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Preface

There are many ways to extend the ideas of classical di�erential geometry to a
noncommutative world. Our view is that there is no clear answer as to which of
these is correct, given that many of them have their own rich pure mathematical
theory. However, if we were to think about what should ideally be noncommutative
di�erential geometry, we might identify the following considerations. There should
be a broad collection of examples of interest across di�erent branches of mathe-
matics. Noncommutative geometry should reduce to classical geometry as a special
case, though some aspects of the theory may become trivial in the classical case.
Most constructions in classical di�erential geometry should have noncommutative
geometry analogues. Last but not least, as geometry originated as a practical subject,
there should be applications, which historically has meant applications in physics
and applied mathematics. With this in mind, it has been one of the principles of this
book to include both the pure mathematical background and applications, from cate-
gories to cosmology and from modules to Minkowski space. We shall try to explain
both aspects from a relatively elementary starting point. Much of the work will be
taken from our own research papers, which have been inspired by the above point
of view, particularly from our experience with quantum groups (a ‘quantum groups
approach to noncommutative geometry’), although not limited to this. In short, we
will provide one particularly constructive and computable style of noncommutative
geometry, but we will also include links to other approaches, where possible.

Noncommutative geometry, one way or another, arose from experience with
quantum theory. By the 1920s, Dirac has already speculated about geometry with
noncommuting x, p coordinates, and the great theorems of Gel’fand and Naimark for
C⇤-algebras and the GNS construction of Hilbert space representations of noncom-
mutative C⇤-algebras were driven by mathematical physics in the context of quan-
tum theory. K-theory, universal di�erentials, vector bundles (as projective modules)
and connections for noncommutative algebras, as well as Hochschild and cyclic
cohomology, were a natural progression in this direction, culminating in Connes’
famous notion of a spectral triple as an abstract ‘Dirac operator’ in the early 1980s.
Meanwhile, and quite separately in the mid 1980s, large classes of noncommutative
algebras appeared as part of the ‘quantum groups revolution’. These objects arose on
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the one hand in the context of generalised symmetries in quantum integrable systems
(the Drinfeld–Jimbo quantum groups Uq(g)) and on the other hand from ideas of
quantum Born reciprocity or observable-state duality in quantum gravity (the bi-
crossproduct quantum groups in the PhD thesis of one of the authors). These remain
two main classes of quantum groups, with the first class of direct interest in many
branches of mathematics, including knot theory and category theory, and the second
class of particular interest as Poincaré quantum symmetries of noncommutative or
‘quantum’ spacetime. In either case, such quantum groups provide key examples of
noncommutative algebras with a clear geometric significance which therefore should
be foundational examples of noncommutative geometry, just as classical Lie groups
were of classical di�erential geometry.

An outline of the book is as follows. In Chapter 1, we cover the basic theory
of algebras equipped with di�erential structure expressed as exterior algebras of
di�erential forms. The chapter also introduces the notion of a quantum metric and,
in the case of an ‘inner’ calculus, an induced quantum Laplacian, as elementary
layers of the theory that depend only on the di�erential structure. We also introduce
many of the basic examples which will be further developed in subsequent chapters
as we build up the di�erent layers of noncommutative geometry in our approach.
The last sections provide some applications so that, all together, Chapter 1 could be
read as a self-contained first introduction to noncommutative di�erential geometry
as we see it.

Chapter 2 provides a condensed introduction to Hopf algebras or ‘quantum
groups’ and their representations as monoidal or (in the (co)quasitriangular case)
braided monoidal categories. Much more can be found in several textbooks on quan-
tum groups, including a text by one of the present authors, from which we borrow our
notation. The chapter then develops the theory of di�erential structures and exterior
algebras on Hopf algebras, including a braided antisymmetric algebra approach to the
Woronowicz construction, and quantum/braided Lie algebras on quantum groups.
The last section of Chapter 2 introduces the notion of a bar category, which is needed
to formulate complex conjugation and ⇤-operations in a more categorical way.

Chapter 3 introduces the basic notions of a vector bundle (as a projective module
of sections) over an algebra and of a connection on such a vector bundle over a
di�erential algebra. We also cover elements of cyclic cohomology and K-theory,
including the famous Chern–Connes pairing between the two. Particularly important
for in this chapter is the idea that 1-forms in noncommutative geometry are bimodules
(one can multiply by the algebra from either side) with the result that one should ask
for a connection to obey a Leibniz type rule from both sides. If the Leibniz rule on
one side has a standard form then the other side will need to refer to a ‘generalised
braiding’ � and when this exists we say that we have a ‘bimodule connection’.
Chapters 1–3 constitute the basic foundation of the book.

Chapter 4 proceeds to harder results about the curvature of connections such as
the Bianchi identities and characteristic classes. The chapter also includes a study
of the category of modules equipped with flat connections, which could be seen
as playing the role of sheaves over the algebra. Various constructions with sheaves
and cohomology are given which are analogous to classical constructions. Some
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applications of spectral sequences are given, including the Leray–Serre spectral
sequence of a fibration, for a di�erential definition of noncommutative fibration. We
also look at positive maps and Hilbert C⇤-modules, and extend the idea of bimodules
as generalised morphisms between algebras to a di�erential setting using bimodule
connections on B-A bimodules for di�erent algebras A, B.

Chapter 5 looks at quantum principal bundles, where the fibre is now a Hopf
algebra or quantum group. This is a theory that goes back to BrzeziÒski and one of
the authors, while in the case of the universal calculus it is also known in algebra
as a Hopf–Galois extension. We explain the link with Galois theory and provide
the general theory of associated bundles and induced bimodule connections on them
when the principal bundle has a connection-form. We also study di�erential fibrations
more generally. The last section of the chapter is an application to quantum framed
spaces, i.e., di�erential algebras appearing as the base of a quantum principal bundle
and data such that the space ⌦1 of di�erential 1-forms is an associated bundle. The
chapter includes bundles and q-monopole bimodule connections over the standard q-
deformed sphere, among other examples, which combines with our quantum framing
theory to provide our first encounter with a ‘quantum Levi-Civita connection’ as a
torsion free metric compatible bimodule connection on ⌦1. The framing approach
also allows us to solve for a connection on the quantum group Cq[SU2] with its 4D
calculus, which turns out to be ‘weak quantum Levi-Civita’ in the sense of torsion
free and cotorsion free.

Chapter 6 develops the theory of vector fields and the algebra of di�erential
operators DA associated to an algebra with di�erential calculus. As in the classical
theory, modules over the algebra DA are the same as A-modules with flat connection.
The algebra DA has extra algebraic structure, which can be expressed by saying that it
is a braided-commutative algebra in the centre of the monoidal category of bimodules
with bimodule connections. DA for A the algebra of 2 ⇥ 2 matrices with a natural
di�erential structure turns out to be generated by A and a single quantised fermion.
We also introduce TX• with modules the same as A-modules with connection, not
necessarily flat. Chapter 7 introduces complex structures in the same manner as
classical complex manifold theory. This involves a bigrading of the exterior algebra
to give a double complex and allows the definition of holomorphic modules along
with implications for cohomology theories. These are shorter chapters and complete
the more advanced mathematical content of the book. A mathematically-minded
reader should be able to use the book as Chapters 1–3, or Chapters 1–7, depending
on how far one wishes to travel.

Chapter 8 brings together previously encountered notions of Riemannian and
other structures from Chapters 3,4,5 into a self-contained account of noncommuta-
tive Riemannian geometry over an algebra equipped with di�erential structure and
choice of metric. Finding an associated torsion free and metric compatible bimodule
connection (or quantum Levi-Civita connection) on ⌦1 here is a well-posed non-
linear problem and the chapter shows how it can be solved directly in a variety of
models. The chapter also includes a section on Connes’ spectral triples and how
they can sometimes arise in a weakened form in our constructive approach, as a
Dirac operator built along geometric lines from a connection and a Cli�ord struc-
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ture. Examples include the q-sphere and the algebra of 2 ⇥ 2 matrices. Other topics
include a wave-operator approach to quantum Riemannian geometry that short-cuts
the layer-by-layer treatment by directly formulating the quantum Laplacian as a
partial derivative of an extended calculus. The chapter also includes a slightly dif-
ferent theory of hermitian-metric compatible connections and Chern connections in
noncommutative geometry.

Chapter 9 concludes the book with applications specifically to quantum space-
time. Unlike quantum phase space in quantum mechanics, there is as yet no physical
evidence that the coordinates of spacetime themselves form a noncommutative dif-
ferential algebra. Indeed this e�ect, if observed, would be a discovery on a par with
the discovery of gravity itself (one can call it ‘co-gravity’ as it is in some sense
dual to gravity). By now, this striking possibility is widely accepted in quantum
gravity circles as a plausible better-than-classical model of spacetime that takes into
account Planck scale or quantum gravity corrections. At the same time, physicists
and applied mathematician readers should consider that just as geometry has many
roles beyond gravity, so does quantum or noncommutative geometry, for example to
the geometry of discrete systems as well as potentially to actual quantum-mechanics.
We have written the book in such a way that such readers should be able to focus
on Chapters 1,8,9, with the intervening chapters dipped into as needed for further
details of the underlying mathematics.

Chapter 1
short course

Chapter 2

Chapter 3

Chapter 5

Chapter 4

Chapter 7

Chapter 6 Chapter 8

Chapter 9

short 
maths 
book

fuller 
maths 
book

short book for 
theoretical 
physicists

There are inevitably other topics which we have not had room to include, and
many of these are of great importance and could form the basis of a future volume.
We included some of these topics, at an introductory level only, in the final sections
of the book. Thus, we briefly treat the semiclassical behaviour within deformation
theory or ‘Poisson–Riemannian geometry’, a paradigm which includes first-order
quantum gravity e�ects but bears the same relation to quantum gravity as does
classical mechanics to quantum mechanics. We have also treated only briefly the
construction of examples by ‘functorial twisting’, which is particularly interesting in
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the cochain case where the data on the symmetry quantum group is not a cocycle and
the exterior algebra becomes nonassociative. This is a big topic in its own right and
also closely tied to the semiclassical theory, where it corresponds to curvature of the
Poisson-compatible connection. The reader will also notice that we have only briefly
presented some areas from the C⇤-algebras side of noncommutative geometry and
in this case there are more comprehensive works elsewhere.

Outline of notations and examples

Here we outline some of the notational conventions for reference and orientation.
Most constructions work over a general field but most of the time one can keep
in mind R or C. We use a standard convention for expressing a tensor product of
matrices as a single matrix: for the example of a 3 ⇥ 3 matrix A,

A ⌦ B =

 
A11 B A12 B A13 B
A21 B A22 B A23 B
A31 B A32 B A33 B

!

which is equivalent to Ai
jBk

l written as a matrix with rows ik and columns jl
taken in order 11, 12, · · · , 33. A dot is typically used to emphasise a product, often
to separate di�erent types of elements. For example da.b may be used to indicate
(da)b (rather than d(ab)) or e.a for the product of a right module by an element of
the algebra. Left and right actions that are di�erent from default module or bimodule
structures will typically be denoted by ., / respectively. Composition of maps may
for emphasis be written as f � g, meaning to apply g first.

The symbol �x is used for the function taking the value 1 at x and zero elsewhere.
We also use the Kronecker delta �x,y with value 1 if x = y and zero otherwise. We
use C(X) for the continuous complex-valued (unless otherwise specified) functions
on a topological space X , C1(X) for the smooth (di�erentiable arbitrarily many
times) continuous and typically real-valued functions on a smooth manifold X , [X]
for the coordinate algebra of an algebraic variety X and q[X] its q-deformation.
For Cq[S1], the q refers to the di�erential calculus as the algebra itself in this case is
not deformed. (We also write CqZ for the same algebra but in the di�erent context
of a group Hopf algebra with coquasitriangular structure involving q.) We similarly
write C✓[T2] for the algebraic noncommutative torus rather than the more common
notation T2

✓. The polynomial algebra in n variables is [x1, · · · , xn] and the free
associative algebra in n variables is hx1, · · · , xni. Angular brackets also denote an
ideal generated in an algebra and in other contexts a duality pairing or a hermitian
inner product.

We use [x, y] = xy � yx for the commutator of two elements in an algebra,
{x, y} = xy + yx for the anticommutator and [x, y} = xy � (�1)|x| |y|yx for the
graded commutator when this applies. Where there is no confusion we also use [ , ]
for Lie brackets and quantum and braided Lie brackets. In other contexts, { , } could
denote a Poisson bracket or indicate a list. We use distinct notations
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[n]q =
1 � qn

1 � q
, (n)q =

qn � q�n

q � q�1

for two sorts of q-integer for any determinate or indeterminate q.
We most often use ⌦n for the n-forms on an algebra A = ⌦0, with the entire

collection of forms simply denoted by ⌦ and forming a di�erential graded algebra
(or DGA). When we have di�erent algebras of interest, we may write ⌦A, ⌦B etc., to
avoid confusion. A roman d denotes the di�erential. Clearly, each ⌦n is a bimodule
over A as we can multiply by degree 0 from either side. In general, for modules over
an algebra A, we use AHom(E, F ) for left A-linear maps from the left module E to
the left module F . Correspondingly, HomA(E, F ) is the right A-linear maps from
the right module E to the right module F , and AHomA(E, F ) is the A-bilinear maps
between bimodules. We write ‘fgp’ for ‘finitely generated projective’ as a module
over an algebra. We use id for the identity map.

As noncommutative geometry often relates to complex-valued objects, the ⇤
operation plays a prominent role and follows the usual rules for a complex-linear
involution when extended to other contexts. It should not be confused with the Hodge
operation, for which we reserve ⇣. Sometimes we will want to be extremely clear
and use a more formal language (of bar categories). Thus, the conjugate E of a
bimodule E over a ⇤-algebra A has elements e 2 E denoting the same element as
e 2 E but viewed in the conjugate module. The bimodule actions on the conjugate
are a.e = e.a⇤ and e.a = a⇤.e for a 2 A. For a second bimodule F , there is a
map ⌥ : E ⌦A F ! F ⌦A E given by ⌥ (e ⌦ f) = f ⌦ e. The notation e 7! e⇤

is used for the usual conjugate linear ⇤ map, but we also use the more categorical
notation F : E ! E as the linear map (typically also a bimodule map) defined by
F(e) = e⇤. Round brackets ( , ) are often used for inner products linear in both
factors in contrast to angular brackets h , i for hermitian inner products. The latter
could be conjugate linear on the right, or in other cases conjugate linear on the left.
Often an explicit conjugate is used, for example hu, vi.

Elsewhere in algebra, the map ‘flip’ swaps tensor factors. A counit or ‘augmen-
tation’ on an algebra means a character A ! and when this is fixed, A+ denotes
its kernel or augmentation ideal. Left and right coactions are denoted by

�Lv = v ¯(1) ⌦ v ¯(1), �Rv = v ¯(0) ⌦ v ¯(1).

Categories of modules over an algebra are denoted by AM for left modules, MA

for right modules and AMA for bimodules. When H is a Hopf algebra, or at least a
coalgebra, we use HM, MH , HMH to denote left, right and bicomodules. We also
have crossed versions where the di�erent structures do not commute, for example
⇤⇤H

H denotes right crossed H-modules where H both acts and coacts and there is a
compatibility between these which is a linearised ‘Hopf’ version of the crossed G-set
condition of J.C. Whitehead in algebraic topology (these objects are also called right
Radford–Drinfeld–Yetter modules in the literature).

We will typically use G for a group, g for a Lie algebra, not to be confused with
g for a metric. We typically use r for left-covariant derivatives or connections (we
use these terms interchangeably) and r̃ for right-covariant derivatives. These are
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frequently given subscripts such as rE to indicate which module they act on. In
addition, D is often used for a connection arising from the framing construction
and ~ for a background connection on ⌦1 or on vector fields X in the theory of
di�erential operators. We use ! for principal or ‘spin’ connection forms on a quantum
principal bundle and $ for the Maurer–Cartan form on a group or quantum group
(which can be seen as a flat connection form). Z(A) is the centre of an algebra A
and Z(C) of a monoidal category C (as introduced independently by Drinfeld and
by one of the authors as a dual C�).

We have adopted a particular compromise for the notation of indices on di�erential
forms. To be consistent with the geometry literature, local coordinates {xµ} have
an upper index hence so do di�erential forms dxµ. In Chapters 8 and 9 an ‘n-bein’
basis of di�erential forms {ei}, when it exists, generally then gets an upper index for
consistency. We also adopt a geometric normalisation of the exterior derivative d so
as to have a classical limit as a deformation parameter q ! 1 or � ! 0. However,
in the less specialised earlier chapters we do not adopt such strict conventions and
typically keep a basis of 1-forms as {ei} and keep the canonical normalisations for
d intrinsic to the relevant noncommutative constructions, notably in Chapter 2.

In Table 0.1, we give the occurrences of the most common examples used to
illustrate various di�erent aspects of the theory. The references are to example or
proposition number, or by chapter and section number as indicated by §.
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C1
(M) 1.23 1.35 4.60 6.7

M2(C) 1.8 1.20 1.20 1.37 1.38 4.89 4.89 4.89 §6.5.3 7.6 8.13 8.46

C�[R] 1.10 1.34 1.34

Cq[S1
] 1.11 8.5 1.34 1.34 4.22 4.22 4.22 §6.5.2 8.5

⇥[V ] 1.14 1.21

(X) §1.4 1.28 1.28 1.40 5.44 6.3

C✓[T2
] 1.36 1.36 1.36 3.17 3.30 6.13 7.11 8.16

Cq,✓[T2
] E1.5 E3.6 E4.3 E5.10

U(g) §1.6.1 1.43

U(su2) 1.45 1.45 1.45 8.15 8.50

uq(b+) E2.4 E4.5 E4.5 E2.3 E4.9

C�[S2
] 1.46 1.46

CS3 1.48 1.48 1.50 1.50 4.48 5.43 5.43 E6.2 8.49

(G) §1.7 1.59 1.59 1.53 2.29 2.20 3.75 3.87 4.21 5.49 8.17 E8.10

(S3) 1.60 1.60 1.60 1.60 1.60 3.76 3.88 4.18 5.64 6.30

Uq(sl2) 2.11

Cq[C2
] 2.79 2.79 4.33 §7.4.2

C3D
q

[SU2] 2.32 4.68 2.21 3.77 3.89 5.63 5.51 6.4

C4D
q

[SU2] 2.13 2.60 2.62 2.77 2.59 5.85 8.51

Cq[S2
] 2.35 2.36 4.34 4.36 3.15 3.27 4.24 3.99 5.63 6.14 7.12 5.80 8.47

Cq[D] 3.40 3.40 4.37 4.37 3.100 3.100 4.31 5.24 E6.3 8.57 E8.7 8.48

C(ZN ) 3.86 3.86 3.86 5.49 E7.1

CPSL2(Z) 4.19 4.19 4.19

Cq[SO3] 4.23 4.23 4.23 4.23 4.23

CHg 4.62 4.62 4.67 E5.5 5.12

C[Klein] 5.45 5.45 5.45 5.11 5.45 5.11

Table 0.1 Some examples by statement number, chapter-section number § or exercise number E
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