simply-
connected. But each D; has boundary dD; closed and completely invariant under g, and
hence 0D; = J(f). It follows that

C-Di=C-(J(f)UDy) =F(f)—= D1 = Do U...U Dy

Hence Ds, ...Dy are the components of the complement of the connected set D; and are
therefore simply-connected. Similarly D; is simply-connected. QED
Examples

(i) z—22-1

The basin of infinity is a completely invariant component.

The components containing 0 and —1 form a periodic 2-cycle.

All other components are pre-periodic (fall onto the period two cycle after a finite
number of steps).

(ii) z = 22 + ¢ with |c| large.
Here F(f) has a single component, the complement in C of a Cantor set (but note
that this component is multiply connected).

A key theorem concerning the components of F(f) is

Theorem 2.9 (Sullivan’s ‘No Wandering Domains Theorem’ 1985) Every compo-
nent of F(f) is either periodic or preperiodic

For a proof see Sullivan (Annals 1985). The basic idea is that if there were a wandering
domain then it would be possible to construct an infinite-dimensional family of perturba-
tions of f, all of them rational and topologically conjugate to f, but this is impossible
since f is determined by a finite set of data (as already remarked earlier). However the
technical details take one deep into the theory of Teichmiiller spaces and quasiconformal
geometry, beyond the scope of these notes. The original conjecture that f could not have
wandering domains was due to Fatou.

The basin of an attractive fixed point zg is the set {z : lim, o f™(2) = 2} and the
immediate basin is the component of this set containing zg. There are similar definitions
for an attracting period n cycle: here the immediate basin is the set of components of the
basin containing points of the cycle.

Theorem 2.10 The immediate basin of an attractive periodic point (for a rational map f
of degree at least two) contains a critical point.
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Proof Without loss of generality we suppose zg to be an attracting fized point. If zg is
superattracting, the result is obvious. if 2z is attracting but not superattracting then there
is a neighbourhood U of 2y such that f(U) C U and f|y is injective. Let V = f(U) and
consider the branch of f~! sending V to U. If f has no critical value in U, this branch can
be extended to the whole of U and hence f~2 has a well-defined branch on V. Repeat. If
some f~™(V) contains a critical value then the basin contains a critical point. but if not,
then {f~"},>0 are all defined on V' and have images in the the immediate basin. But then
they would form an equicontinuous family (by Montel’s Theorem) and this is impossible
since zg is a repelling fixed point for f~1. QED

Corollary 2.11 If f has degree d then it has at most 2d — 2 atiracting or superatiracting
cycles.
Shishikura (1987) improved this bound to ‘at most 2d — 2 non-repelling cycles’.

2.4 Linearisation Theorems
Dynamics of f near a fixed or periodic point

In the neighbourhood of a fixed point, which without loss of generality we take to be
zo = 0, f(2) = Az + O(2?) (Taylor series), where X is the multiplier at the fixed point. We
say that f is linearizable if there is a neighbourhood U on which f is conjugate to z — Az
(by a complex analytic conjugacy).

Theorem 2.12 (Koenigs’ Linearization Theorem 1884) If A £ 0 and |A| # 1 then f
s linearizable

Proof
Assume first that 0 < |A\| < 1. Cousider the orbits:

Set .

Then, by construction A, f(z) = Ah,41(2), and it suffices to show that the {h,} converge
locally uniformly to a function h. Rather than consider the details in general, see the
example below.

For the case 1 < |A| < oo one can proceed in exactly the same fashion as before, but
with f~! in place of f. QED.

Example
f(2) = Az + 2% (where |A| < 1). Here the orbit of 2, is
z1 = f(z0) = Azo(1 + 20/ )
29 = f(Zl) = /\Zl(l -+ Zl/)\) = /\220(1 -+ Z()//\)(l + Zl//\)
2 = M20(1 4+ 20/ A) (1 + 20/ A) (1 + 21 /A)
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Thus A, (20) = 20(1 4 20/A) (1 + 21/A)...(1 + 2,—1/A) where {2,,} is the orbit of zy. As
n tends to infinity, 2, tends to 0, and {h,} converge locally uniformly to

00 2z
h(ZO) = 2y H(l + T
0

Note how the dynamics have been used to construct an explicit conjugacy. One
can also construct the coefficients of h recursively, directly from the functional equation
hf(z) = Ah(z), but the dynamical motivation is then no longer apparent.

Theorem 2.13 (Bottcher 1904) If f(z) = z* + O(z**Y) (k > 2 integer) then f is
conjugate to z — 2* on a neighbourhood of 0.

Proof Analogously toL.IL we set hn(z) = (f"(2))/*". Then hy,f(2) = (hns1(2))* and
the {h,} converge locally uniformly to a function h conjugating f to z — z*. QED

The proof above is only a sketch! The right choice of branch of k™th root in the
definition of h,, is important, but rather than fill in the details in general, we consider an
example, one that will also be useful later.

Example

Consider f : z — 22 + ¢ near the fixed point co.

Write this map as z — 22(1 + ¢/22).

z1 = f(20) = 23(1 + ¢/23)

2= f(z1) = 22(1 +¢/22) = 24(1 + ¢/22)2(1 + ¢/2})

o n n—1 n—2

o =zh (L+e/zh 1) =28 (L+¢/2)”" (1+¢/20)" 7 .(1+c/22_y)

S0 hn(20) = 20(1 + ¢/22)Y2(1 + ¢/23)/*...(1 4+ ¢/22_)/?" where the choice of each
root is the obvious one coming from the binomial expansion. As n tend toco the z, tend
to oo (since 2 is outside the filled Julia set). Thus the h,, converge (locally uniformly) to

£)2—<n+1>
2
z'l’l

h(zo) = 2o ﬁ(l +

Once again one could compute explicit formulae for the coefficients of 4 using recur-
sion relations based on the functional equation, but they are far less revealing than the
dynamical approach above.

We shall come back to this example when we look at the Mandelbrot set later. Mean-
while, what can be said about linearizability near a neutral fixed point ?

Suppose f(z) = Az + O(z?), with |A| = 1.
Case 1: \ = ¢?7p/q
Then f is not linearizable (unless f(2) = Az), since f9 # identity.
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Example f(z) = z + 2"t}

| A7V o
VAR ! \1\' ¢ N
\ 4 N ¥y

P =t
=Y e & g
R g3 (T S
n=1 =2

Theorem 2.14 (Comacho 1978) If f(z) = Az + O(22), with A = €>™P/4_ then either
f9 = identity (in which case f(z) = Az) or f is topologically conjugate to a map z —
Az(1 + 2%9) for some positive integer k

It follows that the attractive basin contains a ‘flower with k petals’ as shown. (When
q # 1 the petals rotate through 27p/q each time f is applied.)

Notes:

1. The conjugacy in Theorem 2.14 is not in general conformal, indeed it is not in
general smooth.

2. A neutral fixed with multiplier A\ = €2™/4 lies in J (f), but it has a basin of
attraction in F'(f) and it can easily be shown (using Montel’s Theorem) that the immediate
basin must contain a crtitical point (see Beardon).

Case 2: X = 2™ with a irrational
Here it all dependson ‘how irrational o is’. Write o as a continued fraction

1
o = aqg + T [ao,al,az, ]
ai + as+-...

and let p,/q, (in lowest terms) be the value of its nth truncation [ag, ay, ..., ay].
(For example the golden mean [0,1,1,1,1,...] has p1/q1 = 1/1,p2/q2 = 1/2,p3/qs =
2/3,pa/qa = 3/5, ....)

Definition « satisfies the Brjuno condition if and only if

i log(Qn-l-l)

~  n

< 0

We write B for the set of real numbers satisfing the Brjuno condition.

The combined results of Siegel (1942), Brjuno (1965) and Yoccoz (1987) yield

Theorem 2.15
a € B & all complez analytic maps z — €2>™*2+0(22) are linearizable & z — e2™ %z 4 22
i8 linearizable

When a linearisation exists its domain is called a Stegel disc.

17



Notes

1. Yoccoz’s proof of the necessity of the Brjuno condition is technical and difficult: it
is motivated by ideas of renormalization.

2. The Siegel disc around a linearizable irrational neutral fixed point is in the Fatou
set F'(f). It can be shown the Siegel discs ‘use up’ critical points in the sense that the
boundary of a Siegel disc necessarily lies in the accumulation set of the forward orbit of
some critical point.

3. The irrational neutral points which are not linearizable are known as Cremer points
(after Cremer 1928). They lie in J (f)- The dynamics around them can be very complicated
(Perez-Marco 1992) and has a structure which depends on the continued fraction of a.

Finally in this section we remark that it can be shown (see for example Sullivan 1985)
that for a polynomial the only possible components of a Fatou set are components of the
basin of

1. a superattracting periodic orbit;

2. an attracting periodic orbit;

3. a rational neutral periodic orbit;

4. a periodic cycle of Siegel discs.

There is one other type that can ocur for rational f (but not polynomial f), compo-
nents of the basin of

9. a periodic cycle of Herman Tings.

(A Herman ring is an annulus with dynamics conjugate to an irrational rotation.)

These are the 5 types of ‘regular behaviour’ of a rational map. To completely un-
derstand rational maps we have to understand how they fit together with each other, and
with the behaviour on the complement of the regular domain, the Julia set. As we shall
see, there are still unanswered questions even in the simplest case, that of quadratic maps
z— 22 +c.
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