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Lecture 19

Revision of lecture 18

linearisation

extreme values

midterm test
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Lecture 19

Calculating absolute extrema

why the above conditions? recall the extreme value theorem

example 1: Find the absolute extrema of f (x) = x2 on [−2, 1].

f is differentiable on [−2, 1] with f ′(x) = 2x

critical point: f ′(x) = 0 ⇒ x = 0

endpoints: x = −2 and x = 1

f (0) = 0, f (−2) = 4, f (1) = 1

Therefore f has an absolute maximum value of 4 at x = −2 and an
absolute minimum value of 0 at x = 0.
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Lecture 19

Absolute extrema with f
′(c) being undefined

example 2: Find the absolute extrema of f (x) = x2/3 on [−2, 3].

f is differentiable with f ′(x) = 2
3x−1/3

except at x = 0

critical point: f ′(x) = 0 or f ′(x)
undefined ⇒ x = 0

endpoints: x = −2 and x = 3

f (−2) = 3
√

4, f (0) = 0, f (3) = 3
√

9

Therefore f has an absolute maximum value of 3
√

9 at x = 3 and an
absolute minimum value of 0 at x = 0.
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Lecture 19

Rolle’s theorem

motivation:

Theorem

Let f (x) be continuous on [a, b] and differentiable on (a, b). If

f (a) = f (b) then there exists a c ∈ (a, b) with

f ′(c) = 0 .
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Lecture 19

Rolle’s theorem: proof

Theorem

Let f (x) be continuous on [a, b] and differentiable on (a, b). If

f (a) = f (b) then there exists a c ∈ (a, b) with

f ′(c) = 0 .

Proof.

extreme value theorem: f is continuous on [a, b], so it has absolute
maximum and minimum.

these occur only at critical points or endpoints – here: at f ′(x) = 0
on (a, b), or else at a or b.

apply first derivative theorem for extrema: if one of them occurs at
c ∈ (a, b), then f ′(c) = 0 (and we’re done).

If not, both must occur at the endpoints. But as f (a) = f (b), f (x)
must then be constant and therefore f ′(x) = 0 on [a, b].
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Lecture 19

Assumptions in Rolle’s theorem

Theorem

Let f (x) be continuous on [a, b] and differentiable on (a, b). If

f (a) = f (b) then there exists a c ∈ (a, b) with

f ′(c) = 0 .

It is essential that all of the hypotheses in the theorem are fulfilled!
examples:
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Lecture 19

Horizontal tangents of a cubic polynomial

example: Apply Rolle’s theorem to f (x) = x
3

3 − 3x on [−3, 3].

polynomial f is continuous on [−3, 3]
and differentiable on (−3, 3)

f (−3) = f (3) = 0

by Rolle’s theorem there exists (at
least!) one c ∈ [−3, 3] with f ′(c) = 0

From f ′(x) = x2 − 3 = 0 we find that indeed x = ±
√

3.
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Lecture 19

The mean value theorem

motivation: “slanted version of Rolle’s theorem”

Theorem

Let f (x) be continuous on [a, b] and differentiable on (a, b). Then there

exists a c ∈ (a, b) with

f ′(c) =
f (b) − f (a)

b − a
.

R. Klages (QMUL) MTH4100 Calculus 1 Week 8 9 / 35



Lecture 19

The mean value theorem: proof

basic idea:

Proof.

secant through (a, f (a)) and (b, f (b)) is given by

g(x) = f (a) +
f (b) − f (a)

b − a
(x − a) (point-slope form)

shift graph: for h(x) = f (x) − g(x), both h(a) = 0 and h(b) = 0

apply Rolle’s theorem: there is a c ∈ (a, b) with h′(c) = 0

as h′(x) = f ′(x) − f (b)−f (a)
b−a

, this implies f ′(c) = f (b)−f (a)
b−a

.
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Lecture 19

Applying the mean value theorem

example: Consider f (x) = x2 on [0, 2].

f (x) is continuous and differentiable on
[0, 2].

Therefore there is a c ∈ (0, 2) with

f ′(c) =
f (2) − f (0)

2 − 0
= 2 .

Since f ′(x) = 2x we find that c = 1.
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Lecture 19

Functions with zero derivatives are constant

know f ′(x) ⇒ know f (x)? special case:

Corollary

If f ′(x) = 0 on (a, b) then f (x) = C for all x ∈ (a, b).

Proof.

For any x1, x2 ∈ (a, b) with x1 < x2, f is differentiable and continuous on
[x1, x2]. According to the mean value theorem there is thus a c ∈ (x1, x2)
with

f ′(c) =
f (x2) − f (x1)

x2 − x1
.

But as f ′(c) = 0 by assumption, it follows that

f (x2) = f (x1) .

As x1 and x2 are chosen arbitrarily in (a, b), f (x) is constant for all
x ∈ (a, b).
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Lecture 19

Functions with the same derivative differ by a constant

know f ′(x) = g ′(x) ⇒ know relation between f and g?

Corollary

If f ′(x) = g ′(x) for all x ∈ (a, b), then

f (x) = g(x) + C .

Proof.

Consider h(x) = f (x) − g(x). As

h′(x) = f ′(x) − g ′(x) = 0

for all x ∈ (a, b), h(x) = C by the previous
corollary and so f (x) = g(x) + C .

example:
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Lecture 19

Application of the last corollary

example: Find the function f (x) whose derivative is sin x and whose
graph passes through the point (0, 2).

g(x) = − cos x satisfies

g ′(x) = sin x = f ′(x)

Therefore f (x) = g(x) + C , i.e.

f (x) = − cos x + C

f (0) = 2 gives
2 = − cos 0 + C

so that C = 3.

⇒ f (x) = 3 − cos x
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Lecture 20

Revision of lecture 19

calculating absolute extrema

Rolle’s theorem

mean value theorem
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Lecture 20

Increasing and decreasing functions

motivation:

make increasing/decreasing
mathematically precise

clarify relation to
positive/negative derivative

example: f (x) = x2 decreases on (−∞, 0] and increases on [0,∞). It is
monotonic on (−∞, 0] and [0,∞) but not monotonic on (−∞, 0∞).
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Lecture 20

First derivative test for monotonic functions

Corollary (of the mean value theorem)

Suppose that f is continuous on [a, b] and differentiable on (a, b).
If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on [a, b].
If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on [a, b].

Proof.

Consider any x1, x2 ∈ [a, b] with x1 < x2. According to the mean value
theorem for f on [x1, x2] we have

f (x2) − f (x1) = f ′(c)(x2 − x1)

for some c ∈ (x1, x2). Since x2 − x1 > 0 (why?), the sign of the right hand
side is the same as the sign of f ′(c). Hence, f (x2) > f (x1) if f ′ > 0 on
(a, b) and f (x2) < f (x1) if f ′ < 0 on (a, b).
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Lecture 20

Using the first derivative test for monotonic functions

example: Find the critical points of f (x) = x3 − 12x − 5 and identify the
intervals on which f is increasing and decreasing.

f ′(x) = 3x2 − 12 = 3(x2 − 4) = 3(x + 2)(x − 2)

⇒ x1 = −2, x2 = 2

These critical points subdivide the natural domain into

(−∞,−2), (−2, 2), (2,∞) .

rule: If a < b are two nearby critical points for f , then f ′ must be positive
on (a, b) or negative there. (proof relies on continuity of f ′).This implies
that for finding the sign of f ′ it suffices to compute f ′(x) at one x ∈ (a, b)!

here: f ′(−3) = 15 , f ′(0) = −12 , f ′(3) = 15
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Lecture 20

Summary: identifying monotonicity on subintervals

intervals −∞ < x < −2 −2 < x < 2 2 < x < ∞
sign of f’ + - +

behaviour of f increasing decreasing increasing
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Lecture 20

First derivatives and local extrema

example:

whenever f has a minimum, f ′ < 0 to the left and f ′ > 0 to the right

whenever f has a maximum, f ′ > 0 to the left and f ′ < 0 to the right

⇒ At local extrema, the sign of f ′(x) changes!
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Lecture 20

Checking for local extrema
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Lecture 20

Using the first derivative test for local extrema

example: Find the critical points of f (x) = x4/3 − 4x1/3. Identify the
intervals on which f is increasing and decreasing. Find the function’s
extrema.

f ′(x) =
4

3
x1/3 −

4

3
x−2/3 =

4

3

x − 1

x2/3

⇒ x1 = 1 , x2 = 0

intervals x < 0 0 < x < 1 1 < x

sign of f’ - - +
behaviour of f decreasing decreasing increasing

Apply the first derivative test to identify local extrema:

f ′ does not change sign at x = 0 ⇒ no extremum

f ′ changes from − to + ⇒ local minimum
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Lecture 20

Summary: geometrical picture

Since limx→±∞ = ∞, the minimum at x = 1 with f (1) = −3 is also an
absolute minimum.
Note that f ′(0) = −∞!
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Lecture 21

Revision of lecture 20

increasing, decreasing, monotonicity

checking for local extrema
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Lecture 21

Concavity of a function

example:

intervals x < 0 0 < x

turning of curve turns to the right turns to the left

tangent slopes decreasing increasing

The turning or bending behaviour defines the concavity of the curve.
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Lecture 21

Testing for concavity

If f ′′ exists, the last corollary of the mean value theorem implies that f ′

increases if f ′′ > 0 on I and decreases if f ′′ < 0:
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Lecture 21

Applying the concavity test

example 1:

y = x3 ⇒ y ′′ = 6x

for (−∞, 0) it is y ′′ < 0:graph
concave down;
for (0,∞) it is y ′′ < 0:
graph concave up

example 2:

y = x2 ⇒ y ′′ = 2 > 0

graph is concave up
everywhere
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Lecture 21

Point of inflection

motivation: y = x3 changes concavity at the point (0, 0); specify:

At a point of inflection it is y ′′ > 0 on one, y ′′ < 0 on the other side, and
either y ′′ = 0 or undefined at such point.

If y ′′ exists at an inflection point it is y ′′ = 0 and y ′ has a local maximum
or minimum.
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Lecture 21

Types of inflection points

example 1:

y = x4 ⇒ y ′′ = 12x2

y ′′(0) = 0 but y ′′ does not
change sign:no inflection point
at x = 0!

example 2:

y = x1/3

y ′′ =

(

1

3
x−

2
3

)′

= −
2

9
x−

5
3

y ′′(0) = 0 and y ′′ does change
sign: inflection point at x = 0
but y ′′(0) does not exist!
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Lecture 21

Second derivatives at extrema

Look at second derivative instead of sign changes at critical points in order
to test for local extrema:

proof of 1. and 2.:
proof of 3.:

consider y = −x4, y = x4 and
y = x3 as examples.
In this case use first derivative
test to identify local extrema.
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Lecture 21

Summary: curve sketching
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Lecture 21

Application: curve sketching

example: Sketch the graph of f (x) = (x+1)2

1+x2 .

1 The natural domain of f is(−∞,∞); no symmetries about any axis.
2 calculate derivatives:

f ′(x) = [calculation on whiteboard]

=
2(1 − x2)

(1 + x2)2

f ′′(x) = [calculation on whiteboard]

=
4x(x2 − 3)

(1 + x2)3

3 critical points: f ′ exists on (−∞,∞) with f ′(±1) = 0 and
f ′′(−1) = 1 > 0, f ′′(1) = − 1 < 0:
(−1, 0) is a local minimum and (1, 2) a local maximum.
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Lecture 21

Example continued 1

4 On (−∞,−1) it is f ′(x) < 0: curve decreasing; on (−1, 1) it is
f ′(x) > 0: curve increasing; on (1,∞) it is f ′(x) < 0: curve
decreasing

5 f ′′(x) = 0 if x = ±
√

3 or 0; f ′′ < 0 on (−∞,−
√

3): concave down;
f ′′ > 0 on (−

√
3, 0): concave up; f ′′ < 0 on (0,

√
3): concave down;

f ′′ > 0 on (
√

3,∞): concave up. Each point is a point of inflection.

6 calculate asymptotes:

f (x) =
(x + 1)2

1 + x2
=

x2 + 2x + 1

1 + x2
=

1 + 2/x + 1/x2

1/x2 + 1

f (x) → 1+ as x → ∞ and f (x) → 1− as x → −∞: y = 1 is a
horizontal asymptote. No vertical asymptotes.

R. Klages (QMUL) MTH4100 Calculus 1 Week 8 33 / 35



Lecture 21

Example continued 2

8 sketch the curve:
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Lecture 21

Learning about functions from derivatives
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